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Robotic Manipulation Planning with Stochastic Actions 

Alan D. Christiansen Kenneth Y. Goldberg 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA    15213 

Abstract 
This paper addresses automatic planning for task 
domains with stochastic actions. When actions 
are viewed as stochastic, the conventional planning 
paradigm must be modified to search for plans that 
achieve a goal with high probability. We identify 
two properties of stochastic actions: state diver- 
gence and state convergence. Considering these 
properties leads to two planning methods. One 
method, based on the control of Markov chains, uses 
exhaustive forward search to find optimal length- 
bounded plans. The second method uses a heuristic 
search method to find good but not necessarily opti- 
mal plans. We evaluate the planners on a particular 
robotic manipulation task called tray-tilting. The 
stochastic model for our actions is derived from 
physical experiments performed by a real robot. In 
addition to comparisons of estimated plan quality, 
we report on actual success rates observed when our 
robot carried out the computed plans. 

1   Introduction 
To plan, a robot must be able to predict the outcome of its 
actions. In many physical manipulation tasks, it is not rea- 
sonable to model actions as deterministic mappings from one 
state to another. Non-determinism can arise from any of a 
number of sources: A robot may have imperfect effectory 
and sensory capabilities, or it may have an imperfect model 
of the task (such as the effects of friction or impact dynamics). 
A reasonable approach in such cases is to develop stochastic 
action models. In such models, when an action is applied 
to a particular world state, any of a number of world states 
may occur. The probability that a particular world state will 
occur is governed by a probability mapping associated with 
the action. 

Stochastic transition models can be developed either ana- 
lytically, as in [Erdmann, 1989, Goldberg and Mason, 1990], 
or empirically, as in [Christiansen et dl., 1990]. In the present 
paper, we focus on the planning problem: given a stochastic 
model of actions, a known initial state and desired final state, 
find a sequence of actions—a plan—to reach the desired fi- 
nal state. In this paper, we consider only open-loop plans, 
where there is no plan execution monitoring. If we start with 
a known world state, and then execute one or more stochastic 
actions, the predicted result is not a single state. Instead, the 

result is a hyperstate that assigns "probability mass" to each 
state such that the mass sums to one. The notion of prediction 
can be extended so that given a particular hyperstate, we can 
predict what the "resulting" hyperstate will be when an action 
is applied. We can think of planning as finding a sequence of 
actions that transfer probability mass from the initial state to 
the desired final state. 

Planning is affected by two contrasting properties of 
stochastic actions. Some actions have the property that a 
single initial state can map onto more than one final state. 
We say that the action exhibits state divergence when, in exe- 
cuting the action, there is a tendency to distribute probability 
mass. Alternatively, some actions have the property that mul- 
tiple initial states map into a single final state. In these cases, 
we say that an action exhibits state convergence—it tends 
to focus distributed probability mass into a state. An action 
can exhibit both divergence and convergence if it spreads out 
probability mass from one state while combining mass from 
other states. Of course, an action may exhibit neither state 
divergence nor state convergence. 

A stochastic planner evaluates plans by tracking probability 
mass as each plan proceeds. The objective is to find a plan 
that transfers a maximal amount of probability mass into the 
desired final state. This can be accomplished in different 
ways. One way is to use actions that cause state divergence 
followed by actions that cause convergence toward the desired 
state. Another way to plan is to avoid actions that cause 
state divergence. These two ways of transferring probability 
mass suggest two planning methods: Method I propagates 
hyperstates, using a forward exhaustive search (to a fixed 
plan length) to find a plan most likely to produce the desired 
goal. Method II propagates only the most likely state, using 
a backward best-first search to find a plan that maximizes a 
lower bound on the probability of reaching the goal. 

Planning with stochastic actions has been considered by 
several researchers previously. Stochastic approaches to 
domain-independent planning have been described in the AI 
literature [Feldman and Sproull, 1977, Cheeseman, 1988, 
Russell and Wefald, 1988, Pearl, 1988, Drummond and 
Bresina, 1990, Hansson et al., 1990], in texts on stochas- 
tic control [Bertsekas, 1987] and in texts on decision theory 
[Berger, 1985]. The present paper focuses on the stochas- 
tic properties of physical actions and the demands that these 
properties place on the planning problem. 

In this paper, we describe our experiences with applying 
two planning methods to a particular manipulation task: tray- 



Figure 1: The tray (viewed from above), its states, and exam- 
ples of tilt azimuths. 

tilting. By using a concrete example, we hope to illustrate 
characteristics that are common in robot manipulation. We 
use a real robot system to generate the stochastic action model 
and to test the resulting plans. We describe the two planning 
methods in detail and analyze the computational complexity 
of each method. We compare the plans produced by each 
method and the planning time required by each planner. We 
conclude the paper by revisiting the concepts of state diver- 
gence and state convergence and their importance to planning 
with stochastic actions. 

2   The Manipulation Task 

The physical task that is considered in this paper is called tray- 
tilting. The object of the task is to manipulate planar objects 
in a walled tray by tilting the tray so that the objects slide to a 
desired position and orientation. The physics of this task are 
subtle and include frictional and impact effects. Tray-tilting 
has been studied before, both analytically [Erdmann and Ma- 
son, 1988, Taylor et al., 1987] and empirically [Christiansen 
etal., 1990]. 

Our robot arm has been programmed to perform tilts in any 
desired direction. As the tray is tilted by the robot, gravity 
acts on the object and causes it to slide. For the purposes 
of this paper, we define tilts by a parameter which we call 
the tilt azimuth. This angle is the direction, in the plane of 
the tray bottom, of the force of gravity on the object during 
the tilt. (See Figure 1.) Other parameters of the tilt, such as 
steepness of the tilt and tilt speed, have constant values during 
all tilts. Although there is a an infinite number of possible tilt 
azimuths, and therefore an infinite number of tilts, we sampled 
this space of azimuths at 30 degree intervals. In all cases, the 
robot restricted its actions to one of these 12 tilts. 

In addition to defining tilts by a single parameter, we have 
simplified the description of task state by discretizing the ob- 
ject's position and orientation. As indicated in Figure 1, we 
have divided the tray (conceptually) into nine regions, corre- 
sponding to the four corners, the four sides, and the middle 
of the tray. We have given each of these regions symbolic 
names, as shown in Figure 1. We describe an object's posi- 
tion by one of these names—the name of the region in which 
the object's center is located. A camera above the tray and an 
industrial image processor provide this position information. 
We describe orientations by a similar discretization—our ob- 

jects are described as being either horizontal (h) or vertical 
(v), depending on the orientation of the object's major axis, 
as reported by our vision system. The rectangular tile of Fig- 
ure 1 would be classified as (sw h). This discretization is 
coarse and somewhat arbitrary. However, states defined by 
this decomposition correspond to qualitatively distinct phys- 
ical configurations. 

3   Developing a Stochastic Model from 
Observations 

Given a set of observations from physical experiments, what is 
an appropriate stochastic model of actions? If the probabilities 
of future states depend only on the current state, then we can 
use a Markov chain to represent the actions. We represented 
each tilting action u with a stochastic transition matrix, P„, 
where pij is the (conditional) probability that the system will 
be in state j after action u is applied to state i. We assume 
that the set of states and the set of actions are finite. 

In the physical experiments, each observation consists of an 
initial state, a tilting action, and a final state. For each tilting 
action u, consider the matrix X„, where «^ is the number 
of observations with initial state i and final state j. Given 
an observation matrix X„, how do we generate a stochastic 
transition matrix Pu? 

One possible approach is to use the observed frequencies. 
The difficulty is that some observed transition frequencies 
may be zero. For such a transition, it isn't clear whether the 
transition is truly impossible—maybe the transition just has 
a low probability and hasn't yet been observed. A standard 
approach from statistical estimation is to use the following 
estimator for each action u, 

«>W (1) 

where the numbers a^- for i = 1,2, ...,k are Dirichlet pa- 
rameters based on a priori assumptions. This is equivalent 
to a Bayes' estimator using a squared error loss criterion, see 
[DeGroot, 1970]. 

We could set otij = 1.0 to represent the prior assumption 
that the conditional probability distribution is uniform: af- 
ter an action is applied, the system is as likely to be in any 
one state as in any other. For the tray tilting problem, we 
set a,j = .01 to represent our prior assumption that the con- 
ditional probability distribution for each action will not be 
uniformly distributed, but will in fact be skewed toward some 
subset of states. 

We generated 2000 tilt azimuths by random selection (with 
replacement) from the set of twelve azimuths described pre- 
viously. Our robot performed the corresponding tilts of the 
tray, and observed the outcome of each tilt. The X„ matrices 
were defined by this data and we used equation 1 to generate 
the corresponding stochastic transition matrices. 

4   Planning with Method I 

We now turn to the planning problem: given a stochastic 
model of actions, a known initial state and desired final state, 
find a sequence of open-loop tilting actions—a plan—to reach 
the desired final state. We will present two planning methods 
and their resulting plans. In this section we describe a method 



that maximizes the probability of reaching the desired final 
state. 

Method I is based on the control of Markov chains. Con- 
sider a system with finite state space. Let us refer to a probabil- 
ity distribution on this state space as a hyper state. Each action 
is a mapping between hyperstates. A plan is a sequence of 
actions and hence is also a mapping between hyperstates. For 
a given initial hyperstate, each plan generates a final hyper- 
state. To compare plans, we compare their final hyperstates. 
To rank hyperstates, we introduce a function that maps each 
hyperstate into a real number called its cost. The best plan 
is the plan with the lowest cost. See [Goldberg, 1990] for 
details on Method I and its application to programming parts 
feeders. 

Let the vector A refer to a hyperstate. In a Markov chain, 
the hyperstate that results from applying action u to A is given 
by post-multiplying A by P„, 

A' = AP„. 

A plan is a sequence of actions. The outcome of a plan is the 
composite effect of its inputs; the transition matrix for a plan is 
the product of the transition matrices of its actions. That is, for 
a plan consisting of the sequence of actions < ui, «4, «2 >» 
the final hyperstate is 

A' AirUi ir U4 iu2 • 

For the tray tilting task we are given a known initial state and 
desired final state. In this case the initial hyperstate is a vector 
with a 1 corresponding to the initial state and zeros elsewhere. 
Each action (and hence plan) defines a final hyperstate using 
the stochastic transition matrices described in Section 3. The 
cost function depends on the desired final state. If we want to 
reach state i, let 

C(A) = -Pi, 
so that the minimum cost hyperstate corresponds to the highest 
probability that the system is in state i. Note that there may 
be more than one minimum-cost hyperstate. 

To find the best plan, we consider all plans and find one 
with minimum cost. The difficulty is that there is an infinite 
number of plans to consider. So finding the best plan can 
take a long time, even on a supercomputer. We compromise 
and ignore plans longer than some cutoff threshold. This 
threshold depends on how much time we have and how fast 
we can evaluate plans, which in turn depends on how fast we 
can multiply matrices. In our case we considered all plans 
with length < 3 to find a plan with minimal cost. 

5   Planning with Method II 

An alternative planning method is based on heuristic graph 
search. The transition probability matrices described in Sec- 
tion 3 define a graph, or more correctly, a multi-graph. The 
vertices of the graph are the states that were defined previ- 
ously (the object configurations) and the graph's edges are the 
actions that cause one state to be changed to another. Associ- 
ated with each edge is an estimate of the probability that the 
action will provide the indicated state change. The graph is 
a multi-graph because there may be multiple edges possible 
between a single pair of vertices. 

Figure 2 shows a portion of the graph defined by our data. 
Above each edge is a tilt azimuth. Below each edge is the 

Figure 2: A portion of the robot's task model. 

associated transition probability. Note that when the object 
is in state (ne v), and a tilt of azimuth 300 is applied, the 
object's new state is uncertain. It is estimated that it has a 
61% chance of achieving the (nw h) configuration, and a 38% 
chance of moving to the (n h) configuration. Of course, not all 
transitions are shown in Figure 2. The sum of the probabilities 
for a particular action executed from a particular state must 
be equal to one. 

The planning problem of finding a sequence of actions that 
will transform a given current state to a desired goal state can 
now be viewed as finding a path in the graph that links the two 
states. Since our model of state transitions is stochastic, we 
naturally wish to find a plan (path) with high probability of 
achieving the goal. When a plan is executed, several actions 
are performed in succession. The action probabilities for 
the plan steps must be combined to give an estimate of the 
probability of success for the whole plan. 

A lower bound on the probability that a plan will reach a 
desired state can be computed by multiplying the probabilities 
along one path between initial and desired states. Such a 
computation produces only a lower bound because there can 
exist multiple paths between the initial and desired states that 
share the same sequence of actions. We can find a plan 
that maximizes this lower bound by using shortest-path graph 
search. This leads to an efficient algorithm for finding plans 
that we will call Method II. 

Method II is an example of uniform-cost search [Pearl, 
1984]. While uniform-cost search is usually cast as finding a 
minimum cost path in a graph (where the cost of a path is the 
sum of the costs of the edges in the path), it is easy to adapt the 
algorithm to our problem by changing the evaluation function. 
In finding a minimum cost path in a graph, one desires to find 
a sequence of edges linking the start and goal vertices such 
that the sum of the costs of those edges is as small as that of 
any other such sequence. Our problem is to find a sequence of 
edges linking the start and goal vertices such that the, product 
of the probabilities is as large as any other such sequence. It 
is possible to map our problem exactly onto a shortest path 
problem by transforming the values associated with edges. 
For each edge probability p, we consider a new edge value 
(-logp). In this way, we guarantee that finding a shortest 
path in the transformed graph will correspond exactly to a 
maximum product probability path in the original graph. 

Since Method II only considers single paths, it sometimes 



misses good plans. Consider when Method II is applied to the 
problem of getting from state (ne v) to (ne h), and its stochastic 
action model is defined by Figure 2. Method II returns the 
plan (180 330 90). This path's product of action probability 
estimates is larger than any other path in the graph. Method II 
has found a good plan, but note that the plan (300 90) would 
be better. Under this plan, the configuration achieved after 
the first tilt is very likely to be either (n h) or (nw h), and 
the second tilt is highly likely to achieve the goal no matter 
which intermediate configuration was actually achieved. The 
combination of paths yields a high probability even though 
neither single path has higher probability than the path (180 
330 90). Note that Method I would return the better plan in 
this case but we shall show that Method I requires significantly 
more computational effort to achieve this rigor. 

6 Computational Complexity 

Finding optimal open-loop plans with stochastic actions has 
been shown to be NP-Complete [Papadimitriou and Tsitsiklis, 
1987]. This suggests that an algorithm with good worst-case 
running time may not exist. 

Recall that Method I considers all plans up to some length 
limit, k. Let n be the number of states and m be the number 
of actions. There are TO* fc-step plans. We can visualize the 
search for an optimal strategy as proceeding through a tree, 
where the root node contains the initial hyperstate and has a 
branch for each action in the action space. Each branch leads 
to a new hyperstate which in turn has branches for each action. 
We expand the tree to some fixed depth (horizon) and select 
the optimal path. To generate each node in the tree we must 
perform 0(n2) multiplications. The total time for finding the 
best fe-step plan is o{n2mk). 

Recall that Method II is based on uniform-cost graph search. 
Because the edge values (- logp) are nonnegative, uniform 
cost search on this problem has a monotone heuristic, which 
implies that whenever a node is expanded, a best path to that 
node has been found. This means that nodes will never have 
to be re-expanded, and in a finite graph of n vertices, there can 
be no more than n node expansions. If there are TO actions 
available at each state, then TO is the maximum number of 
edges that can be between any pair of vertices. Therefore, 
the maximum amount of work that will have to be done at 
each node expansion is 0(nm), and the complexity of the 
algorithm is 0(n2m). The implemented algorithm deals with 
probabilities and products directly instead of transforming the 
problem to a shortest path problem, but it performs analogous 
steps to those of uniform cost search on the transformed graph. 
So, the complexity of Method II is also 0(n2m). 

7 Empirical Comparisons of the Planners 

The two planning methods were implemented in Common 
Lisp. To explore performance tradeoffs, we performed several 
experiments with the tray-tilting task. In all experiments 
reported in this paper, we used an 11 inch square tray and a 1 
by 3 inch rectangular tile (Figure 1). 

In Section 2, we described the state space of possible tile 
configurations for the tray-tilting tasks. There are nine possi- 
ble discrete positions and two discrete orientations, making a 
total of eighteen possible configurations. It turns out that only 
twelve of these configurations occur in practice. When the tile 

Problem Method I Method II 
Start Goal Plan P Plan P 

(nh) (neh) (90) .98 (90) .98 
(nh) (nev) (24018060) .97 (240180 60) .96 
(nh) (ev) (120) .97 (120) .97 
(nh) (seh) (9018090) .98 (270150) .96 
(nh) (sev) (15030180) .98 (2400120) .97 
(nh) (sh) (240 ISO) .97 (240150) .97 
(nh) (swh) (270270180) .97 (270180) .96 
(nh) (swv) (240180) .98 (240180) .97 
(nh) (wv) (240) .99 (240) .99 
(nh) (nwh) (27030270) .97 (270) .97 
(nh) (nwv) (2400) .98 (2400) .98 

(swv) (nh)      ||   (12030030) .62   ||   (60180 24030030) .75 

(nev) (nh) 
(neh)    | 

(27030 60) .67   | (180240300 30) .75 
(nev) (30090) .98 (18033090) .87 

Table 1: Comparison of plans generated by the two methods. 

I 

1 1 
180 

300 90 

I 
\ 
330 

I.....1 tiiii 

90 

Figure 3: Two tray-tilting plans. The plans are read from left 
to right, with intermediate states shown as views from above 
the tray. Tray tilt directions are shown between the states that 
they link. The problem is to re-orient the object from vertical 
to horizontal, leaving the object in the upper right corner of 
the tray. Above: Method I's plan. Below: Method IPs plan. 

is in one of the four corners, both orientations are possible, 
for a total of eight configurations. The two configurations 
in the middle of the tray are impossible. For the remaining 
positions—where the rectangular tile is against a side of the 
tray—only the orientation where the tile's major axis parallels 
the tray wall occurs in practice. This adds four more possible 
configurations, for the total of twelve. 

For twelve possible tile configurations, there are 144 pairs 
of configurations defining start state and goal state. Let us 
refer to each of these pairs as a problem. There are 132 non- 
trivial problems for our tray domain. (The twelve problems 
with start state and goal state equal to each other are trivial, 
since a null plan always solves the problem.) We ran the two 
planners on each of the 132 non-trivial problems. Table 1 lists 
some of the resulting plans. 

For 51 (39%) of the problems, the two planners produced 
identical plans. In many other cases, the two planners pro- 
duced similar or symmetrically equivalent plans. In nearly 
every case, the estimated success ratios of the two methods 
were within a few percentage points of each other. Note 
that for plans of length < 3, the estimated success ratio for 
Method II is less than or equal to that for Method I, since 
in those cases, Method II's estimate is a lower bound on the 
Method I estimate. 

On some problems, the planners did not agree.  In Table 



Start 
State 

Goal 
State 

Planning 
Approach 

Best 
Plan 

Estimated 
Successes 

Measured 
Successes 

(ncv) 
(nev) 

(nh) 
(nh) 

Method I 
Method II 

(27030 60) 
(180240300 30) 

134(0.67) 
150(0.75) 

170(0.85) 
192(0.96) 

(ncv) 
(nev) 

(neh) 
(neh) 

Method I 
Method n 

(30090) 
(18033090) 

196(0.98) 
174(0.87) 

198 (0.99) 
171 (0.855) 

Table 2: Summary of execution trials for four plans. The 
estimated and measured success columns show the number of 
successful plan executions (out of 200 trials) along with the 
corresponding decimal fractions. 

1 we have listed three such problems (the last three entries). 
Since Method I was limited to searching for plans of three 
steps or shorter, there were occasions when Method II was 
able to search deeper and find a superior plan. The four and 
five step plans listed in the table are two such examples. On 
some problems Method I was able to find a superior plan 
within its length bound by taking advantage of state conver- 
gence. The plan (300 90) is an example. In this problem, 
the initial state is the northeast corner of the tray in a ver- 
tical configuration, and the desired goal is the same corner, 
but in a horizontal configuration. Figure 3 shows a trace of 
the anticipated object locations as each of the plans proceeds. 
Method II (below) finds an adequate plan: It tilts the tray at 
180, moving the object to the (se v) configuration. Then it 
tilts at 330, moving the object nominally to (n h). Finally, 
it tilts at 90, moving the object to (ne h). This plan is good, 
but it can fail by (for example) the tilt 330 not aligning the 
object horizontally. Method I's plan (above) is better since 
its intermediate hyperstate aligns the object horizontally but 
causes divergence of its position. The second tilt of the plan 
causes all such intermediate states to converge to (ne h). 

Both planners were implemented as compiled Common 
Lisp programs and were tested on the same computer, a Sun 
3/280. Method I's search was truncated at depth three, and 
so all of its plans were between one and three steps in length. 
Method IPs plans were all between one and six steps in length. 
Over the 132 problems, Method I took an average of 62 sec- 
onds real time per problem, with a standard deviation of 2.8 
seconds. The average time for Method II on the same prob- 
lems was 0.46 seconds, with a standard deviation of 0.62 
seconds. The minimum planning time for Method I was 59 
seconds and the maximum was 87 seconds. The minimum 
planning time for Method II was 0.040 seconds and the max- 
imum was 6.5 seconds. The average length of plans found by 
Method I was 2.4 tilts with a standard deviation of 0.75 tilts. 
The average plan length for the Method II planner was also 
2.4 tilts, but with a standard deviation of 1.2 tilts. 

7.1   Physical Test of Resulting Plans 
We tested the last two problems of Table 1 with the robot. 
These two problems represented cases where the methods 
produced significantly different plans. In terms of predicted 
success ratios (probability of reaching the goal), Method II 
found a better plan for the first problem because it was able 
to search deeper. In the second problem, Method I found a 
better plan because it considered state divergence and state 
convergence. 

Table 2 summarizes the head-to-head competition. Each 
of the four plans was executed 200 times. In the first prob- 

lem, the estimated success ratio was lower than the observed 
success ratio. Evidently the estimates for these plans were 
low because insufficient data had been collected to predict the 
true outcomes of the actions comprising the plans. In the sec- 
ond problem, the estimated and observed success rates were 
nearly equal. In both cases, the plan with higher estimated 
success rate performed better. 

8   Discussion 
We began this paper by acknowledging that it is not always 
possible to predict the exact outcome of actions in robotic 
manipulation due to factors such as control error, friction, and 
dynamics. In response, we considered stochastic models of 
action. When actions are viewed as stochastic, the conven- 
tional planning paradigm must be modified to search for plans 
that achieve a goal with high probability. We can view plan- 
ning as finding a sequence of actions that transfer probability 
mass from the initial state to the desired final state. 

Planning is affected by two contrasting properties of 
stochastic actions. We say that an action exhibits state di- 
vergence when it distributes probability mass. We say that an 
action exhibits state convergence when it focuses probability 
mass. These properties affect the choice of planning method. 
We considered two methods. 

Method I, based on the theory of Markov chains, uses a 
forward exhaustive search (to a fixed plan length) to find a 
plan most likely to produce the desired goal. Method II uses 
a backward best-first search to find a plan that maximizes a 
lower bound on the probability of reaching the goal. Method 
I keeps track of all probability mass as it evaluates plans, 
monitoring both state divergence and state convergence as the 
plan progresses. However, keeping track of all probability 
mass requires substantial computation; Method I can only 
consider short plans. Method II keeps track of only the most 
probable trajectory, monitoring state divergence and ignoring 
state convergence. Accordingly, Method II is faster and can 
consider longer plans, but it sometimes misses good plans. 

Which method is better? It depends on the available plan- 
ning time and the degree of state divergence in the available 
actions. Method I is generally much slower than Method II. 
The exponential factor in Method I's complexity makes it im- 
practical when a large number of actions are available at each 
state. If we are not concerned with computation time, Method 
I is to be preferred. Method II is faster, and is preferable when 
we can avoid or minimize divergence. 

Sometimes divergence is unavoidable. For example, con- 
sider a tray-tilting problem where we want to achieve a par- 
ticular object configuration but the initial configuration is un- 
known. This is equivalent to a highly divergent action oc- 
curing before plan execution. It is as if someone randomly 
shook the tray prior to the robot carrying out its plan. Con- 
sider a case where the initial hyperstate reflects a uniformly 
distributed state probability. Method I can find the best plan 
for getting the tile into the northeast corner. Method II can't 
solve this problem. As another example, consider program- 
ming a robot to pick up parts on an assembly line. Each time 
a part arrives, its initial position and orientation relative to the 
robot will be slightly different. This results from a divergent 
action earlier in the assembly line. 

Sometimes state divergence is desirable. For example, it 
may be be more efficient to allow divergence followed by ef- 



fective convergence. Consider a typical plan for causing two 
gears to mesh: we jiggle the gears at random (divergence), 
until the gears fall into alignment (convergence). This plan 
is more efficient than trying to avoid divergence by carefully 
aligning the gears. The process of deliberately incurring di- 
vergence is known as randomization, and has been recently 
identified as an important component of manipulation [Erd- 
mann, 1989]. 

For most problems in the tray-tilting domain, Method II 
worked as well as Method I. Studying the resulting plans, 
we discovered it was often possible to avoid significant state 
divergence. For a few problems, it was better to incur state 
divergence followed by state convergence. An example of 
such a problem was given in Figure 3. On a problem like this, 
Method I is superior. 

We believe that the study of planning with stochastic actions 
is a research area that will become increasingly important as 
AI planning techniques are employed in robotics. It seems 
possible to build an efficient planner that considers some state 
convergence. Instead of tracking the probabilities for every 
state, as Method I does, or tracking the probability of only 
the most likely state, as Method II does, maybe the hypothet- 
ical planner could track the probabilities of the two or three 
most likely states. Like Method II, the hypothetical plan- 
ner would, in most cases, find a plan of near-optimal quality. 
Even more desirable would be an approximation algorithm, 
where we might be able to guarantee, for all problems, that 
the plans produced would be suboptimal by no more than a 
fixed constant factor. 
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Abstract 

This paper illustrates how aspects of the design of a 

planner can be derived from a formal model of the 

planner's environment and the desired planner 

behaviors. Specifically, I show how the order of 
execution of multiple fire-fighting plans is determined 
by a model of the dynamics of the Phoenix 

environment. More generally, I introduce an 
ecological approach to the design and analysis of 
intelligent agents. Some tenets of this approach are 

familiar; for example, the behavior of an agent arises 

from its interactions with its environment (e.g., [12, 
11, 6, 1, 8]); and some agent designs are better 
adapted to particular environments than others (e.g., 
[9, 7, 3, 10]). My purpose here is not to discuss 
these foundations, but to demonstrate how models of 

the interactions between an agent and its environment 
can facilitate design and analysis. 

1. An Ecological View 

Our goal is to understand the functional relationships 

between three complex structures: the architecture and 
knowledge of agents, the structure and dynamics of 
environments, and the behaviors that result from the 
interactions between agents and their environments 

(Fig. 1). Borrowing from the literature on animal 

behavior, we call these relationships the behavioral 

ecology of an agent. 

The terms agent, architecture, environment, and 
behavior are open to interpretation. Without implying 

that our interpretations are consensual, our view is 

that agents sense their environments and decide 
autonomously how to act, and that these actions, 

moderated by the environment over time, produce 

behavior. The agent's architecture is a collection of 

sensors, effectors, and internal data structures and 
processes. The ecological view in Figure 1 suggests 

seven research activities that AI researchers currently 

engage in or would like to engage in: 

Environment assessment: Determining 
which aspects of the environment must be 
represented in a model for design and analysis 

Modelling: Formally specifying the functional 
relationships from which to predict behavior, 
given the architecture and environment of an 
agent 

Design: Inventing or adapting architectures that 
are predicted to behave as desired in particular 
environments. In addition, redesign involves 
modifying a design when it is shown, by way 
of a model, to perform less well than it might 

Prediction: Inferring from the functional 
relationships in a model how behavior will be 
affected by changing the architecture of the 
agent or its environment. 

Experiments: Testing the veracity of 
predictions by running the agent in its 
environment 

Explanation: Finding the source of incorrect 
predictions in a model, and revising the model, 
when unexpected behaviors emerge from the 
interactions between an agent and its 
environment. 

Generalization: Whenever we predict the 
behavior of one agent in one environment, we 
should ideally be predicting similar behaviors 
for agents with related architectures in related 
environments. In other words, our models 
should generalize over architectures, 
environmental conditions and behaviors. 

In the following sections I will illustrate each of 
these activities. But first, some disclaimers, an 

opportunity to say what this paper is not about. This 
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agent's 
architecture 
and knowledge 

environment 
structure and 
dynamics 

agent's 
behavior 

Figure 1. Three components of an agent's behavioral ecology 

is not a collection of formal models from which to 

derive the design of the entire Phoenix planner, 
complete with predictions and experiments. Such 
models are the long term goal of the Phoenix project. 

Nor does this paper present models of the "innards" of 
the Phoenix planner—the "fixed part," or the 

"architecture" of the planner. The Phoenix planner 

relies on stored skeletal plans for rough guidance 

about how to fight fires.These plans—the "flexible 
part" or "knowledge" of Phoenix planners—are the 

subject of this paper. I show how to determine the 

order in which to fight several simulated forest fires. 
While this question is not intrinsically interesting, it 

has provided an opportunity to develop the design 
methodology represented by the seven steps, above. 
And the methodology itself is interesting, or so it 

seems to me, because it bases design decisions on 
formal models from which specific predictions about 
performance can be derived. This is qualitatively 
different (and better, it seems to me) than the modal 

AI design methodology of basing design decisions on 
the intuitions of the designer and making no specific 
predictions about performance. 

This paper has been written as a record (and a 

demonstration) of this model-based design 

methodology, as it is applied to a single design 
decision for the Phoenix planner. In the following 

sections, I describe the decision, derive a model, prove 
that the correct decision for an arbitrary number of 

simulated forest fires is to fight the youngest fire 

first, predict how the Phoenix planner will actually 

perform, explain why the predictions are incorrect in 

some cases, and describe how the design of the 

Phoenix planner has been modified (and improved) as 

a result. This final step has involved modifying the 
architecture, or fixed part of the Phoenix planner. 

2 A Design Problem in Phoenix 

Phoenix is an environment—a simulation of forest 

fires—and a collection of simulated agents [4]. Many 
factors that affect forest fires also affect the fires in 
the Phoenix environment, including wind speed and 

direction, elevation gradients, fire temperature and 

flame height, ground cover, and natural and artificial 
boundaries such as rivers and roads. Fires, which are 

implemented as cellular automata, "burn" an array 

that represents the topographical features of 
Yellowstone National Park. Nontopographical factors 
(e.g., weather) are set and changed manually, or 
randomly, or by prespecified scripts. Phoenix agents 
contain fires by cutting fireline around them. Several 

agents are usually required to contain a fire, so they 

must coordinate or be coordinated. Currently, a single 
fireboss agent directs several semi-autonomous 
bulldozer agents, which plan individually how to 

carry out the directions. The current Phoenix agent 

architecture includes sensors, effectors, reflexes, and a 

cognitive scheduler. Reflexes respond immediately to 
situations such as encroaching fire. The cognitive 

scheduler coordinates all the agent's activities except 

its reflexes, including selecting skeletal plans, 

expanding plans into subplans, assigning appropriate 
execution methods to actions, monitoring, and fixing 

plans when actions cannot be executed. 

10 
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Let us consider a situation in which several fires are 

burning simultaneously. The Phoenix fireboss decides 

to send all its resources to each fire in sequence, rather 

than dividing resources between the fires (this has 

been shown to be the best strategy in most cases). 

The question remains, in which order should the fires 

be fought? 

2.1   Environment assessment. 

Environment assessment is the informal process of 
deciding which aspects of an environment have 

important effects on particular behaviors, which can 
be safely left out, and which have unknown effects. 
The behavior that interests us here is the order in 

which multiple fires are fought, and the consequent 
loss of acreage of forest. A good ordering minimizes 
the loss of acreage. After watching fires in Phoenix 
for a long time, one gets a sense of the factors that 
affect how much area bums, and, thus, the factors that 
influence the fireboss's decision about the order in 

which to fight the fires. The factors that should most 
influence the ordering decision are probably wind 
speed, ground cover, the initial size of the fires, and 
the force one can bring to bear on the fires (see Table 
1). It also matters whether bulldozers work directly at 
the fire edge (direct attack), or at a distance (indirect 

attack). The direction of the wind probably does not 
affect the ordering decision, nor do small fluctuations 
in wind speed and direction, which cancel out over 

time. Fires in the Phoenix environment generally 
have lumpy elliptical shapes, but the exact shape 

probably has little effect on the ordering decision, and 

it probably does not matter where bulldozers start 

working. Natural and artificial boundaries are 

currently exploited by the Phoenix planner, but it is 
unclear how these should affect the ordering decision. 

Another uncertainty is whether the fire perimeter can 

ever increase at a nonlinear rate that is high enough to 

affect performance. Preliminary data tell us that 

perimeter growth is linear, but when convective fires 

are implemented in Phoenix, they will probably 

influence the ordering decision. 

This assessment leads to some assumptions, and then 
to a model. I will assume that fireline cut by 

bulldozers is contiguous and its position around the 
fire is irrelevant. A will also assume that the fire 

grows by the same amount at all points on its 

perimeter that are not constrained by fireline or other 

boundaries, and that travel time between fires is 

negligible. 

2.2  Modelling 

It turns out that if the Phoenix fireboss can minimize 
the total amount of time that agents require to contain 
a sequence of fires, it will also minimize the total 

area burned [3]. 

Fire growth is roughly linear. The radius of the fire 

grows by a constant at each time unit: 

r(t+1) = r(t) + k 

A fire is usually not noticed immediately by the 
Phoenix fireboss because its subordinate watchtowers 

require a significant interval to scan an area. Also, 

Probably   Influences 
Fireboss's           Ordering 
Decision 

Probably    Doesn't    Influence 
Decision 

Unknown      or       Uncertain 

Influence  on  Decision" 

Wind speed Wind direction Boundaries 

Ground cover Shape of the fire Nonlinear fire growth 

Elevation gradients Where on the perimeter 

bulldozers work first Direct or indirect attack 

Initial size of fires Fluctuations in wind 

speed and direction Number of bulldozers 

Table 1. Assessment of factors with respect to the fireboss's ordering decision. 
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bulldozers need time to reach the fire. So by the time 
bulldozers begin working on a fire, it already has a 
significant perimeter, which I denote pQ. 

Now, imagine an agent constructs a circular line at a 

constant rate around a growing fire, as shown in 

Figure 2, so that when it has finished constructing 

the line, the fire is completely within the line. This 

is called indirect attack.The time it takes to construct 
such a line depends on po, the initial perimeter of the 

fire; s, how fast the fire grows; and C, how fast 

bulldozers can construct fireline. The fire is contained 
by the line when 

t = PO 
C - s (1) 

or, if we build fireline so that a "corridor" remains 
between the perimeter of the fire and the fireline, such 

that the length of the fireline is r times the length of 
the fire perimeter, then 

t = PO 

- s 
(2) 

The situation is as shown in Figure 3, which plots 

the perimeter of the fire (y axis) against time (x axis). 
As long as C > s, the agent's line will eventually 
contain the fire. If r = 1, the containing fireline and 
the fire perimeter will equal pf i. If r > 1, then the 

length of the fireline and the containing perimeter 
will be pfr and r pfr, respectively. At some time in 

the past, the fire was very small, perhaps just a single 
tree or patch of grass. This point, Q, proves 
significant later. 

Equations 1 and 2 can be extended to multiple fires 
that are fought in succession (and also to fires fought 

simultaneously, though I will not describe that here). 
For the immediate discussion, I will work with Eq. 1, 

assuming a "snug" fit between the fireline and the 

fire. In the Phoenix environment, different fires have 

different initial perimeters and spreading rates. I 
denote the initial perimeters of fires fi,f2,...,fn as 

PO(fl), P0(f2),-P0(fn), the rates of spread as s(fi), 
s(f2),...,s(fn). I denote the time required to contain 

fires fi,f2,-.,fn in that order as T(fi,f2,...,fn). It is 

easy to show that 

T(fl,f2 Wn) = 
t(fn) + (1+g(fn))T(fi,f2 fm) (3) 

where g(x) = s(x) / (C - s(x)). The derivation is in the 
Appendix. 

One can see from Eq. 3 that the order in which one 

fights fires affects the time required to fight them. 
Imagine two fires, a and b, with po(a) = 100, po(b) = 

150, s(a) = 12, and s(b) = 4; and the maximum rate at 
which bulldozers can cut fireline is C = 20. If we 
fight fire a first (i.e., assign {a -> fi, b -> f2}) then 

T(a,b) = 25. Alternatively, if we fight b first (i.e., 
assign {b -> fi, a -4 f2J) then T(b,a) = 35.9. 

Figure 2. A schematic view of indirect attack. 

r Pfr 

Pfr 

,<      Pf1 
fire spread 
rate = s            wi ^^^\S^^~^~ bulldozers' 

yS           ;    cutting rate = C 

n0W      t=pO/C-s'    t = p0/((C/r)-s 

Figure 3. If C > s, the bulldozers will eventually 
"catch" the growing fire at time t. 

The Phoenix fireboss should fight fires in the order 
that will minimize the sum of the times it spends on 
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each. Given a set of fires A = {a,b,...}, we need a rule 
that maps A onto the ordered set F = {f"i,f2,...} so 

that T(fi,f2,...) is minimized. One approach would be 

to have the fireboss calculate the time required for 

each order, then select the order with the lowest time. 

Because the number of orders increases as the factorial 

of the number of fires, this approach could be 

expensive. In fact, there is a much quicker way to 
find the best order: Each fire fi can be characterized by 

a function of its initial perimeter and its rate of 

pread: 

POfi) 
Q(fi) = s(f.). 

If Q(a) < Q(b) < ... < Q(k), and the fireboss fights 

fires in the order {a,b,...k} then it will minimize the 
time required to fight the fires. I call this the 
"youngest first" rule because Q(fi) is the age of fire i. 

I prove in the Appendix that fighting fires in the order 
youngest first minimizes the total time required to 
contain all the fires. The rule is illustrated 

graphically in Figure 4. In the top pane, starting at 
the point labelled "now," the Phoenix agents build 

fireline around fire a until it is contained. This is 
shown as the intersection of the heavy "fireline" line 
and the thinner "fire a" line, at t(a). The agents then 
start work on fire b (assuming that travel time from 

fire a to fire b is negligible). Fire b is contained at 
time T(a,b). The intervening period between t(a) and 

T(a,b) is t(a,b). In the bottom pane, this pattern is 

reversed. Agents work on fire b first. Note that T(a,b) 
< T(b,a), as predicted by the youngest first rule.1 

*It surprised me that the best strategy should be to 
fight the youngest fires, not necessarily the smallest, 

or slowest, first. Had we relied on intuitive criteria to 
select fires to fight, we would probably have 
programmed Phoenix to fight the fastest-moving fire 

first. I suspect that many other intuitively correct 

design decisions in AI planners are, in fact, incorrect. 

contain a before b 

Q[a]     now       t[a] T[a.bl 

t[b,a] 

Figure 4. A geometric interpretation of the ordering 

rule. 

2.3 Design and Redesign 

The model developed above says that if Phoenix 
fights fires in youngest first order, it will minimize 
the time to put out all the fires. Implementing this 

strategy—making it a permanent part of the design of 
indirect attack plans—is very easy if the assumptions 
upon which the model is based are true. If the 

assumptions are not true, then the model will make 
false predictions, and we are left with this question: 
Should we rework the model, or should we change the 

design of the Phoenix planner so that the 
assumptions are true? Here is an example of each: 

Rework Phoenix: The model is based on the idea 
that Phoenix figures out how long a fire will take to 
contain, then selects an appropriate perimeter around 

the fire to cut line, so that when it is done the 
perimeter of the cut fireline is r times the perimeter of 
the fire (see Figure 3). In the model, r = 1.0; that is, 

there is no "corridor" between the fire and the cut 
fireline. The assumption is that Phoenix has infinite 

control over the perimeter of its fireline. In fact, this 
assumption is wrong. The Phoenix planner does not 

determine t as shown in Figure 3, but rather quantizes 
t, deciding that the fire will take 500, 1000, 2000, 

3000...minutes to contain. As a result, Phoenix 

cannot ensure a constant corridor around a fire; for 
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example, a "1000-minute shell" may provide a snug 

fit to some fires and very loose fit to others. Since 
the model is based on a constant corridor (i.e., r = 

1.0), the strategy derived from the model ("youngest 

first" is best) may be wrong. If these wrong 

predictions can be laid at the door of the quantizing 

problem, and the model appears to be otherwise 

correct, then the appropriate response is to rework 

Phoenix to eliminate the quantizing problem, to give 

it infinite control over the perimeter it decides to cut, 

to make it conform to the assumptions of the model. 

This tack is using the model prescriptively, to drive 
redesign. 

Rework the model: The model assumes that as 

soon as one fire is contained, work begins on the 

next, with no travel time. If the prediction ("youngest 
first" is the best strategy) is not borne out, it may be 
due to travel times between fires. There is no 

meaningful way to rework the Phoenix planner to 
make it conform to the "no travel time" assumption: 

travel time is inherent in the Phoenix environment. 

The model is descriptively wrong, and must be 
reworked. 

Now I will show how experiments with Phoenix 
proved wrong the prediction that we should always 
fight the youngest fire first, and how I showed that 
Phoenix, not the model, needed reworking. 

2.4  Predictions 

The principal prediction under examination is that 
fighting fires in the order "youngest first" minimizes 

the time it takes to fight all the fires. Related 
predictions are quantitative in nature: how long it 
should take to fight a sequence of fires, how large is 
the difference in times between one strategy and 
another, and so on. Figure 5 summarizes the predicted 
difference in times to fight a pair of fires under the 

"oldest first" strategy and the "youngest first" 

strategy, as a function of the difference in the age of 

the fires (the curves correspond to differences of 20, 

16, 12, and 8 hours, from top to bottom, 

respectively); and the rates of spread of the fires. 

Figure 5 assumes one fire spreads at 100 m/hr and 

the other spreads at rates between 100 and 300 m/hr. 

It predicts a 1.75 hour advantage for fighting the 

youngest fire first, if the delay between the fires is 20 

hours and one fire spreads at 300 m/hr and one spreads 

at 100 m/hr. In Phoenix, softwood fires spread at 
roughly 200 m/hr and hardwood at roughly 100 m/hr 

in a 3km wind. Given these figures, the expected 

advantage of the youngest-first strategy, for an eight 

hour delay, is roughly twenty minutes. The advantage 

of the youngest-first strategy is predicted to be much 
higher for fires that burn faster. 

,25 

1.75 

0 25 

150,        200,        250,        300, 

Figure 5. Predicted advantage, in hours, of the 
youngest first strategy for fires burning in 3km winds 

2.5  Experiments 

The basic experiment went like this. A trial involved 
two fires, fought in the yougest-first or oldest-first 
order. For each trial, the groundcover in each of two 

sectors was selected and "painted" with hardwood or 
softwood according to the experimental protocol. 
Then the watchtowers in each sector were deactivated. 
Next, a fire was set at a random location in one of the 
sectors. A delay of 8, 12, 16, or 20 hours ensued, 
depending on the protocol. Then the second fire was 

set in the other sector. If the strategy under test was 

"fight the youngest fire first," then the watchtower in 

the sector with the most recent fire would be 

activated; it would send a report to the fireboss, who 

would begin planning to fight the fire. If the strategy 

was "fight the oldest fire first," then the other 
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Q2- Qi predicted time actual  time disparity 

8 hours 8.6 9.4 9% 

12 hours 9.84 10.7 9% 

16 hours 11.1 12.0 8% 

20 hours 11.6 12.66 9% 

Table 2. Predicted and actual times to contain fires as a function of the delay between the start times of the fires. 

8 hour 12 hour 16 hour 20 hour 

YF first fire 

final fire perim. 4990 5123 5015 5154 

final line perim 8104 8106 8088 8097 

final line/fire = r 162% 158% 161% 157% 

OF first fire 

final fire perim. 7120 8495 10396 11840 

final line perim 8335 9969 12259 13074 

final line/fire = f 117% 117% 118% 110% 

Table 3. Fires fought under the youngest-first strategy have a higher fireline to fire perimeter ratio than fires fought 
under the oldest-first strategy, indicating a "sloppier" shell. 

H 

-C 

32 

30 
^ 

28 *^^ 
V- ^y^             0 
C 26 ^ " 

E 
O 
O 

24 

*^^^ o 22 ^s^ 
■ 
E 20 - 

— ■                             1  1 1 1 

8 hours 12 hours 16 hours 20 hours 

youngest first then oldest 
oldest first then youngest 

Figure 6. Mean summed time to contain both fires as a function of delay between start times of the fires and fire- 
fighting strategy. 
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watchtower would be activated, instead. After a period 

of hours, the as-yet-inactive watchtower would be 

activated, and would send a report to the fireboss. The 

experiment would be allowed to run until both fires 

were out or 65 simulated hours elapsed. Then the 

identical experiment would be run again, except with 

the opposite strategy. Following this pair of trials, 
new locations for the fires would be selected. We 

fully counterbalanced for local terrain and other factors 

that affected fire growth and bulldozer cutting rates. 

We ran 470 pairs of fires. One basic result is that 

Eq.l does a good job of predicting the time it takes to 

put out ihn first fire. Table 2 contains data for the fire 

under both strategies. Empirically, I found that for all 

first fires, under both strategies, Phoenix was 
building fire lines in such a way that the final 

perimeter of the fireline was on average 1.37 times 
the final perimeter of the fire. That is, over all first 
fires, r = 1.37. However, it became clear that this 

"corridor" between the fireline and the fire was bigger 
for fires fought under the youngest first strategy than 
for fires fought under the oldest first strategy. Table 3 

contains the data: Whereas r ranges from 1.1 to 1.18 
for first fires fought under the oldest first strategy, it 
ranges from 1.57 to 1.62 for those fought under the 

youngest first strategy. This means that the "shell" 
selected to fight the latter fires is much "sloppier" 
than the shells selected for the former. As a 

consequence, the first fire under the youngest first 
strategy takes longer to fight than it should. 

The data on the time to fight both fires under the 
youngest first and oldest first strategies are given in 
Figure 6, which shows the time to contain both fires 

on the y axis. As predicted, the advantage of the 

yongest-first strategy increases as the delay between 
the fires increases, but, counter to prediction, the 

youngest-first strategy does worse than the oldest first 
strategy when the delay is 8 hours. Thus, the 
principal prediction of the model is wrong! 

2.6  Explanation 

As noted earlier, given wrong predictions, we have to 

decide whether to rework the model or rework 

Phoenix. In either case, the first step is to discover 

why the model is making wrong predictions. A good 

way to proceed is to modify the model so it makes 

correct predictions, and then see whether the 

modification points to an aspect of the Phoenix 

environment that cannot be changed (e.g., travel time) 
or an aspect of the Phoenix planner, which can be 

changed. The model as derived assumes r is a 
constant: Phoenix keeps the same size "corridor" 
between its cut fireline and the fire perimeter. In fact, 

as we saw above, this is false. The corridor is much 

bigger for the first fire under the youngest-first 

strategy than it is for the first fire under the oldest- 

first strategy. In another experiment, we discovered 
the reason for this: Phoenix plans the perimeter of its 

fireline based on projections of where the fire will be 

in 500, 1000, 2000... minutes. Every first fire fought 
under the youngest first strategy was fought with a 
500-minute projection. Since this is the smallest 

possible projection, it seems to be too large for many 
of these fires. 

When the model is modified to incorporate the fact 
that r is larger for the youngest first strategy than for 
the oldest first, the predicted and actual times (in 

minutes) to contain both fires under each strategy are 
shown in Table 4. Clearly, the modified model makes 
very good predictions. It lends strong support to the 

argument that youngest-first would be the best 
strategy in all cases, if only Phoenix wasn't forced to 

use a 500-minute projection for the first fires under 

the youngest first strategy. In general, the problem 
with quantizing the projections is that r will not be 
constant, and so the youngest-first strategy will not 
always be best. 
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8 hour 12 hour 16 hour 20 hour 

YF both fires 

predicted 2281 2639 2996 3353 

actual 2287 2583 2964 3319 

disparity 100% 98% 99% 99% 

OF both fires 

predicted 2110 2519 2928 3336 

actual 2017 2496 2968 3377 

disparity 104% 101% 99% 99% 

Table 4. Predictions from the revised model are more accurate. 

It seems to me that when one has a simple model 

from which one can derive a general rule, such as 
fight the youngest fire first, but the rule fails because 
the program is doing something that is demonstrably 

inefficient, such as constructing an excessively large 

fireline around one kind of fire, then changing the 
model does no more than describe the inefficiency 
formally, whereas changing the program eliminates 

the inefficiency and restores the rule. For this reason, 
we decided to modify Phoenix to allow it to plan to 
cut a fireline of any perimeter, not an arbitrarily 

quantized perimeter. We have not yet re-run the 

previous experiments to determine whether the 

predictions of the original model hold. 

3.0 Conclusion: The Issue of 
Generalization 

Let me summarize the discussion to this point. The 

premise of the ecological view is that behavior results 
from the interaction between an agent and its 

environment, and that we should design agents from 

models of these interactions. Equations 1 and 3 are 

models of this kind because they represent how a 
measure of behavior (the time to control a sequence of 

fires) results from the interaction between 
environmental factors (the rate at which fires spread, s 

and g), and aspects of an agent's architecture (the rate 

at which line can be cut, C).2 From these models, it 

was possible to design an ordering scheme to 

miminize time.We are currently engaged in other 
modelling effort, also: 

3.1. Direct attack. The current model assumes 
agents work at a distance from the fire. In fact, 

Phoenix agents can also work directly at the fire edge. 
In this case, called direct attack, the perimeter growth 
is not linear, because as agents control more of the 

perimeter its growth rate decreases. Empirically, this 
nonlinearity is quite small, but we need to know 

whether it can obviate the strategy to order fires by Q. 

3.2. Nonlinear growth. As fires get bigger they 
generate convective winds, which increase the rate at 

which the fires grow. We have not yet implemented 
convective fires in the Phoenix environment. When 
we do, we may need to rethink the strategy for 

ordering fires, because the oldest fires, not the 
youngest, are the most likely to become convective. 
Nonlinear growth adds a previously absent dimension 

to the fireboss's scheduling problem: hard deadlines. 
In the linear model, as long as C > s, delays in 

fighting a fire have linear effects—the bulldozers will 

2 po, the size of the fire when the bulldozers reach it, 

can be treated either as an environmental factor or as 
another measure of behavior, since it results from the 
interaction of agent features, such as the time it takes 

the fireboss to respond to a reported fire, and 
environmental conditions. 
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"catch" the fire eventually (Fig. 7.a). But if fire 

growth is not linear, a delay may ensure that the 

bulldozers can never contain the fire. When the "C 

line" is tangent to the "s line" (Fig. 7.b), its x 

intercept is a hard deadline. 

s 
s 

pO 

delay/ 
' C pO 

delay/ 
/c 

3 b 

Figure 7. Linear fire growth implies soft deadlines; 

nonlinear growth implies hard deadlines. 

3.3. Other performance measures. I have 
assumed that the fireboss wants to minimize the area 

burned, but it may want to minimize the total cost of 

the area burned and the resources it requires to fight 
the fires. Assuming that the acreage burned increases 
with the square of time, the cost of a firefighting 
operation can be modelled as the following sum: 

X = (t2 ■ cost(acre)) + (N • cost(bulldozer)) 

given that N is the number of bulldozers and t is 

defined by Eq. 1. As N decreases, t increases. We can 
find the value of N that minizes this sum by setting 
its first derivative with respect to N to zero and 
solving for N: 

cost(acre)1/3 pp2^ 
N= s + 

.51/3 cost(bulldozer)1/3 

The efficacy of designing from models depends on 
whether models can predict how designs will behave. 

As AI researchers work with more complex 
environments, and with architectures that produce 
complex behaviors from interactions of simpler 

behaviors, the goal of predicting behavior seems 
increasingly remote. Some researchers claim that 
behavior is in principle unpredictable, so the only way 

to design systems is as Nature does, by mutation and 
selection (e.g., [9], p. 25). I think this is going too 

fan We can often predict the behavior of a system at a 

level of abstraction or aggregation that is useful for 

design, even if we cannot predict details of the 

behavior. For example, I do not expect Eq. 1 to 

predict precisely t, the time it takes to contain a fire. 

No model can, because t depends on the interactions of 

hundreds of events over time. But as Figure 8 shows, 

Eq. 1 does predict the general form of the relationship 
between t and (C - s): t increases as (C - s) approaches 

zero. Nonlinearities in performance, like this one, 
alert designers to diminishing returns: Increasing the 

number of bulldozers that are sent to a fire (increasing 

C), will have a increasingly smaller effects on t; 

whereas decreasing the number of bulldozers will have 

an increasingly larger effects. I am confident in these 

trends in the values of t, if not in the values 

themselves. So the question is not whether predicting 

behavior is possible in principle, but whether 
prediction is useful in practice. 

prediction 
from Eq. 1 

C-s 

Figure 8. As (C - s) approaches zero, t increases as a 
harmonic series 

Quite apart from their utility to design, modelling and 
prediction are useful for analysis of systems that 
already exist—for explaining why systems behave as 

they do. And here, predictions can be equally useful if 
they are wrong, because they prompt revisions in our 

models. For example, we recently noticed that 

Phoenix's predictions about the fire spread were 
wrong, adversely affecting its performance. The 
problem was that fires spread much more quickly 

upwind than predicted. Scott Anderson discovered that 
the fire tacks upwind, moving from point A to point 
B by tacking first from A to C, then from C to B; 

and it does this much more quickly than going from 
A to B directly. 

But, returning to design for a moment, how can we 

design from models that sometimes make wrong 
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predictions? I acknowledge this concern, but what is 

the alternative? Currently, we design AI programs to 

vague specifications; for example, we designed 
Phoenix agents for "unpredictable, real-time, 

dynamic" environments, and endowed them with 

"reactivity, approximate processing, responsiveness," 

and so on. With such vague design goals, it is hard to 

know whether we succeeded. Phoenix agents put out 

fires, of course; but as Adele Howe and I have 
discussed, demonstrations are not adequate evaluations 

because they don't tell us why a system works or 
doesn't work [2,5]. And even good evaluations cannot 
ensure that our results are general, because you and I 

may interpret the informal terms we use as design 

goals, such as "real time," differently. 

Modelling might provide a solution to these 
problems. A model is a formal summary of our 
understanding of how behavior emerges from the 

interactions between an agent and its environment. 
Models are no less useful for being formal. I think we 
are better off designing from models like Eqs. 1 and 3 

than we are designing from informal terms like "real 
time." And if a model is inaccurate, if it makes wrong 
predictions, that is because our understanding of the 
environment is wrong; it has nothing to do with 
whether we express that understanding formally or 
informally. On the other hand, formal models like 

Eqs. 1 and 3 make our design goals precise. This 

means that we can say exactly what a system does, 
instead of relying on demonstrations that a system 

"works." This is essential to achieving general results 
in AI. For example, Figure 7 shows a sketch of one 
definition of "hard deadline": the tolerable delay before 

a linear process starts "chasing" a superlinear one. 
You may have another definition. If our definitions 

are precise, and encapsulated in models, then we can 

reason about our respective models, instead of 
guessing what our respective programs might or 

might not do. 

The principal challenge for the model-based design 
methodology is coming up with general models. The 

model developed in Section 2 is of limited interest 
because it applies only to linear processes chasing 

other linear processes. It is difficult to see how to 

generalize the strategy "work on the linear process 

that started most recently," to other domains and 

tasks. But engineers in virtually every discipline have 

developed general models, from queueing theory to 

stress analysis, and these are used in model-based 
design. There is no reason to suppose we cannot do 

the same in AI. 

4.0  Appendix. 

Derivation of Eq 3: 

T(f 1 ,f2 fm-fn) = t(fn) + (1 + g(fn)) T(fi ,f2 W 

I denote the first fire as fi, the second as {2, and so 

on. I will often refer to the time it would have 
required to contain fire fi z/the fireboss had attacked it 

first. I denote this t(fi). 

Consider the time it takes to contain fire f2 after 

containing fire fj. 

t(V2)   = 
(P0(f2) + t(fl)s(f2)) 

(A.1) 
(C - s(f2)) 

When the buldozers finally start work on fire f"2 (after 
containing fire fi), its perimeter will be larger than 

it would have been if they had worked on it first. 
P0(f2) will have grown at rate s(f2) for as long as it 
took to contain fire f 1. Therefore, the perimeter of fire 

f2 at time t(fi) will be p0(f2) + t(fl) s(f2>- Expanding 

Eq. A.l gives 

P0(fl) 
P0(f2) 

s(f2 
...    .   . _        rwv~ C-S(fl) 
t(tl't2,-(C-s(f2)) +      (C-s(f2)) 

Now let us introduce a function, g(x) = s(x) / (C - 
s(x)). Rewriting the previous expression in terms of g 

gives 

t(fi,f2) - 
P0(f2) 

+ g(i2) (C - s(f2)) 
= t(f2) + g(f2)t(fi) 

PO(fj) 
(C-s(fi)) 

(A2) 

This is the time to contain fire f2 after fire fi. The 

time to contain both fires is 
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T(fl,f2) =   t(fi)+t(fi,f2) 
= t(f2) + (1+g(f2»t(fl) (A3) 

We can extend this model to three fires, and then to 
any number of fires: 

MU fo M        (P0(f3) + T(fl ,f2) S(f3))        ,.  .. 
t(fl .f2.f3) = (C - s(f3))        (A4) 

T(fl,f2.f3)=T(f1lf2)+t(fi,f2,f3) 
= T(fi,f2)+t(f3) + g(f3)T(f1lf2) 
= t(f3) + (1 +g(f3))T(f1,f2) (A.5) 

Eq. A.4 is analogous to Eq. A.l and Eq. A.5 is 
analogous to Eq. A3. In general, 

T(fl,f2,...Wn) 
= t(fn) + (1+g(fn))T(fi,f2 fm) (A.6) 

gfl)t(i) < g(i) t(j)  =   H< ^   =Q(i)<QÖ) 

SoT(i,j)<T(j,i) = Q(i)<Q0). 

Lemma 2: It is intuitively clear that if T(i,j) < T(j,i), 
then T(i ,j, S2) < T(j,i, S2). All fires in the 

subsequence S2 are growing while fires i and j are 

being fought, and they will grow more, and thus take 
longer to contain, if those fires are fought in the order 

j,i than if they are fought in the order i,j. Similarly, 
if T(Si, i ,j) < T(Si, j,i) then, by the same 

reasoning, T(Si, i ,j, S2) < T(Si, j,i, S2). It 
remains to prove that T(i,j) < T(j,i) implies T(Si, i 

,j) < T(Si, j,i). To begin, we rewrite Eq. A.6 with 

all its terms fully expanded: 

Proof that the fires should be fought in 
"youngest first" order: 

If Q(a) < Q(b) < ... < Q(k), and the fireboss fights 

fires in the order {a,b,...k} then it will minimize the 

time required to fight the fires. To prove this, I will 
show that if Q(a) < Q(b) <,...,< Q(k), then the 

fireboss cannot minimize time unless it fights fire a 
first. The rule is to fight first the fire with the 
smallest value of Q. Then, after it has fought the first 

fire, the fireboss can reapply this rule to the 

remaining fires. To prove this rule, I will prove two 
lemmas: 

Lemma 1: T(i,j) < T(j,i) iff Q(i) < Q(j) 

Lemma 2: T(i,j) < T(j,i) -> T(Si, i ,j, 
S2) < T(Si, j,i, S2) where Si and 
S2 are subsequences of zero or more 
fires. 

Lemma 1: From the definitions of Q, t, and g, it 
follows that Q(fi) = t(fi) / g(fj). I will show that 

KiL . Kil T(ij)<T(j,i) go) K m -Q(i)<Qö) 

Expanding T(i,j) < T(j,i) according to Eq. A.3 gives 

t(') + t(j) +gO')t(i)  <   tG) + t(i) +g(i)t(j) 

Eliminating the common terms gives 

T(fl,f2 Wn) = 
t(fn) + (1+g(fn))(t(W 

+ (1+g(m))(....(t(f2) + g(f2)(t(f1)) )...))) 
Rearranging terms and multiplying through, we get 

T(fl,f2 Wn)    = 

t(fi) (1 + g(f2))0 + g(f3» - (1 + g(fm))(i + g(W) 
+ t(f2)(1+g(f3))...(1+g(fm))(1+g(fn)) 

+ t(fm)(1+g(fn)) 

+ t(fn) 

Note that the last two terms in this sum are (1 + 
g(fn))t(fm) + t(fn) , which is just T(fm,fn). If we 

decide to fight these fires in the opposite order, then 
the last two terms of the sum become (1 + 
g(fm))t(in) + t(fm) = T(fn,fm), but the previous 

terms in the sum do not change. If you swap the 
last two fires, fm and fn, in a sequence of fires, the 
resulting difference in time is just T(fm,fn) - 

TCfn.fm)- Therefore, the lemma is proved: T(i,j) < 
T(j,i) ->  T(Si,i,j)<T(Si,j,i) 

Now, if we know Q(a) < Q(b) < Q(c) < Q(d), we can 
use lemma 1 to show 

T(a,b) < T(b,a), T(a,c) < T(c,a), T(a,d) < T(d,a), 
T(b,c) < T(c,b), T(b,d) < T(d,b), 
T(c,d) < T(d,c) (A.7) 
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The fireboss should not fight d first: If it does, then 

it will next have to fight either a, b, or c, giving the 

sequences T(d,a,...) or T(d,b,...) or T(d,c,...). Because 

we know from Lemma 2 that if T(i,j) < T(j,i) then 

T(i,j,S2) < T(j,i,S2), and we know from (A.7) that 

T(d,x) > T(x,d) for all x, it follows that for every 

sequence that begins {d,x,...} there is another with a 

lower value of T that begins {x,d,...}. 

Similar reasoning shows that the fireboss must fight 

fire a first. If it doesn't, then at some point in the 
future, it will generate a sequence {Si, x, a}, and we 

know from Lemma 2 and (A.7) that this has a higher 
value of T than {Si, a, x}. Now we start "unpacking" 
the subsequence Si: for each of its components, T 

would be smaller if fire a preceded that component. 
So if Q(a) < Q(b) < Q(c) < Q(d), the time to fight all 
the fires cannot be minimized unless fire a is fought 
first. This reasoning applies anew to fire b: if Q(b) < 

Q(c) < Q(d), then the fireboss must fight fire b before 
the others. Thus, Q(a) < Q(b) < ... < Q(k) implies 

that T(a,b,...,k) is the smallest time to fight fires 
a,b,...,k. 
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Abstract 

Analogical reasoning provides a powerful method for learn- 
ing plans where other machine learning methods fail. Unlike 
many machine learning paradigms, analogy does not require 
numerous previous examples or a rich domain theory. In- 
stead, analogical reasoning utilizes knowledge of solved prob- 
lems in similar domains, adapting the knowledge to the cur- 
rent problem. 

This paper describes the ANAGRAM system which performs 
parallel analogical planning using a graph match technique. 
Given a target problem specification, ANAGRAM finds a sim- 
ilar problem from the database from which a solution can 
be derived. This paper describes the parallel implementation 
of ANAGRAM on the Connection Machine and addresses the 
difficulties that arise when an analogy fails because the base 
case is only partially applicable to the current problem. ANA- 
GRAM offers a solution to this problem by merging the graphs 
representing several similar base cases, resulting in a virtual 
base graph that generalizes the individual cases enough to 
cover the target problem. 

Two examples are presented in this paper that illustrate 
the use of parallel analogical planning and graph merge in 
the domain of automatic programming. The techniques de- 
scribed in this paper can similarly be applied to planning 
tasks in a variety of complex domains. 

1     Introduction 

When solving a problem in a relatively new and unfamil- 
iar domain, an planner often relies on experience with 
similar problems to suggest ways of attacking the cur- 
rent problem: adapting known techniques, mapping ap- 
propriate constraints from a solved problem to the prob- 
lem at hand, and modifying existing programs to include 
new capabilities. Application of many machine learning 
paradigms to engineering problems requires knowledge 
of the domain despite the fact that knowledge is avail- 
able from similar domains. Induction requires numerous 
examples within the problem class. Explanation-based 
approaches require a rich theory of the problem domain. 
In the absence of numerous examples or a rich domain 
theory, analogy can be used to transfer knowledge of a 

similar domain to the current problem domain. Given a 
novel problem (the target case), analogy selects a similar, 
solved problem (the base case), computes a mapping be- 
tween the base and target problem descriptions, and uses 
the mapping to adapt the base solution to the current 
domain. 

The ANAGRAM system solves novel problems by con- 
structing analogical plans. Given a target goal, ANA- 
GRAM finds a similar goal in the base domain from which 
a solution can be derived. ANAGRAM expresses plans as 
graphs and uses a graph match algorithm to identify po- 
tential base cases and form the mapping between base 
and target problems. To approach the benefits offered 
by other machine learning paradigms, ANAGRAM is ca- 
pable of merging several similar base cases when a single 
base is only partially applicable to the current problem. 

This paper describes ANAGRAM'S efficient approach to 
constructing plans using parallel analogical graph match, 
and introduces congruent graph merge as a technique for 
increasing the effectiveness of an analogy by merging sev- 
eral similar base cases. The approach is illustrated with 
several examples from the domain of automatic program- 
ming. 

The theories described here are beneficial to scientific 
and industrial planning applications in several ways: 

• Analogy is a central approach to learning. Skilled 
designers rarely attempt to solve a problem from 
scratch. Instead, they build on their expertise, com- 
paring current problems to ones previously solved. 

• The inability to utilize all necessary information is 
a limitation that has always plagued analogical rea- 
soning systems. Merging congruent bases to form 
more general virtual bases is one solution that will 
impact all areas in which analogical planning can be 
used. 

• The complexity of the analogical reasoning task has 
long prevented its automation. Using the massively 
parallel architecture to reduce the complexity of 
base selection and map formation makes the task 
tractable. 

22 



• Automatic programming problems have features 
common with other problems in engineering. All 
require reasoning about the structure of the prob- 
lem, its solution, and the ordering of sub-tasks. 

Section 2 defines the area of research: planning by 
analogy. Section 3 describes the parallel implementa- 
tion of this research in the ANAGRAM system. The next 
section introduces the notion of merging congruent base 
cases when forming an analogy, followed by an example 
from the domain of automatic programming. 

2 Planning by Analogy 

Analogy uses knowledge about one problem or domain 
to infer knowledge about a similar problem or domain. 
Analogy is a central approach to learning. Skilled de- 
signers and talented students rarely try to learn about 
a new area or solve a new problem from scratch. In- 
stead they build on their expertise, comparing current 
problems to ones previously solved. 

Gentner [Gentner, 1988] has shown that people form 
analogies between concepts that have structural similari- 
ties, rather than surface similarities. Representing plans 
as graphs encodes the structure of the plans, and forcing 
the base and target graphs to match ensures that the 
structure of the base and target plans are the same. 

Much of analogical reasoning research uses analogies 
to produce a detailed description of a concept [Gentner, 
1988, Greiner, 1988]. It is difficult in these systems to de- 
termine the type of information that should be mapped 
to the target. As Holyoak [Holyoak, 1984] and Carbonell 
[Carbonell, 1983] have pointed out, goals provide an es- 
sential constraint in problem solving. Using analogical 
reasoning in the problem area of planning provides a fo- 
cus for the analogical learning task and offers a method 
of generating plans in unfamiliar domains. 

3 Overview of ANAGRAM 

The ideas mentioned in this paper are implemented in 
a system called ANAGRAM (ANAlogical GRAph Match- 
ing). Given a target problem specification represented in 
graph form, ANAGRAM uses a colored graph match tech- 
nique to select a base case from a database of previously- 
solved problems. ANAGRAM uses the selected base case 
to generate a plan which will achieve the target goal.1 

The system accepts as input two subgraphs, represent- 
ing the target problem's initial state description and goal 
state specification. ANAGRAM then searches through the 
database, finding the best match for both subgraphs. 
Using the output of the individual graph matches, ANA- 
GRAM then maps over the base plan to the target domain 

JSee [Cook, 1989] for a complete description of the ANAGRAM 
system. 

to generate a solution to the target problem. If the re- 
sulting plan is unsuccessful, or if no sufficiently similar 
base cases are found, the system then attempts to merge 
several base cases that are all similar to the target prob- 
lem. The result is a virtual base graph that eliminates 
anomalies and generalizes various options in the plan to 
an extent that covers the target domain. 

3.1     The Graph Match Algorithm 

Perhaps the biggest factor that currently prevents ma- 
chines from making extensive use of learning by analogy 
is the complexity of the task. It is difficult to under- 
stand why analogical reasoning is performed so often 
and so easily by humans, yet is difficult and costly to 
perform on a machine. Part of the problem is not fully 
understanding the nature of analogical reasoning and the 
algorithms humans use to perform it. However, much 
of the problem is speed. To make analogical planning 
tractable, it must be able to examine many base cases 
in parallel and efficiently form correspondences between 
base and target. This is possible if the algorithm takes 
advantage of the massively parallel architecture of such 
machines as the Connection Machine 

This section describes a method of efficiently perform- 
ing analogical planning by performing base selection and 
map formation in parallel on the Connection Machine. 
The algorithms used by ANAGRAM were performed on a 
Connection Machine-2 with 32,768 nodes. 

ANAGRAM employs a colored graph match on directed 
acyclic graphs (DAGS). The arcs as well as the nodes are 
labeled. These labels provide an additional constraint 
on the matching process. Node labels may be different 
between two graphs, but the arc labels must correspond 
exactly. The data describing each node of a graph is 
stored in a separate processor. To perform the graph 
match, the nodes in the base graph look for a match in 
the target graph in parallel. 

Two nodes match if they are at the same level in the 
graph (leaves are at level 0, and their parents are at 
level 1), and the structures of the nodes' children and 
parents (encoded by the integer assigned to each child 
and parent) match. Each node is described by the tuple 
(level [(child-integer out-link) .. .] [(parent-integer in- 
link) ...] node-label). Initially, no integers have been 
assigned to the nodes, so each so each child-integer and 
parent-integer slot is set to "?". 

Each node from the first graph looks in parallel for a 
match with a node at the same level in the second graph. 
If two complete tuples match (the tuples are complete if 
they have no ?s), the match is added to the gmap and 
a unique integer is assigned to the two nodes. If a tu- 
ple is incomplete, it generates a list of partial matches 
(every non-?   matches).   After every search pass, each 
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node in both graphs simultaneously updates its tuples. 
Assigned integers are propagated across the links. Once 
the tuples are updated, matches between incomplete tu- 
ples are checked once again — if they no longer match, 
the algorithm returns failure. If no unique matches are 
found for any of the nodes on a given pass, the algorithm 
takes one node from the list of nodes with more than one 
candidate match, and randomly selects a match for the 
node. If there are nodes from the first graph that can- 
not be matched with any node from the second graph, 
the algorithm returns failure. When this is done, the 
entire process is repeated. The process is successfully 
completed when a match is found for each node in the 
first graph. 

The complexity of the graph match algorithm is pro- 
portional to the greatest number of nodes found at any 
level in the target graph, because each base node se- 
quences through the target nodes at the same level to 
look for a match. Let n represent the number of nodes 
in the each graph, and let h represent the height of 
the graph. The complexity of the graph match is thus 
0(n-h). 

The base selection process enjoys a tremendous 
speedup by being parallelized. Normally, the base selec- 
tion process is extremely time consuming because each 
potential base solution must be compared with the target 
problem specification. Fortunately, each of these com- 
parisons is independent of the others, so the bases can 
be examined in parallel. To perform base selection, each 
node from each base graph is stored in a separate pro- 
cessor and looks for a match in parallel. Assuming there 
are enough processors to store all of the base cases, the 
complexity of the base selection task is the same as for 
graph match, or 0{n — h). 

3.2     Example 1 

This example is borrowed from Dershowitz [Dershowitz, 
1986], who uses analogies between program specifications 
to modify existing programs in a way that allows them 
to perform different tasks. The target problem is to gen- 
erate a function to compute c/d within an accuracy e: 

assert c<0<d, e>0 
goal \c/d — q\ < e 

;; Initial State 
:: Goal State 

The base case is a program that computes the cube 
root of a within an accuracy e: 

begin cube-root 
assert a > 0, e > 0 
goal [a1/3 - r\ < e 
(r,«):= (0,o + l) 
loop L3 : until 3 < e 

3 := j/2 
if (r + s)3 < a then r 
repeat 

end 

;; Initial State 
;; Goal State 
;; function body 

r + s endif 

Figure 1: The Base and Target Initial State Subgraphs 

ANAGRAM performs a graph match on the subgraphs 
representing the initial states and goal states of the base 
and target. The goal-state subgraphs for the two prob- 
lems are shown in figure 1. 

In the first pass, each node from the base graph looks 
for a partial match from the target graph in parallel. An 
incomplete match is found for every tuple. A unique in- 
teger int is assigned to the nodes in each unique match. 
These integers are then propagated to parents and sons 
through the graph, and corresponding tuples are up- 
dated. The final values of the tuples are shown in tables 
1 and 2. 

intt tuplet 

1 (1 [] [(compare 2)] GOAL-STATE) 
2 (2 [(compare 1)] [(tl 3) (t2 4)] <) 
3 (3 [(tl 2)] [(arg 5)] ABS) 
4 (3 [(t2 2)] ö E) 
5 (4 [(arg 3)] [(op 6)] TERMO) 
6 (5 [(op 5)] [(tl 7) (t2 8)] -) 
7 (6 [(tl 6)] [(tl 9) (t2 10)] ') 
8 (6 [(t2 6)] D R) 
9 (7 [(tl 7)] D A) 

10 (7 [(t2 7)] 0 1/3) 

Table 1: Updated tuples for the base goal subgraph 
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inib tuple}, 

1 (1 D [(compare 2)] GOAL-STATE) 
2 (2 [(compare 1)] [(tl 3) (t2 4)] <) 
3 (3 [(tl 2)] [(arg 5)] ABS) 
4 (3 [(t2 2)] D I) 
5 (4 [(arg 3)] [(op 6)] TERM1) 
6 (5 [(op 5)] [(tl 7) (t2 8)] -) 
7 (6 [(tl 6)] [(tl 9) (t2 10)] /) 
8 (6 [(t2 6)] 0 Q) 
9 (7 [(tl 6)] ö C) 

10 (7 [(t2 7)] 0 D) 

Table 2: Updated tuples for the target goal subgraph 

Combined with the mapping produced by comparing 
the initial-state subgraphs, the global mapping between 
the base and target graphs is shown below. 

{Initial-State —► Initial-State, Goal-state —> Goal-state, 
< —> < abs —> abs, - —> -, r —> q, 1/3 —> d, 

—* /, termO —* terml, a —> c} 

Using these matches, ANAGRAM maps the complete 
base graph over to the target domain, resulting in the fol- 
lowing function that successfully meets the target goal: 

begin target 
assert c < 0 < d, e > 0 
goal \c/d - q\ < e 
(?,*):= (0,2) _ 
loop li2 : until s < e 

s := s/2 
if (a -f- s) X d < c then q:~ q ■ 
repeat 

end 

;; Initial State 
;; Goal State 
;; function body 

■ s endif 

4     Merging       Congruent       Base 
Cases 

One basic difference between analogical learning and 
learning by induction is that induction requires several 
input examples of the concept, and analogy generally 
uses only one example, the base case. However, there 
are many instances in which multiple base cases would 
strengthen an analogy. 

One example of using multiple base cases is incremen- 
tal analogy [Burstein, 1988]. One base case may provide 
some of the information needed for the target, but not 
all. Another base case may provide the remaining needed 
information, but nothing else. An analogy formed be- 
tween the target and either one of these bases would be 
insufficient, but the merging of the two separate analo- 
gies results in a complete, useful analogy. 

A second way of using multiple base cases is to merge 
similar base cases, resulting in a "virtual" base case. 
This virtual base case is more beneficial to the analogy 
than a single case, because it removes anomalies and gen- 
eralizes  alternative operations.    Furthermore,  merging 

y/y       =     Generalized  subgraph 

Figure 2: Virtual Base Case 

base cases serves to focus on the relevant aspects of the 
base cases, because those aspects of previous plans that 
are beneficial to the target are retained in the virtual 
base. Base cases that are sufficiently similar in structure 
to be merged together are termed congruent base cases. 
Note that this term is borrowed from geometry, where 
two triangles are congruent if they have the same angles 
and proportions of side lengths. 

Consider the task of mowing the lawn. A person who 
has never mowed before may compare cutting the grass 
to painting a large area with only a small brush. The 
person could also form an analogy with shoveling snow, 
waxing the floor, or wallpapering the wall. The anal- 
ogy formed between the target case (mowing the lawn) 
and each of the base cases is insufficient, for various 
reasons. The waxing motion is circular instead of the 
long back-and-forth movements needed for mowing the 
lawn. When wallpapering, care must be taken to line up 
the strips so the designs meet. Painting a wall involves 
putting on more than one coat of paint. Shoveled snow 
is dumped to the side of the sidewalk, and the ultimate 
goal is to remove all of the snow, not just give it a trim. 
Figure 2 depicts a virtual base case generated by general- 
izing part of each of the base cases. The analogy between 
the virtual base case and the target case provides enough 
information to solve the problem of mowing the lawn. 

4.1     The Merge Algorithm 

This section describes how ANAGRAM uses the technique 
of merging congruent base cases to enhance its analogy- 
formation and problem-solving capabilities. First, the 
issue of deciding when to merge base cases is addressed, 
and then the merging algorithm is described. 
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ANAGRAM using the graph-merge algorithm in the fol- 
lowing cases: 

• A match is found between the target initial/goal 
states and the base initial/goal states, but the in- 
termediate steps in the base case are not mappable 
or can not be applied in the target domain. 

• No base case matches perfectly, but several match 
closely. Moreover, the unmappable parts either 1) 
are generalizable in a way that map to the target 
case, or 2) they do not overlap (the base cases fail 
to match the target at distinct parts of the target 
graph). 

In all of the cases described above, it is possible to 
merge base cases only if congruent base cases exist in 
the database. Because trying to find a fit between an 
arbitrary number of graphs in a given database is an 
arduous task, the selection process only considers cases 
within the same index category. The categories are de- 
termined when base cases are entered into the database, 
and are formed according to key parts of the graph, such 
as the type of operators and objects involved in the plan 
and the size of the plan. 

When selecting cases for merging, the algorithm 
chooses cases based on ease of generalization. The types 
of graph merges attempted are (in order of preference): 

1. Merging graphs with distinct base/target differences. 
The simplest and most beneficial way to merge 
congruent graphs occurs when the graphs match 
each other and their differences with the target do 
not overlap. Let Bi represent a base graph which 
is composed of the subgraphs Sj,..., S\, let 52 

represent the base graph composed of subgraphs 
S\,. . .,S\, and let T represent the target graph 
composed, of subgraphs Sj,,. .., Sj,. If the subgraph 
S* cannot be mapped to SJ., S| cannot be mapped 
by Sj., SJ. ^ Sj., and a match exists between B\ 
and £2, then a merge of the two graphs is possible. 
Let M represent the set of mappings output from 
the match between B\ and B2- The algorithm re- 
places the "defective" subgraph SJ in Bi with the 
corresponding mapped subgraph M(S|). The new 
base graph is mapped to the target (and guaranteed 
to work). This merging process is easily extended 
to 3 or more graphs. The restrictions are that the 
"defective" subgraphs be distinct and all of the base 
cases are mappable to each other. 

2. Relaxing order constraints. The graph match al- 
gorithm looks for matches between nodes at cor- 
responding levels in the graphs. This precludes a 
match between plans with different orderings of op- 
erators. This is unfortunate, because changing the 
order of operations in the base case can often solve 

the target problem (see the description of the in- 
order tree traversal problem described in the next 
section). 

Comparing multiple base graphs helps to focus on 
relevant aspects of a problem. When comparing two 
plans whose only difference is the order of opera- 
tions, it becomes apparent that maneuvering the 
operators may also solve the target problem. When 
this situation exists, ANAGRAM looks for correla- 
tions between the order of operations and ordering 
constraints in the initial or goal state. Such con- 
straints help focus the mapping to the target prob- 
lem, preventing trials of all possible operator com- 
binations. 

3. Disjunction/generalization of subgraphs. The meth- 
ods of merging base graphs discussed in the previous 
paragraphs are considered first, because the gener- 
ated target plan (based on the virtual base plan) is 
guaranteed to be successful. If neither of the meth- 
ods is applicable, the system generalizes portions of 
the graph. 

When comparing base graphs whose "defective" 
subgraphs do overlap, ANAGRAM generalizes the 
overlapping subgraphs. The methods of generaliza- 
tion correspond to those found in most induction 
systems, such as adding disjunctions and climbing 
ISA trees. The purpose of the generalization is to 
abstract the non-mappable parts to the extent that 
the generalized subgraph will cover the target case. 
The more base cases found to support the gener- 
alization, the better. As the number of base cases 
increases, this form of merging base graphs begins 
to look like pure induction. 

4.2     Example 2 

This section describes the application of ANAGRAM'S 

graph match algorithm and congruent base case merg- 
ing algorithm to an example in the domain of automatic 
programming. In this example, the target problem is 
to construct a program that uses inorder traversal to 
traverse a given binary tree. The initial and goal state 
descriptions are given: 

assert tree 6 binary — trees and null(vlist) 
goal V(y 6 vlist) [left-son(y) before y before right-son(y)] 

Among the base cases in the database are the algo- 
rithms for preorder and postorder tree traversal. The 
matches are equally good with either base case, so the 
selection process arbitrarily chooses the preorder case. 
However, the resulting plan is 

begin inorder 
x := root(tree) 
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unless null(tree) 
vlist := appendivlist, x) 
inorder(left-son(x), vlist) 
inorder(right-son(z), vlist) 

end 

which does not solve the problem (remember that the 
graph matcher does not consider re-ordering the opera- 
tors). The system then compares the preorder and pos- 
torder algorithms, and notices that the operators are the 
same in the two algorithms, but the order of applica- 
tion is different. The goal description in both base cases 
places ordering constraints on the output: 

goal-preorder: 
V(y £ vlist) [y before left-son(y) before right-son(y)] 

goal-post order: 
V(y 6 vlist) [left-son(y) before right-son(y) before y] 

By comparing the order of operators with the order 
imposed by the goal description, ANAGRAM observes 
that the placement of y corresponds with the push-end 
operation, left-son(y) with recursive-call(lefl-son(x)), 
and right-son(y) with recursive-call(right-son(xJ). ANA- 

GRAM is able to generate a virtual base graph that con- 
tains the correspondences between the three operators 
and the desired order of elements in vlist. The resulting 
target plan is successful: 

begin inorder 
x : — rootitree) 
unless null(tree) 

inorder(left-son(x), vlist) 
vlist := appendivlist, x) 
inorderfright-son(x), vlist) 

end 

5     Conclusion 

The ANAGRAM system demonstrates the power of anal- 
ogy for planning in unfamiliar domains. Analogical rea- 
soning allows a system to hypothesize plans to solve 
problems which lack a rich domain theory and have few 
similar examples from which to generalize. Using both 
the structure of the plan descriptions and the goal of the 
target instance, ANAGRAM can select a base case, find 
correspondences between base and target, and map the 
base solution to the target domain. Because of the par- 
allel nature of the algorithm, the task is performed in 
time sublinear in the average size of the base graphs. 

In many cases, an analogy will fail because of an 
anomaly in the base case, because operators used in the 
base solution cannot be applied to the target problem, 
or because not all information maps from the base to the 
target. ANAGRAM proposes a solution to this situation 
by examining several similar base cases. If two or more 
base cases can be found which are similar to each other 

and to the target, they can be merged into a general- 
ized virtual base graph which is more likely to cover the 
target situation. 

In this paper, ANAGRAM'S graph match algorithm and 
congruent graph merge algorithms are described and il- 
lustrated using examples from the domain of automatic 
programming. The contributions that ANAGRAM makes 
in this domain are indicative of the benefits analogical 
reasoning can provide to planning in many new and com- 
plex domains. 
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Abstract 

Efficiency dictates that plans for large-scale dis- 
tributed activities be revised incrementally, with 
parts of plans being revised only if the expected 
utility of identifying and revising the subplans im- 
prove on the expected utility of using the original 
plan. The problems of identifying and reconsidering 
the subplans affected by changed circumstances or 
goals are closely related to the problems of revis- 
ing beliefs as new or changed information is gained. 
But the current techniques of reason maintenance— 
the standard method for belief revision—choose re- 
visions arbitrarily and enforce global notions of con- 
sistency and groundedness which may mean recon- 
sidering all beliefs or plan elements at each step. 
We outline revision methods that revise only those 
beliefs and plans worth revising, and that toler- 
ate incoherence and ungroundedness when these are 
judged less detrimental than a costly revision effort. 

1     Introduction 

Planning is necessary for the organization of large-scale 
activities because decisions about actions to be taken in 
the future have direct impact on what should be done 
in the shorter term. But even if well-constructed, the 
value of a plan decays as changing circumstances, re- 
sources, information, or objectives render the original 
course of action inappropriate. When changes occur be- 
fore or during execution of the plan, it may be necessary 
to construct a new plan by starting from scratch or by 
revising a previous plan. In fact, replanning may be 
worthwhile even when the new situation does not devi- 
ate significantly from prior expectations. The original 
plan may have been constructed to perform acceptably 
over a wide range of possible circumstances, and know- 
ing more about the particular situation encountered may 
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enable construction of strategies which are better suited 
to the case at hand. 

There are two central decisions surrounding the re- 
planning process. First, given the information accrued 
during plan execution, which remaining parts of the orig- 
inal plan should be salvaged and in what ways should 
other parts be changed? Incremental modification is 
more efficient than wholesale replanning, but a restric- 
tion to local changes can compromise the value of the 
revised plan. Second, to what extent should the planner 
attempt to avoid the need for replanning by anticipat- 
ing contingencies and providing for them in the original 
plan? Contingency planning improves the capacity for 
response when replanning time is limited, but the return 
on up-front investment rapidly diminishes as the likeli- 
hood of particular contingencies decreases. 

In the following, we describe an approach to replan- 
ning which addresses the first question by applying 
the decision-theoretic conception of rationality to the 
plan revision tradeoff. Characterizing the computational 
costs and performance of the revision process contributes 
toward solutions to the second problem, development of 
a contingency planning strategy. Our techniques center 
on a reason maintenance system or RMS (also known as 
TMS for "truth maintenance system" [de Kleer, 1986; 
Doyle, 1979]), redesigned for more rational and flexible 
control. 

2     Rational replanning 

To replan effectively in crisis situations, replanning must 
be incremental, so that it modifies only the portions of 
the plan actually affected by the changes. Incremental 
replanning first involves localizing the potential changes 
or conflicts by identifying the subset of the extant beliefs 
and plans in which they occur. It then involves choos- 
ing which of the identified beliefs and plans to keep and 
which to change. For greatest efficiency, the choices of 
what portion of the plan to revise and how to revise it 
should be rational in the sense of decision theory. This 
means that the replanner employs expectations about 
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and preferences among the consequences of different al- 
ternatives to choose the best one. 

2.1     Explicit and implicit rationality 

According to decision theory, a choice is rational if it 
is of maximal expected utility among all alternatives. 
But planning and replanning involve at least two dif- 
ferent sorts of decisions, and applying the standard of 
rationality to each yields different notions. The funda- 
mental distinction is that between result rationality and 
process rationality. Rationality of result measures how 
efficiently the plan achieves specified objectives. Com- 
plementing this, rationality of process measures how ef- 
ficiently the planner expends its efforts in constructing 
the plan. While most investigations of planning have fo- 
cused on one or the other, both elements are essential to 
the overall rationality of the planning system. 

Making any process rational is not easy, for straight- 
forward mechanizations of decision-theoretic definitions 
can require more information than is available and more 
computation than is feasible to use that information. 
Sophisticated mechanizations are more tractable, but 
the main tool for achieving rationality in reasoning is 
to distinguish between explicit and implicit rationality 
in processes. Computational mechanisms may calculate 
and compare expected utilities in order to make explic- 
itly rational choices. Explicit rational choice promises 
to be most useful in guiding some of the larger meta- 
level decisions about whether to replan globally or in- 
crementally, and in choosing which contingencies call for 
planned responses. For the more numerous small deci- 
sions that arise, however, explicitly representing and cal- 
culating expected utilities may not be worth the cost. In- 
stead, the more useful approach is to apply non-decision- 
theoretic reasoning mechanisms whose results may be 
justified as rational by separate decision-theoretic anal- 
yses. Such mechanisms may be viewed as "compiling" 
the results of explicit rational analysis into directly ap- 
plicable forms. Each of these ways of implementing ra- 
tionality is best in some circumstances, since compilation 
is not always possible or worthwhile. 

Examples of implicitly rational procedures abound in 
AI under the name of heuristics. For instance, the "sta- 
tus quo optimality" heuristic [Wellman, 1990a, Section 
6.4.1] constrains the set of possible revisions under the 
assumption that the current plan is optimal. In par- 
ticular, the replanner need only respond to the specific 
changes. A related example is application of the basic 
theorem of optimization that says that if the only change 
is a tightening of constraints, the currently optimal plan 
remains optimal if it remains feasible. Another example, 
of somewhat different character, is provided by the as- 
sumptions made by nonmonotonic reason maintenance 
systems. The default rules or reasons justifying these 
assumptions are important forms of heuristics, and the 
RMS examines them to come up with a coherent set of 
assumptions and logical conclusions. Though the algo- 
rithms for determining these sets of conclusions do not 

involve any explicit rationality calculations, the conclu- 
sions drawn by the RMS can be shown to be Pareto op- 
timal sets, that is, rational choices of conclusions when 
the reasons are interpreted as preferences over states of 
belief [Doyle, 1985]. Viewed this way, default rules or 
reasons encode compiled preferences, and reason main- 
tenance is an example of an implicitly rational choice 
mechanism. 

Thus one approach to the application of rationality 
principles in planning and replanning is to identify the 
principles and look for computational mechanisms that 
implement them, preferably implicitly. Another is to de- 
velop seemingly effective computational mechanisms and 
then figure out under what conditions they are rational. 
We are pursuing both approaches. 

2.2     Rational guidance of replanning 

Process rationality enters the task of planning in numer- 
ous ways. For example, in the development of a plan, 
contingency plans should be included only when the ex- 
pected utility of preparing them is sufficiently great: if 
the contingency is likely to occur and if the costs of devel- 
oping it in advance are less than the costs of constructing 
it under the tighter constraints existing while executing 
the enclosing plan. Similarly, a portion of a large plan 
should be revised only if, given the new information, the 
expected costs and benefits of identifying which plan el- 
ements need revising outweigh those expected for either 
using the original portion or replanning from scratch. 

Making these judgments requires information about 
the likelihoods, costs, and benefits of different sorts of 
contingencies and planning responses. This includes the 
likelihood of specific contingencies arising, their impor- 
tance if they do arise, and the costs of planning for them; 
similarly, the likelihood of one part of the plan being af- 
fected by changes in another, the importance of those 
changes, and the costs of determining and effecting them. 

While many of the likelihoods involved in planning 
derive from the specifications of the task, the costs and 
benefits of reasoning steps involved in planning are func- 
tions of the underlying representational and reasoning 
architecture. The theory of computation supplies some 
abstract notions of computational costs, such as worst- 
case time and space taken by Turing machines. However, 
significant differences in reasoning time and space can 
be lost in the translation to Turing machines, and the 
worst case is not the only one of interest. Use of the the- 
ory of rational decisions effectively in making judgments 
about plan revision requires realistic measures of compu- 
tational costs and benefits appropriate to the particular 
architecture of the planner, as well as expectations ap- 
propriate to the domain of planning. Our development 
of the planning architecture attempts to make formal- 
ization and estimation of these measures more direct. 

Process rationality must be evaluated with respect to 
the combined planning/replanning system. In our model 
of the plan construction process, depicted in Figure 1, 
the planner and replanner continually evaluate and re- 
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Figure 1: An integrated planning, replanning, and exe- 
cution system. 

vise the existing plan in light of what happens in the 
world. The distinction between planning and replan- 
ning is that the latter uses the existing plan to focus 
attention on a restricted set of decisions about actions 
to be performed. The tight coupling of the planning and 
replanning modules is indicative of the strong interac- 
tions between their designs. Knowledge about the capa- 
bility of the replanner dictates where up-front planning 
effort should be spent anticipating particular contingen- 
cies. And the replanner requires access to the planner's 
reasons for adopting the current strategy in order to in- 
telligently adapt it for changing situations. 

To do this, the planning procedures routinely identify 
the assumptions made during planning and connect plan 
elements with these assumptions. In addition, to achieve 
true flexibility in the sorts of changes the replanner can 
accommodate, we permit any element of information to 
change, including the problem specification, background 
knowledge, and preferences. This allows the replanner 
to benefit from knowledge of what other specifications, 
beliefs, and preferences were adopted as consequences 
or choices from the changed items. This also makes it 
important that implicitly rational planning procedures 
indicate the original expectations, preferences, and sub- 
plans from which they were "compiled." 

3    Planning framework 

Our approach combines a dominance-proving architec- 
ture for planning [Wellman, 1990a] with a reason mainte- 
nance facility for replanning. We start from a constraint- 
posting view of the plan construction process. Plans 
consist of a set of actions, which can be specified at 
varying levels of detail. Constraints posted by the plan- 
ner dictate the inclusion or exclusion of particular ac- 
tions, and specify features of the actions included. For 
example, unary constraints on an action may determine 
the resources allocated to it, its spatiotemporal location, 
or some other details about its implementation process. 
Inter-activity constraints may identify shared objects or 
establish temporal relations among actions. The class of 
expressible constraints defines the plan construction lan- 
guage. The planning language itself is a restricted subset 
of this, limited by input requirements of the execution 
module. 

Each posted constraint represents a decision made by 
the planner, choosing the class of plans satisfying the 
constraint over those that do not. To support rationality 
in planning, we require that every decision be associated 
with a reason, of one of the following types: 

1. Dominance reasons indicate decision-theoretic argu- 
ments that plans violating the constraints are inad- 
missible [Wellman, 1987]. 

2. Feasibility reasons justify posting constraints because 
they are required for plan executability. For example, 
we must enforce preconditions of included actions. 

3. Completeness reasons indicate the constraints are re- 
quired to fill out plans so that they can be interpreted 
by the execution module. For example, all shipment 
actions must specify a source and destination. The 
degree of incompleteness permitted depends on the re- 
active capabilities of the executor. 

4. Default reasons directly associate decisions with other 
conditions on the planning situation. While all plan- 
ning decisions are defeasible, we distinguish those not 
based on explicit rationality arguments. 

All reasons specify the beliefs, preferences, and other 
planning decisions on which they depend. Because these 
elements in turn are supported by reasons, the compos- 
ite argument for a planning decision can include a vari- 
ety of these justification types. For example, a decision 
might be derived from a decision-theoretic dominance 
proof with some premises representing default intentions 
premised on some default intentions which in turn were 
triggered by the need to complete an insufficiently spec- 
ified action description. 

The dominance-proving architecture offers several ad- 
vantages as the basis for a rational replanning system. 
Foremost, it accommodates use of decision-theoretic cri- 
teria for choice among plans, which is the central basis of 
result rationality. In addition, its dominance relation is 
defined over abstract plan classes, so that these criteria 
can be associated with isolated planning decisions (that 
is, individual constraints). Attaching reasons to domi- 
nance conditions generalizes the current architecture and 
directs the replanner to the appropriate regions for mod- 
ification when things change. 

Though recording the reasons for plans is a first step 
towards efficient incremental replanning, this alone is not 
sufficient, as we see by a closer examination of reason 
maintenance techniques. 

4     Replanning and reason maintenance 

The problem of revising plans to account for changed 
conditions has much in common with backtracking and 
the problem of revising beliefs in light of new informa- 
tion. In both cases, one must determine which existing 
beliefs or plans are in conflict with the new informa- 
tion, what these existing beliefs or plans depend on, and 
what gaps in plans or beliefs appear as the revisions or 
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updates are made. That is, one must localize the po- 
tential changes or conflicts by identifying the subset of 
the extant beliefs and plans in which they occur. Simi- 
larly, both belief revision and plan revision involve choos- 
ing which of the identified beliefs and plans to keep and 
which to change. In addition, the problem of providing 
for contingencies has much in common with the prob- 
lem of choosing rules for reasoning by default, for both 
involve setting up primary plans or beliefs and the sec- 
ondary plans or beliefs to use when the primary ones are 
not applicable. In both plan revision and belief revision, 
we seek to make these choices of where and how to revise 
rational in the sense of decision theory. 

The standard approach to belief revision, backtrack- 
ing, and default reasoning is to use a reason maintenance 
system to connect original information with derived con- 
clusions and assumptions. Reason maintenance may be 
used in a similar way to revise plans as well as beliefs 
by indicating the dependence of plans on beliefs and on 
other plans, thus indicating the relevant portions for re- 
vision and the conflicts between prior plans and new cir- 
cumstances. This possibility was, in fact, one of the orig- 
inal motivations for reason maintenance systems (see [de 
Kleer et al., 1977]). 

4.1     Rational reason maintenance 

But the extant architectures for reason maintenance re- 
quire reassessment. In the first place, essentially all the 
choices made by current RMSs are irrational since they 
are made without reference to any preferential informa- 
tion about what choices are better than others. The 
most obvious decisions concern backtracking: whether 
observed conflicts warrant resolution and if so, which 
assumption to retract in order to resolve them. Ap- 
proaches to each of these decisions play prominent roles 
in the design of different reason maintenance systems. 
But if we are to achieve the efficiency required for revis- 
ing large plans, reason maintenance must be redesigned 
to make these choices rationally whenever possible. Ac- 
cordingly, we have begun to develop formal foundations 
for the theory of rational belief revision [Doyle, 1988; 
Doyle, 1990], and are developing techniques for encod- 
ing probabilistic and preferential information within the 
RMS and methods by which the RMS can use this in- 
formation to backtrack in a rational manner. In this, 
we build on techniques for qualitative representation of 
probabilistic information [Wellman, 1990b]. 

But to really make reason maintenance techniques effi- 
cient, we must do more than choose rationally among as- 
sumptions in backtracking. We must in addition under- 
take a fundamental reconsideration and redesign of rea- 
son maintenance systems to make them much more in- 
cremental than extant architectures. Current algorithms 
for revising beliefs are based on making unbounded (po- 
tentially global) optimizing computations that in some 
cases may reconsider the status of every item in the 
plan and knowledge base, even though very few of these 
statuses may change as the result of the revision.   Put 

another way, extant systems maintain global coherence 
(propositions are believed if and only if there is a valid 
argument for them) and global groundedness (all be- 
lieved propositions have a well-founded argument from 
premises). While these unbounded computations have 
been manageable in the relatively small knowledge bases 
explored to date, they would appear to be infeasible for 
use in systems manipulating very large plans. Instead 
of global computations, we need some way of controlling 
how much effort is spent on revision. If reason main- 
tenance is to be rational, the system must be able to 
trade off coherence and groundedness for time or other 
resources. Specifically, it must be able to decide whether 
the benefits of updating some arguments or consequences 
justify the costs of updating them. 

To make the RMS amenable to rational control, we di- 
vide the knowledge base into parts, each of which may be 
revised or preserved separately. Each module of this dis- 
tributed RMS contains its own set of beliefs and plans 
(as well as other information) corresponding to differ- 
ent elements and purposes of the overall plan or to dif- 
ferent dimensions of structure (hierarchical abstraction, 
overlapping views, spatial separation, temporal separa- 
tion, flow of material and information, etc.). Decom- 
position of knowledge in this way is a familiar element 
of many representational schemes (e.g., those based on 
Minsky's [1975] original frame-systems idea). The use of 
locality in planning is illustrated most explicitly by the 
encapsulation mechanisms of Lansky's [1988] GEMPLAN 
system. 

4.2     Distributed reason maintenance 

Along with the general benefits of decomposition, there 
are several additional reasons for distributing reason 
maintenance across different processors. In the first 
place, the information and effort required may be too 
great to store or perform on a single machine. In manag- 
ing very large activities, for example, the most effective 
representations may spread information across machines 
or storage media of different speeds and access times 
(e.g., disk storage, large spatial separations). Even when 
the information resides on a single processor, the most 
convenient representation may be a modular, distributed 
organization as described above. But more generally, the 
information and actions involved in some task may be 
naturally distributed. For example, the necessary infor- 
mation may come from geographically separated sensors 
or databases. If communication is either unreliable or 
costly, effective action may require on-site processing. 
Similarly, there may be numerous people or devices car- 
rying out parts of the task. For example, in the task 
of operating a large manufacturing complex, plans are 
executed by line or cell managers acting independently 
except as coordinated by the plan. When changes occur, 
at least some of the changes in plan must be determined 
by the line or cell managers, since the complex manager 
will not be able to keep track of all of the activities or 
to respond quickly enough.   Because authority is dele- 
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gated and distributed, reactions to deviations may be 
completely decentralized and uncoordinated. 

In addition, distributed reason maintenance may be 
valuable because different beliefs and plans may serve 
different purposes. These purposes may dictate careful 
maintenance of some beliefs and more casual mainte- 
nance of others. A common case of this arises when rea- 
soning is accomplished by different modules operating at 
different rates. Even if they share a common database, 
it is often natural to view each module as having dis- 
tinct inputs, outputs, and local state. In this setting, 
different rates of inference or action in the modules call 
for differing treatment of the information in computing 
updates and checking support. For example, outputs 
which change rapidly compared with how often they are 
used as inputs need not demand reconsideration of con- 
sequences each time they change. Instead, it may be 
much more efficient to leave the consequences untouched 
and to have the consuming module recheck the support 
immediately prior to use—and then only if the risks of 
unjustified action are great enough. In many cases, we 
may expect that the success of the overall plan will not 
be adversely affected if the beliefs of one module about 
plans involving some distant module are mistaken. 

For example, suppose one part of a manufacturing 
plan calls for receiving parts from San Diego at Los An- 
geles and then flying them to Detroit. If local difficulties 
promise to delay the parts from San Diego, the origi- 
nation portions of the plan might be revised to reroute 
similar parts in San Francisco to Los Angeles. As long as 
this plan patch attaches appropriate shipping orders for 
the Los Angeles authorities, there is no need to notify 
them in advance about the change in plans. Indeed, if 
the origination plans change several times (say from San 
Diego to San Francisco, back to San Diego, etc.), noti- 
fying Los Angeles in advance just leads to wasted effort 
in revising the latter portion of the plan. 

4.3     The reason maintenance service 

The extant RMS architectures make reason maintenance 
the base-level stratum upon which all other reasoning 
procedures are erected. To enable belief revision, one 
must encode every bit of information that might change 
in reasons and tell these reasons to the RMS (cf. [Rich, 
1985; Vilain, 1985]). This can present an excessive bur- 
den, as manifest by the observation that the RMSs sup- 
plied in expert system shells all too often go unused. 
If one must apply it to every step of reasoning, at every 
level down to the smallest inference, reason maintenance 
becomes a demanding duty rather than a flexible service 
to use or ignore as appropriate. To integrate existing 
application tools and systems that do not use reason 
maintenance into AI systems that do, the RMS must be 
able to use other databases and processes to effect its re- 
visions. In particular, the RMS must be able to treat ex- 
ternal databases as the authorities about certain beliefs, 
and it must be able to operate even though other pro- 
cesses may be changing these databases independently 

of the RMS.   This makes the RMS just one of a set of 
distributed databases. 

5     Rational   distributed   reason   mainte- 
nance 

Putting these observations together, we seek to facilitate 
revision of large plans by employing a rational distributed 
reason maintenance service, or RDRMS. The purpose 
of the RDRMS is to maintain a description of the overall 
system's state of belief that is as good as possible given 
the reasoner's purposes and resources. This description 
may be approximate, partial, or imperfect, and it may 
be improved by performing further computation as the 
resources supplied to the RDRMS increase. 

There are many motivations for using an RMS: as a 
way of providing explanations, as a way of answering 
hypothetical questions, and as a way of maintaining co- 
herence, groundedness, and consistency. These also mo- 
tivate the RDRMS, but its primary purpose is to en- 
able the reuse of past computations in whole or in part 
without having to repeat the possibly lengthy searches 
that went into constructing their results. That is, we 
view reasons as information about past computations 
or conditions which may be used to reconstruct results 
in changed circumstances, either exactly or in modified 
form (as in derivational analogy [Carbonell, 1986] or 
case-based reasoning). Treating reasons as aids to re- 
computation is in marked contrast with the traditional 
use of reasons in RMSs, where they are treated as rigid 
requirements that belief states must satisfy instead of in- 
formation which may be used or ignored as suits the rea- 
soner's purposes. Naturally, in this setting the RDRMS 
is not expected to determine completely and accurately 
what the system believes. Instead, it only offers a theory 
of what the overall system believes—an "autoepistemic" 
theory, in the sense of Moore [1985], but not necessarily 
a complete or correct one. 

5.1     RDRMS Operations 

The basic operation of the RDRMS is to record reasons 
and other information, and, when so instructed, to revise 
beliefs in accordance with the expectations and prefer- 
ences supplied by the reasoner. Put another way, the 
default operation of the RDRMS is to ignore the infor- 
mation it records until it is told to revise beliefs, and 
then to revise them only as far as can be justified by 
purposes of the reasoner. We do not require that all 
inference be rationally controlled. Some amount of au- 
tomatic inference is acceptable if it represents strictly 
bounded amounts of processing. 

In the RDRMS, reasons are ordinarily partial. That 
is, the reasoner need not register all inferences with the 
RDRMS. The RDRMS will therefore be unable to track 
all the consequences of all beliefs. Although knowledge 
is usually preferable to ignorance, this incompleteness of 
the beliefs of the RDRMS need not be detrimental since 
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the underlying knowledge and inferences of the reasoner 
are incomplete anyway. Moreover, these consequences 
may not influence the reasoner's actions, in which case all 
effort expended in recording them would be wasted. The 
only discipline required of the reasoner is that any infer- 
ences that will not be performed by some other agency 
and that cannot be determined after the fact during 
backtracking should be described to the RDRMS. 

Correspondingly, reasons may be incorrect in the 
RDRMS. That is, the reasoner may use a reason to 
describe the result of a computation, but may leave out 
some underlying assumptions. The result is a reason 
that is valid when those unstated assumptions hold, but 
which may be invalid otherwise. Incorrect reasons can 
be very troublesome in a traditional R.MS, since they 
would be enforced as requirements on the state of be- 
lief, but they need not cause special problems in the 
RDRMS. Since the RDRMS may obey or ignore reasons 
depending on its instructions and experience, all reasons 
are implicitly defeasible. Thus incorrect reasons pose 
no problems not already present in explicitly defeasible 
nonmonotonic reasons. 

Just as reasons may be incomplete, so may be the 
theories of belief states constructed from them, since if 
reasons are ignored, their consequences will not be be- 
lieved. More generally, the RDRMS makes it possible 
to vary how many conclusions are drawn from reasons. 
For example, the system will ordinarily use reasons to 
construct a single global set of beliefs, as in the original 
RMS. But for some specific sets of reasons, say those 
corresponding to a circumscribed problem, the RDRMS 
may determine all consistent sets of beliefs as in the 
ATMS [de Kleer, 1986]. Alternatively, only some consis- 
tent interpretations may be constructed, such as those 
maximal in some order (as in preferential nonmonotonic 
logics [Shoham, 1988]). In general, the aim is to use 
the recorded reasons to draw as many conclusions as the 
reasoner needs. 

Similarly, the revisions performed by the RDRMS may 
be incomplete. In the absence of more specific instruc- 
tions, the default revision is trivial, simply adding the 
new reasons and their immediate conclusions to the be- 
lief set. (In recognition of the partiality of reasons, the 
RDRMS also accepts commands to simply believe some 
proposition, independent of reasons. This corresponds 
to the "revision" operation in philosophical treatments 
of belief revision [Gärdenfors, 1988].) Specifically, with- 
out explicit instructions, the RDRMS does not propa- 
gate changes, does not ensure beliefs are grounded, and 
does not automatically backtrack to remove inconsisten- 
cies. To give some structure to these operations, we de- 
fine revision instructions relative to the modules of the 
knowledge base. These instructions may indicate that 
changes should propagate within the module containing 
the belief, or to its neighbors, or globally; or that all be- 
liefs in the module should be grounded with respect to 
the module, with respect to its neighbors, or globally; or 
that backtracking should be confined to the module, or 
should look further afield for assumptions to change. 

5.2     RDRMS Behavior 

One consequence of the incompleteness and incorrect- 
ness of reasons is that beliefs of the system may be in- 
consistent in routine operation. The overall set of be- 
liefs may exhibit inconsistencies by including conflicting 
beliefs from different modules. Ordinarily the special- 
ized beliefs corresponding to specific problems or sub- 
jects will be represented in modules that are internally 
consistent, but the RDRMS need not be forced to keep 
all these modules consistent with each other. In this 
case, the locally coherent modules can be interpreted 
as "microtheories" [Hewitt, 1986] (related to the idea of 
"small worlds" in decision theory [Savage, 1972]). But 
inconsistency can arise even within a module if too little 
inference is specified. 

Another consequence is that the beliefs of the sys- 
tem may not be fully grounded. In the first place, 
the set of beliefs may be so large as to make global 
groundedness too costly. More fundamentally, large 
sets of beliefs always contain interderivable sets of 
propositions—alternative definitions provide the most 
common example—and which of these sets to choose as 
axioms can depend on the specific reasoning task being 
addressed. For example, the standard definition of non- 
planar graphs is best for some purposes (e.g., teaching 
the concept), but Kuratowski's characterization is best 
for other purposes (e.g., recognition algorithms). Thus 
lack of global groundedness need not be cause for alarm. 
Ordinarily, however, specialized modules corresponding 
to specific problems will be kept grounded in the axioms 
formulating these problems. The system of beliefs can 
thus be thought of as "islands" of groundedness floating 
in a sea of ungrounded beliefs. 

The aim of the RDRMS is to make all of its choices 
as rationally as possible. These include the choices of 
which reasons to use in reconstructing results, whether to 
propagate changes, whether to ground a conclusion, and 
whether to backtrack. Since reasons merely record some 
of the inferential history of the reasoner, they do not by 
themselves determine whether consequences are updated 
or supports are checked. Instead, to make these deci- 
sions the RDRMS uses annotations supplied by the rea- 
soner which give instructions, expectations, and prefer- 
ences about alternative courses of action. These include 
specification of the conditions under which the RDRMS 
should pursue consequences and check support. For ex- 
ample, local propagation may be expressed as processing 
changes within the module containing the changed be- 
lief, but not externally. Alternatively, changes might be 
communicated to neighboring modules (with or without 
local propagation). Other regimes are possible too, in- 
cluding the extreme of propagating the change globally. 
Similarly, the annotations may indicate to persist in be- 
lieving the proposition without reevaluating the support- 
ing reason, to check that the reason is not invalidated by 
beliefs within the containing module, or to check validity 
with respect to external beliefs. 

It is this limited scope, along with the variety and 
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fine grain of RDRMS operations, that makes the service 
amenable to rational control. For decisions about up- 
dating consequences and checking support, it is impor- 
tant that the individual operations be well-characterized 
computationally. Domain knowledge of probabilities and 
preferences should also be reflected in the revision poli- 
cies. Because such information is not always available, 
the architecture provides default choices for each of these 
classes of decisions. Each domain may override these 
with other defaults that are more appropriate in its spe- 
cific area. These default choices are then used whenever 
there is no evidence that a decision requires special treat- 
ment. 

In addition to these decisions within the RDRMS, 
there are choices about whether to record specific rea- 
sons and about which propositions to adopt or aban- 
don as premises of different modules. At present, the 
RDRMS embodies the same approach as do traditional 
RMSs, namely that these decisions are the responsibil- 
ity of the external system (or systems). But since these 
decisions sometimes can depend on what reasons have al- 
ready been recorded, we are investigating techniques by 
which the RDRMS can make some of these decisions for 
the external reasoner when the external reasoner informs 
the RDRMS of its purposes. Of course, these decisions 
may also depend on other facts, such as how hard it was 
for the reasoner to discover the belief, so we cannot ex- 
pect the RDRMS to make all such decisions on its own. 

6    Comparison with other work 

Reason maintenance is the standard approach to belief 
revision, backtracking, and default reasoning [de Kleer 
et al, 1977; Doyle, 1979; Goodwin, 1987]. Morris [1988] 
has shown that a standard RMS can support planning 
and dependency-directed replanning within the classical 
planning framework. But developing an architecture for 
reason maintenance and replanning subject to rational 
control will require significant modification of existing 
techniques. 

As mentioned above, we use the RDRMS to extend the 
dominance-proving architecture for planning with par- 
tially satisfiable goals [Wellman, 1990a]. This decision- 
theoretic approach fits well with our goal of rational 
planning. We also make use of the methods, currently 
under active investigation, for decision-theoretic control 
of reasoning, in which the reasoner explicitly estimates 
and compares the expected utilities of individual search 
or inference steps [Dean, 1990; Horvitz et al, 1989; 
Russell and Wefald, 1989]. These are very important in 
making some of the larger, nonroutine decisions arising 
in the planning and belief revision tasks. But our aim 
is to identify implicitly rational decision-making proce- 
dures whenever possible by separate, off-line decision- 
theoretic analyses based on the computational tradeoffs 
associated with RDRMS operations. 

In the traditional, generative approach to planning, 
the planner takes an initial state and a goal, and con- 

structs a sequence (or partially ordered set) of ac- 
tions to achieve the goal. Most work on generative 
planning has concentrated on planning from scratch, 
though the replanning task has been studied off and 
on over the years [Fikes et al., 1972; McDermott, 1978; 
Wilkins, 1988] with some success. But generative 
planning has focused—with a few recent exceptions— 
on planning without probability or utility information. 
Many of these techniques therefore require some rework- 
ing before they can be said to produce rational plans, 
and the issue of rational control of the planning pro- 
cess is just now beginning to be studied [Dean, 1990; 
Smith, 1988]. 

Another approach is the "reactive" approach to plan- 
ning and action, which seeks to avoid execution-time 
planning by "compiling" all necessary behaviors into di- 
rectly applicable forms [Brooks, 1986; Georgeff and Lan- 
sky, 1987; Rosenschein and Kaelbling, 1986; Schoppers, 
1987]. Our approach fits well with such compilation, 
since we seek to develop implicitly rational planning and 
decision-making procedures. More specifically, decision- 
theoretic analyses of planning and replanning apply also 
to the tradeoff between planning and reacting. Since 
providing a compiled response for every contingency is 
usually not feasible, our approach is to provide explicit 
contingency procedures only when they increase the ex- 
pected utility of the overall plan, taking both planning 
effort and execution-time utilities into account. In addi- 
tion, our assumption of distributed execution authorities 
and replanners explicitly accounts for the reactive abili- 
ties of the distributed execution modules. 

The constraint-based approach to scheduling [Fox, 
1987] complements the generative planning approach in 
many ways, as it does focus on issues of utility and op- 
timization. At the same time, it has somewhat lower 
aspirations, since the focus is on scheduling activities 
within the confines of an overall plan, rather than on 
selecting the activities in the first place. In addition, 
it has generally not addressed issues of probability, and 
its concepts of preference are not directly translatable to 
expected utility. But many of the fundamental optimiza- 
tion techniques have been refined and integrated with AI 
reasoning techniques in this area, and we will draw on 
these in constructing methods for rational control of the 
planning process and construction of rational plans. 

The case-based approach to planning [Collins et al, 
1989; Hammond, 1986; Minton et al, 1989] shares with 
ours the aim of incremental construction and repair of 
plans. Some case-based reasoners make significant use of 
recorded reasons for beliefs and plans, for example Car- 
bonell's [1986] method of derivational analogy. By and 
large, however, most work on case-based reasoning fo- 
cuses on issues of conceptual organization and retrieval 
rather than reason maintenance. In addition, it is not 
too inaccurate to say that research on case-based rea- 
soning has largely ignored issues of rationality. Work 
in this area has generally aimed to make all planning 
operations habitual, so that plans are constructed sim- 
ply by remembering old plans or plan fragments, along 
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with patches that should be applied to these plans for 
specific circumstances. We also aim to develop habit- 
ual rules for plan construction whenever possible (for 
example, default plans and default decisions in guiding 
planning), but to produce and apply these rules in a 
principled way amenable to formal analysis and directed 
improvement. In particular, we use the same probabili- 
ties that guide decision-making in novel circumstances to 
also guide the formation and memorization of habitual 
rules, remembering and forgetting rules and past plans 
based on estimates of their incremental expected utility. 
We believe our approach will make it easier to combine 
techniques from the case-based literature with the more 
formal techniques developed in the generative planning 
and constraint-based scheduling literatures. 

Most work on distributed AI has not addressed issues 
of belief or plan revision, focusing instead on distribut- 
ing the effort involved in ordinary reasoning and plan- 
ning [Bond and Glasser, 1988]. Very recently, however, 
some distributed RMSs have been developed. While 
these represent important first steps, they are not at 
present suitable bases for rational plan revision. For ex- 
ample, the distributed nonmonotonic TMS of Bridgeland 
and Huhns [1990] ensures global consistency among dif- 
ferent agents about the information they share. Main- 
taining this degree of coherence is not always feasible 
in large databases, nor even desirable in cases in which 
the various agents have different information sources and 
perspectives. Another relevant work is the distributed 
ATMS of Mason and Johnson [1989]. This system per- 
mits a large degree of inconsistency among the differ- 
ent knowledge-bases, and so is closer to the aims of the 
RDRMS. But their system also does not address the 
issue of rationality, and limits the representation of rea- 
sons to monotonic implications. 

7    Conclusion 

Reason maintenance promises to play an important role 
in replanning, but to prove useful for large-scale activi- 
ties, the techniques must be capable of incremental appli- 
cation that does not incur the costs of global reconsider- 
ation. Furthermore, reasons must reflect likelihoods and 
preferences about events related to the activity, and revi- 
sion policies must be sensitive to computational tradeoffs 
inherent in the process of modifying plans and beliefs. 

To support this behavior, we extend traditional reason 
maintenance techniques to make use of instructions, ex- 
pectations, and preferences in deciding how to establish 
and revise beliefs and plan elements. In our concep- 
tion, the rational distributed reason maintenance service 
maintains only as much coherence and grounded support 
as is called for by the planner's purposes. In essence, the 
fundamental operations of finding supporting arguments 
and pursuing consequences become flexible rather than 
routine, with different sorts of reasons indicating differ- 
ent sorts of processing during revisions. 

Together with  the dominance-oriented approach to 

decision-theoretic planning, the RDRMS represents a 
general architecture for reasoned replanning of large- 
scale activities. Although much remains to be worked 
out, the RDRMS concept provides both a tool for inves- 
tigating representational issues in belief and preference 
specification and an analytical framework for studying 
computational issues in revising beliefs and plans. Be- 
cause the issues of rationality highlighted by this ap- 
proach are generally not even expressible within stan- 
dard RMSs and classical models of planning, we expect 
this line of research to yield some new insights into the 
dynamics of the planning and replanning process. 
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Abstract 
Any first-principles declarative planner will need to 
be constructed from an underlying declarative system 
that reasons about action. In this paper, we point out 
that if such a planning system is to be computationally 
viable, the associated declarative description of actions 
must satisfy at least two broad conditions. First, it will 
need to be event-driven, so that fluents that hold in a 
particular situation can be propagated into the future 
at reasonable computational cost. Second, it will need 
to be anytime in the sense that partial or approximate 
answers to queries can be provided in the presence of 
computational resource constraints. We suggest that 
the first these goals can be achieved by taking the truth 
values assigned to sentences to be functions from the 
temporal elements into a set of basic values, and that 
the second can be achieved by viewing temporal oper- 
ators as functions on these functional truth values. 

1     Introduction 
Existing planning systems can be grouped into three 
broad categories: expert planners, general-purpose 
planners, and first-principles planners. 

Expert planners, of which there are many, are es- 
sentially applications of expert-systems technology to 
planning problems. The situation in which a particu- 
lar agent finds itself is classified to determine which of 
a predetermined set of actions is most likely to be ef- 
fective in achieving the agent's goals. There has been 
some interest recently in constructing the expert de- 
cision rules automatically [Drummond, 1988], but the 
approach itself must inevitably be limited by the fact 
that the agent involved has no real idea what's going 
on - it is simply mindlessly applying rules that gov- 
ern its behavior. The ensuing brittleness is typical of 
expert systems generally. 

General-purpose planners, of which there are few, 
attempt to address this difficulty by working with a 
set of action descriptors that describe the possible ac- 
tions in some domain, and then constructing a plan 
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to achieve a particular goal using methods that are 
independent of the domain in which the agent finds it- 
self. This work began with STRIPS [Fikes and Nilsson, 
1971]; the most successful existing planner of this sort 
is arguably Wilkins' SIPE system [Wilkins, 1988]. 

There are two difficulties with the general-purpose 
approach. The first is that the computational complex- 
ity of planning problems is typically very high, making 
it impractical to generate a complete plan that is guar- 
anteed to achieve a particular goal. SlPE addresses this 
difficulty by restricting the form of the actions it can 
consider. 

Unfortunately, the nondeclarative restrictions placed 
on the form of the actions being considered gener- 
ally make these planners nonuniversal; there are do- 
mains for which any particular restriction is inappro- 
priate. This is the essence of the second difficulty: 
General-purpose planners, by committing at a funda- 
mental level to a specific description of actions, in- 
herit some (but by no means all) of the brittleness of 
their expert-planning predecessors. "General-purpose" 
planners are only general-purpose within the bounds 
established by assumptions embodied in the form of 
the action descriptors. 

First-principles planners (of which there are none) 
attempt to address these difficulties by viewing plan- 
ning as a purely declarative activity, specifically, by 
viewing it as theorem proving set against the back- 
ground of a declarative system that describes actions 
in a particular domain. 

This idea is an old one, dating back to Green's QA3 
system [Green, 1969]; as work on declarative systems 
generally has advanced, the attractiveness of the ap- 
proach has remained. With the development of non- 
monotonic reasoning, for example, it was suggested 
that this general declarative notion could be applied 
to construct a planner that would be able to jump 
to conclusions while building its plans. It was later 
suggested that assumption-based truth maintenance 
[de Kleer, 1986], another general declarative technique, 
might bear on the problem of debugging plans that 
appear to be nonmonotonically sound but that closer 
inspection reveals to be flawed in some way [Ginsberg, 
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1990b]. 
The reason that there are no established planners 

of this type is that the underlying declarative descrip- 
tions of action are themselves lacking. The best-known 
reason for this is the infamous Yale shooting problem 
[Hanks and McDermott, 1987], although a variety of 
researchers have found solutions to this particular dif- 
ficulty. 

A more fundamental problem with declarative de- 
scriptions of action is that they are simply unsuitable 
for inclusion in planners. The approach suggested in 
[Green, 1969] and reiterated in [Genesereth and Nils- 
son, 1987] is still a valid one - given a monotonic de- 
scription of a domain, it is indeed possible to view plan- 
ning as theorem proving. The difficulty is that it is not 
practical to do so. 

The reason for this can be seen by considering the 
frame axiom. Here is a typical nonmonotonic rendering 
of it: 

holds(/. s) A -iab(a, /, s) D holds(/, result(a, s)) 

Informally, this axiom says that if some fluent / holds 
in a situation s and the action a is not abnormal in that 
it reverses / when executed in the situation s, then / 
will continue to hold after the action is completed. 

There are technical problems with this definition, 
but they can be avoided [Baker and Ginsberg, 1989, 
and many others]. But an overwhelming computational 
difficulty can be seen if we imagine using (1) to prop- 
agate a set of fluents through a long sequence of ac- 
tions. The application of (1) for each action and to 
each fluent will result in a prohibitively large number 
of consistency checks, making the system unusable in 
practice. 

This problem is avoided in general-purpose planning 
systems by using a nondeclarative description of action 
that has more attractive computational properties. In 
STRIPS, for example, actions are described in terms of 
add and delete lists, reducing the complexity of the rea- 
soning enormously. The STRIPS formalism cannot deal 
with the inferred consequences of actions, however, as 
was observed in [Lifschitz, 1986]. (This is called the 
ramification problem in [Finger, 1987J.) A partial so- 
lution to this difficulty can be found in [Ginsberg and 
Smith, 1988], but the approach presented there contin- 
ues to describe actions in nondeclarative terms. 

The intellectual foundation for the work described in 
this paper lies in an attempt to present a declarative 
description of the work in [Ginsberg and Smith, 1988]; 
we have tried to develop a formalization of action that 
will be computationally viable in the situations likely 
to arise in planning. The two specific heuristic com- 
mitments that we will make are the following: 

First, we will assume that fluents typically survive 
long sequences of actions before being needed; a robot 
should be able to put a wrench in its toolbox, perform 
most of its day's activities, and conclude at a single 
stroke that the wrench is still in the toolbox. We will 

describe this by saying that our formalization of action 
needs to be event-driven in the sense that propagating 
fluent values through idle periods does not incur sig- 
nificant computational expense. 

Second, we will commit ourselves to a system that 
can reason about actions in an anytime fashion; the 
word appears to originate in [Dean and Boddy, 1988]. 
By this we mean that the system, when asked the value 
of a fluent in a specific situation, will produce some 
answer quickly, perhaps modifying that answer as nec- 
essary if allowed to consider more subtle features of 
the situation involved. It is generally recognized that 
planning problems are sufficiently difficult that approx- 
imate answers are inevitable; we are simply requiring 
that this sort of computational response be present in 
the description of action that underlies the planner it- 
self. 

The reason that we have chosen to discuss these two 
problems in this paper is not that there are no others 
(there are), but that the solutions to them are linked. 
Roughly speaking, both difficulties can be addressed 
by taking the truth value assigned to a sentence to 
be not a single value such as "true" or "false," but a 
function from a set of time points into such values. 

The reason that this approach leads to an event- 
driven description is that it allows us to conveniently 
describe the expected future behavior of fluents in a 
compact fashion. Instead of saying, "The wrench is in 
the toolbox at 9:15," and, "Things in toolboxes tend 
to remain there," we can simply say, "The wrench is 
expected to be in the toolbox for the rest of the day," 
meaning that the truth value assigned to the sentence 

in(wrench, toolbox) 

is a function that maps the entire temporal interval 
from 9:15 to 5:00 to the value t (or perhaps dt - true 
by default - if we are prepared to admit the possibility 
of subsequent information reversing our conclusions). 
The problem of making our description event-driven 
now becomes essentially a matter of finding a data 
structure for the functional truth values that efficiently 
encodes the behavior of fluents that change only infre- 
quently. 

The idea of taking truth values to be temporal func- 
tions also bears on our requirement that the implemen- 
tation of our formalism exhibit anytime behavior. As 
an example, consider a sentence such as. "One second 
after the valve is closed, the pressure will increase," 
which we will write somewhat schematically as 

delay(closed-valve) D pressure (2) 

where delay is an operator that we will use to push 
the temporal description of the valve one second into 
the future. 

From a formal point of view, the delay operator 
appearing in (2) is a modal operator, since it accepts 
as an argument not an object in our language, but a 
declarative sentence.  It is shown in [Ginsberg, 1990a] 



that when truth values are taken to be more descriptive 
than simply elements of the two-point set {t, /} (true 
and false, respectively), it is possible to view modal op- 
erators as functions on the truth values of their propo- 
sitional arguments. In (2), the modal operator delay 
corresponds to the function delay that is given by 

[delay(/)](i + l) = /(i) (3) 

Note that delay accepts a function as an argument and 
returns a function as its result, since the truth values 
that we are using are themselves functional. 

To see that this interpretation leads to anytime be- 
havior, we need to make one more observation: The 
basic purpose of a deductive system is to determine 
what truth value should be assigned to a particular 
query. Now note that when considering a query q, 
we may well encounter a modal operator, requiring 
us to apply the corresponding function (as in (2) or 
(3)) to the truth values of the propositional arguments 
(closed-valve in (2)). But what are we to use for 
these truth values? We can use either the result of in- 
voking the theorem prover recursively on the proposi- 
tional arguments themselves, or use the values that can 
be obtained by simply searching for the given propo- 
sitions in the database. Using these latter values as 
approximations for the former leads to a system that 
produces some answer quickly, but may modify that 
answer on further consideration. Perhaps there is a 
deductive demonstration that the valve in (2) will be 
open at some particular future time, and so on. If the 
analysis of the embedded sentences produces still fur- 
ther modal expressions, anytime behavior will result 
as the system makes and then examines assumptions 
about the truth values assigned to these embedded sen- 
tences. 

The remainder of this paper will consider each of 
these ideas in turn, and then show an example of an 
implementation of them being used to analyze a shoot- 
ing scenario similar to that appearing in [Hanks and 
McDermott, 1987]. The implementation is built using 
the multivalued theorem proving system MVL [Gins- 
berg, 1988, Ginsberg, 1989]. 

2     Truth values 
We remarked in the introduction that we intend to 
label sentences in our declarative database with func- 
tional truth values that include information about the 
truth or falsity over time (or default truth/falsity, 
etc.) of the sentence involved. The reason that we 
are comfortable doing this is that the labels so con- 
structed retain the mathematical structure of the orig- 
inal "instantaneous" labels, in that we can combine 
them, negate them, disjoin and conjoin them, and so 
on. 

It is these operations of conjunction, disjunction and 
so forth that underlie the semantics of any declarative 
system. Specifically, if we have labels x and y for sen- 
tences p and q respectively, we need a way to construct 
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Figure 1: A fluent that is true three times 

a label xV y for the disjunction of p and q, and so on. 
In [Ginsberg, 1988], a mathematical structure called a 
bilattice was introduced that consists of a set together 
with just these combining operations. Although the 
formal definition will not play a significant role in the 
remainder of this paper, we include it here in the in- 
terests of completeness: 

Definition 2.1 A bilattice is a sextuple 
(B, A, V, •, +, -i) such that: 

1. (B, A, V) and (B, ■, +) are both complete lattices, and 
2. -i : B —> B is a mapping with: 

(a) -i2 — \, and 

(b) -i  is a  lattice homomorphism from (B,A,v)   to 
(B, V, A) and from (B, •, +) to itself. 

The bilattice operations A, V and -i all correspond to 
the usual logical notions, while + corresponds to com- 
bination of evidence and is used to combine the truth 
values obtained from separate lines of reasoning to a 
single conclusion. Many more details of the bilattice 
work, together with a discussion of the philosophical 
ideas underlying the approach, can be found in [Gins- 
berg, 1988], 

What is of interest to us here is the fact that if B is 
some bilattice, then B2, the collection of ordered pairs 
of elements of B, inherits a bilattice structure from 
B where all of the bilattice operations are computed 
pointwise. (The construction is analogous to the con- 
struction of the Cartesian plane IR2 as the product of 
two copies of the real line.) More generally, for any 
set S, the set Bs of functions from S into B inherits a 
bilattice structure from the set B.1 

It follows that if we have some set T of time points, 
then the set BT of functions from T into the "base" 
set of truth values B has the structure required of a set 
of truth values. As an example, if we take T to be the 
integers, then the graph in Figure 1 shows the truth 
value assigned to a fluent that is true for two units of 
time at t = 2, for one unit of time at t — 50, and for 
all time after t — 53. 

Our event-based philosophy now corresponds simply 
to a data structure that represents these truth values 
by listing the points at which the value changes. In 
Figure 1, for example, we record the fact that the fluent 
is unknown at time 0, true at time 2, unknown at time 
4, and so on; values at a total of six points are recorded. 

There is no real difference between viewing the set B~ 
as the set of ordered pairs of elements of B, or as the set 
of functions from the two-point set {1,2} into B. 
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Determining the value of the fluent at any intermediate 
time £ is a matter of walking along the graph until the 
next event is later than £, and taking the value at the 
last time encountered. Note that the computational 
effort required to determine the value of the fluent in 
Figure 1 is completely independent of the length of the 
gap between times 4 and 50. 

Extensions 
The ontological shift that we are proposing does not in 
and of itself commit us to any specific computational or 
representational strategy. As an example, the simple 
representation scheme that we described in the previ- 
ous paragraph can easily be extended in a variety of 
ways: 

1. The set T of time points only needs the structure of 
a partial order in order for the above approach to 
work; to determine the value of a fluent / at some 
particular time t, we walk our way along the function 
until we find ourselves between two points i0 

and *i 
such that 

t0<t< t1} 

so that t is no earlier than £o and £i is later than t. 
The value of / at t is then the value taken at to. 

2. As an example, taking the above partial order to 
be the continuous real line allows us to avoid our 
earlier implicit assumption that time was discrete. 
This particular choice commits us to fluents being 
true over half-open intervals [x,y) only, but this can 
be avoided by introducing auxiliary elements x+ for 
each i£E such that the half-open interval [x, y+) 
in fact denotes the closed interval [x,y]. 

3. Another example involves taking the elements of the 
partial order to be action sequences, where an ac- 
tion sequence a2 temporally follows a sequence ai 
whenever a2 is an extension of aj. Nonlinear action 
sequences can be handled by weakening the partial 
order to cater to possible linear action sequences con- 
sistent with a given nonlinear one. 

4. It is also possible to extend the scheme by introduc- 
ing "decay functions" that describe how a fluent's 
truth value is expected to change as time goes by. 
In Figure 1, for example, the fluent's truth values 
do not change at all as time passes; a more realistic 
example might involve the truth value of the fluent 
falling from t to dt at times 3 and 54, as shown in 
Figure 2. Here, our confidence in the truth of the 
fluent decays as time passes, corresponding to the 
application of a nonmonotonic frame axiom. As be- 
fore, information is recorded only when the truth 
value of the fluent changes from the expected one, 
so we still need to record information only about the 
"events" at times 0, 2, 4, 50, 51 and 53. By changing 
the set of base truth values to which the temporal 
functions map, this idea can be extended to include 
a wide variety of temporal behaviors, such as the 

t 

dt 

u 
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Figure 2: A default frame axiom 

probabilistic decay functions discussed in [Dean and 
Kanazawa, 1988]. 

In all of these cases, the computational efficacy of the 
scheme that we have proposed is preserved. 

The frame axiom 
The approach we have suggested encodes the informa- 
tion that is normally captured by a frame axiom such 
as (1) in two separate ways. First, the actual default 
behavior assigned to some particular fluent / is en- 
coded in a truth value such as that appearing in Fig- 
ure 2, which explicitly indicates the default truth of 
the fluent at times following times when it is known to 
be true with certainty. 

We have thus far avoided the question of how we 
obtain truth values such as that appearing in Figure 2 
in the first place. What we would like to do is to have 
a sentence in our database such as the following: 

If the robot puts a tool in its toolbox, then the 
tool is definitely in the toolbox at that time, and 
can be assumed by default to be in the toolbox at 
subsequent times. 

Note first that the truth value to be assigned to the 
conclusion of the rule (that the tool is in the toolbox) 
is not the same as the truth value of the premise; the 
premise (that the tool is being put into the toolbox) 
holds only instantaneously, while the conclusion (that 
the tool is actually located in the toolbox) holds over 
a wide range of times. This is a technical issue that 
we will consider in the next section and is identical in 
principle to the appearance of the delay operator in 
the introduction. 

More importantly, note that the future behavior of 
any particular fluent (in this case, the location of the 
tool) is determined not by applying some blanket frame 
axiom such as (1), but instead by an axiom describing 
this future behavior when the fluent is first asserted 
(i.e., when the robot puts the tool in the toolbox). 

This is an important distinction between our ap- 
proach and the conventional one. Computational is- 
sues aside, we prefer our approach on purely philosoph- 
ical grounds, since it is not the case that the frame 
axiom applies to all, or even most of the fluents we 
encounter in everyday life. 

As an example, consider the problem of entering a 
crosswalk when there is a car five feet away approach- 
ing at 60 MPH. Are we to apply the frame axiom to 
the fact that the car is five feet from the crosswalk, or 
to the fact that it is moving at a high speed?  Clearly 
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to the latter, although there is no information in (1) 
indicating that we should do so. 

This is related to the well-known problem of induc- 
tion [Skyrms, 1966]. How is it that we know to ap- 
ply the frame axiom to a predicate such as "blue" or 
"green" but not to one such as "grue" (green until July 
10th but blue subsequently) or "bleen?" Although we 
have not provided an answer to this question, we have 
indicated clearly the declarative point at which such 
an answer is used - in the description of the expected 
future behavior of newly established fluents. Similar 
observations have also been made in [Myers and Smith, 
1< 

3    Modal expressions 
Let us return to the observation we made in the last 
section that the truth value to be assigned to the con- 
sequent of some rule is often not the same as the truth 
value of the antecedent. In the introduction, we han- 
dled a situation such as this in (2) by introducing a 
modal operator m and writing 

m(a) D c 

where a is the antecedent and c is the consequent. The 
modal operator m changes the truth value of a so that 
the truth value of c is modified correctly by the above 
rule. The two examples of this that we have seen thus 
far involve a modal operator delay that delays the 
truth value of the antecedent by a fixed amount of 
time, and an operator propagate that was hinted at in 
the previous section and that is responsible for insert- 
ing the consequent into the database with a complete 
"future history" if appropriate. 

We will discuss these two operators in some detail 
shortly, but let us continue to examine general issues 
first. The idea that modal operators can be viewed 
truth-functionally (i.e., as functions on the truth val- 
ues of the sentences on which they operate) is an old 
one in the philosophical community, but was discarded 
in favor of Kripke's possible-worlds approach [Kripke, 
197l] when it was realized that there simply are not 
enough functions on the two-point set {t,f} to corre- 
spond to all of the interesting modal expressions that 
one might wish to consider. 

In [Ginsberg, 1990a], however, it was pointed out 
that if truth values are taken from an arbitrary bilat- 
tice instead of from the set {i, /}, it becomes practical 
to view modal operators truth-functionally after all; in 
fact, the resulting construction is a generalization of 
Kripke's. 

Anytime behavior 

An additional advantage of viewing modal operators 
truth-functionally is that the associated declarative 
systems naturally exhibit anytime properties; this can 
probably be made clearest by an example from PRO- 
LOG. Consider the following program: 

landlubber(X)   :- animal(X),  not(fly(X)). 
fly(X)   :-bird(X),  not(penguin(X)). 
animal(X)   :- bird(X). 
penguin(X)   :- bird(X),   tuxedo(X). 
bird(opus). 
tuxedo(opus). 

Animals that cannot fly are landlubbers, birds can fly 
unless they are penguins, and birds in tuxedos are pen- 
guins. Opus is a bird wearing a tuxedo. Is he a land- 
lubber? 

Ignoring inadequacies in our representation of the 
domain, the interpreter begins by noting that it can 
prove that Opus is an animal, and therefore that he is 
a landlubber unless he can be shown to fly. A new proof 
process is therefore begun with the intention being to 
prove that Opus can fly. 

Since Opus is a bird, he can fly unless he can be 
shown to be a penguin. Yet another proof process is 
begun; since this one succeeds in showing Opus to be 
a penguin, he cannot be shown to fly and the original 
query (is Opus a landlubber?) succeeds. 

What is proposed in [Ginsberg, 1990a] is that it 
should be possible to interrupt this procedure at the 
points where new proof attempts are generated. Thus, 
when creating the attempt to prove that Opus can fly, 
we note that since there is nothing in the database in- 
dicating explicitly that he can, we can tentatively label 

fly(opus) 

as unknown, and therefore assign not (fly (opus)) the 
value of true using PROLOG'S negation-as-failure rule. 
This allows us to tentatively confirm the original query. 

Given more time, we can work on the goal 
fly (opus), noting that this spawns the subgoal 
penguin (opus). Once again, we break the inference 
process, using the fact that penguin(opus) is miss- 
ing from our database to conclude tentatively that 
not (penguin (opus)) is true and therefore that Opus 
can fly, so that the original query should fail. Finally, 
given still more time for reflection, we realize that Opus 
is a penguin and therefore a landlubber after all. 

PROLOG'S treatment of negation is as an operator 
that returns t unless the truth value of the argument 
is itself i; specifically, if some sentence p is unknown, 
negation-as-failure treats not(p) as true. Viewed in 
this fashion, PROLOG'S negation is a modal operator 
in our sense. We are proposing two extensions to this 
idea: 

1. Extending the notion of a modal operator to include 
temporal operators such as those that arise when 
reasoning about action. 

2. Using these modal operators as semantic markers 
for points at which the inference process can be sus- 
pended and an approximate answer computed.2 

This suggests the introduction of a modal operator 1 
that doesn't modify the truth value of its argument at all, 
but serves only to mark a point where inference can be 
suspended. This idea is unexplored at this point. 
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These ideas are described in greater detail in [Ginsberg, 
1990a]. 

Temporal operators 
Given that we take the view that temporal operators 
can be described by giving their functional behavior 
and then incorporating them into our declarative lan- 
guage, what operators are required in a system that 
reasons about action? 

We will clearly need an operator delay to separate 
the occurrence of an action from the appearance of its 
effects, and another operator propagate that allows us 
to construct temporal truth functions such as the one 
appearing in Figure 2. 

In fact, we appear to need nothing else; the axioma- 
tization appearing in the appendix uses no modal op- 
erators other than these two. The description of delay 
is as appearing in (3), while propagate is defined re- 
cursively as3 

[propagate(/)](i) = 

I /(*)> ifi=0or/(t)^u; 
| decay[propagate(/)(r. — 1)],    otherwise. 

The function decay might be given by, for example: 

X decay(s) 
t dt 
dt dt 
f df 
df df 
u u 

This decay function maps any truth value into its de- 
fault version, corresponding to a nonmonotonic frame 
axiom. A monotonic frame axiom would simply take 
decay(s) = x. As an example, Figure 3 shows the 
result of applying propagate to a temporal function 
that changes from t to /. Figure 4 shows the result if 
the frame operator is chosen to be monotonic. 

From these two operators, we can build a declarative 
description of action that has the desired properties of 
being event-driven and anytime. If a is an action that 
causes a fluent / to be true in a persistent way (such 
as putting a tool in the toolbox), we write4 

propagate(delay(a)) D / (4) 

The implementation of propagate does not follow this 
definition directly, since this would be horrendously ineffi- 
cient. Instead, we use a monotonic propagation function 
(as described in the appendix), and simply drop informa- 
tion about any "events" at which a truth function becomes 
unknown. 

The axiom (4) is not quite satisfactory as it stands, be- 
cause it is awkward to combine it with domain constraints 
describing ramifications of the action in question. This is 
handled in the appendix by reifying the fluents so that they 
can be treated as objects in our language, and replacing (4) 
with an axiom like 

causes-persistently(a, /)A 
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Figure 3: Applying the frame axiom 

0      1 50   51   52   53   54 

0      1     2     3     4    •••   50   51   52   53   54 

propagate(/) 

Figure 4: A monotonic frame axiom 
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while if a causes / to be true only instantaneously (like 
striking a match causing a light), we write 

delay(a) D / 

Efficiency considerations 
Suppose that we consider the example in Figures 3 
and 4 a bit more closely. In the example in Figure 4, 
for example, note that there is no point to attempting 
to show that the fluent holds at time 4 - we already 
know this by virtue of the application of our monotonic 
propagation function. This implies the following: 

When invoking the prover on a sentence p in 
order to evaluate a modal expression m(p), one 
should, only investigate proofs that will affect not 
only the truth value of p, but the truth value of 
m(p) as well. 

In fact, the situation is a bit more subtle still; consider 
Figure 3. 

Suppose that we are interested in showing that the 
fluent / holds at time 53, perhaps because / is a pre- 
condition to an action that we would like to take at 
that time, or perhaps because the restriction men- 
tioned above implies that this is the only information 
about / that is of interest to us. 

In the initial situation in which we know nothing, 
it follows that we should try to show that / holds at 
any time before t = 53, since this value will then be 
propagated to the time of interest. Although show- 
ing that / holds at time 54 does effect the value of 
propagate(/), it does not do so in an interesting way. 
This means that we should replace the above principle 
with the following stronger one: 

When invoking the prover on a sentence p in 
order to evaluate a modal expression m(p), one 
should only investigate proofs that will change the 
truth value of rn(p) in a way that will affect the 
response to the original query. 

Applying this idea can be fairly subtle. In the ex- 
ample we are considering, suppose that we succeed in 
showing that / holds at time 2, so that propagate(/) 
holds by default at time 53. Now there is no point in 
showing that / holds, but there is a reason to show 
that the negation of / holds at some time between 3 
and 53, since ->/ will block the propagation of / to the 
time that is of interest to us. 

In the example in the figure, we can show that -if 
holds at time 51; now we must once again change the 
focus of our proof efforts as we attempt to show that 
/ is true either at t = 52 or at t = 53. 

From a conceptual point of view, this is all quite 
straightforward. From an implementational point of 
view, however, it can be rather subtle, especially since 
we should preserve portions of the  proof tree for a 

fluent / even if they appear not to be relevant to 
propagate(/). The reason for this is that subsequent 
developments may change this. In the example we have 
been considering, perhaps proving / has been reduced 
(after considerable effort) to proving g and h\ when our 
focus changes to that of proving -if, we should retain 
this information in case (as happens in this example) 
we decide that we need to prove / after all. 

4     An example 
The ideas that we have described have been im- 
plemented using the multivalued theorem prover de- 
scribed in [Ginsberg, 1988, Ginsberg, 1989], which al- 
lows the user to select truth values from arbitrary bi- 
lattices and to include arbitrary modal operators in 
a declarative database. The precise axiomatization of 
actions generally and our domain in particular can be 
found in the appendix. 

The domain we are considering involves a gun, which 
may or may not be loaded, and a victim (Fred), who 
may or may not be alive. At time 0, the gun is loaded 
and Fred is alive. 

This domain has three actions: loading and unload- 
ing the gun (which always succeed), and shooting the 
gun at Fred. If the gun is loaded, firing it at Fred will 
kill him.5 All of the fluents persist in a nonmonotonic 
fashion except that once Fred dies, he is guaranteed to 
stay dead. 

The course of events in this domain is as follows: 

Time Event 
0 Fred is alive and the gun is loaded 
1 The gun is unloaded 
2 The shooting is attempted 

and the gun is reloaded 
50 The shooting is attempted 
52 The gun is reloaded 
53 The shooting is attempted 

The first shooting action should fail, since the gun 
has been unloaded at the previous time point. The sec- 
ond shooting action should succeed by default, since 
the gun has presumably remained loaded between 
times 3 and 50. The third shooting action will defi- 
nitely succeed, since it immediately follows a load ac- 
tion. 

Given this information, the system was asked to in- 
vestigate the truth or falsity of the fluent alive (is Fred 
alive?) at all times; the results are shown in Figures 5 
and 6. 

The machine reasoned as follows:6 

propagate(delay(holds(a))) D holds(/) 

5This is the only consequence of the shooting action. 
Specifically, shooting does not cause the gun to become 
unloaded. 

6The machine is reasoning backwards in time only be- 
cause it uses the most recently asserted facts first, and the 
assertions about what actions took place at what times 
happen to be in chronological order. (These are the last 
axioms appearing in the appendix.) 
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(d) The first shooting action succeeds by default 

Figure 5: The shooting scenario 
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(g) In the initial situation, Fred is alive for sure 

Figure 6: The shooting scenario (ctd.) 
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1. First, it realized that the shooting at time 53 is guar- 
anteed to succeed, so that at times 54 and subse- 
quently, Fred will be dead. 

2. Next, it realized that the shooting at time 50 was 
expected to succeed, since the gun was loaded at an 
earlier time and presumably remained so. 

3. It also decided that the shooting at time 3 was likely 
to succeed, since the gun was loaded in the initial 
situation and that fact was expected to persist. 

4. The proof attempts in Figure 5 involve attempts to 
find times at which Fred is dead; the machine now 
changed its focus to trying to prove that he is alive, 
and concluded that he is (by default) from time 0 
until the initial shooting. 

5. The machine next investigated the modal expression 
propagate(loaded) a bit more closely, since this 
modal expression was used in its conclusion that the 
shootings at times 3 and 50 succeed. It discovered 
that the gun is not expected to be loaded at time 3 
after all, and therefore that the first shooting should 
fail. 

6. Finally, the program realized that Fred is guaranteed 
to be alive in the initial situation, and updated its 
conclusions to reflect this. 

In this example, we can clearly see the two features 
that have been the focus of this paper - the event- 
driven nature of the description, evidenced by the lack 
of computational effort devoted to the "idle" time from 
t = 4 to t = 50, and the anytime nature of the analysis, 
shown in the shifting conclusions displayed in Figures 
5 and 6. 

5     Conclusion 
My intention in this paper has been to argue for two 
things: First, the use of truth values that directly cap- 
ture the complete history of fluents that change over 
time; second, the manipulation of these truth values 
using truth-functional modal operators. We have pre- 
sented an implementation of our ideas that correctly 
analyzes a simple example similar to the shooting sce- 
nario presented in [Hanks and McDermott, 1987], but 
the theoretical justifications for this approach are more 
compelling: 

1. The approach embeds the action descriptions in a 
full declarative language, and investigates the conse- 
quences of actions by proving theorems against this 
background. A system developed in this way will 
benefit from developments elsewhere in the theorem- 
proving community in a way that a more ad hoc ap- 
proach cannot. 

2. The event-driven nature of the approach allows us to 
reason in a computationally viable way about fluents 
that change value only infrequently. As discussed in 
Section 2, we do this without committing ourselves 
to any specific ontology of time or of action. 

3. The natural implementation of our ideas exhibits an 
anytime behavior that we can expect to be present 
in the associated planning system as well. Further- 
more, this ability to incrementally refine our conclu- 
sions is grounded in a solid formal foundation. 

4. Finally, the approach we have described avoids the 
use for a blanket frame axiom such as (1), which is 
likely to fall prey to the problem of induction. Al- 
though we have presented no solution to this diffi- 
culty, our approach makes clear that such a solution 
will need be reflected in the declarative description 
of our domain, since the expected future history of 
any particular fluent needs to be asserted when the 
fluent itself is added to the database. 

Appendix: Axioms used in Section 4 
The axioms used in our description of action involve 
four separate causal predicates, as follows: 

1. causes(a, /) means that the action a causes the flu- 
ent / to be true instantaneously. 

2. causes-persistently(a,/) means that the action 
causes the fluent to be true in a way that is expected 
to persist into the future. 

3. causes-f orever(a,/) means that the action causes 
the fluent to be true in a way that is guaranteed to 
be true in the future. 

4. Finally, causes-not(/1, f2) means that fluent fi im- 
plies the negation of fluent f2- The fluents alive and 
dead are related in this fashion. 

Fluents are reified using a holds predicate; the in- 
sertion of the reified fluents into the database is also 
reified using a triggers predicate, so that holds is 
the result of applying the modal operator propagate 
to triggers. 

Here are the axioms associated with these predi- 
cates, expressed in a PROLOG-like style: 

holds(F)   :-  causes(A,F), 
delay(succeeds(A)). 

causes(A,F)   :- causes-persistently(A,F). 
holds(F)   :- propagate(triggers(F)). 
triggers(F)   :- causes-persistently(A,F), 

delay(succeeds(a)),   default. 
triggers(F)   :- causes-forever(A,F), 

delay(succeeds(a)). 
not(holds(P))   :-  causes-not(Q,P),  holds(Q). 
not(triggers(P))   :-  causes-not(Q,P), 

triggers(Q). 

There are a couple of things to note here: 

1. The MVL system has a true negation operator in ad- 
dition to the modal negation-as-failure operator used 
in PROLOG. The not appearing in the heads of the 
last two of the above rules is true negation. 

2. The sentence default is inserted into the database 
with   a  truth   value  indicating   that   it   has   value 
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dt   at    all   times. This    allows    us    to   use    a 
monotonic propagate operator, with the inclu- 
sion of the default sentence serving to distinguish 
causes-persistently from causes-forever. 

We also need axioms expressing conditions under 
which an action succeeds. We assume that there is 
a predicate prec(a,p) that holds just in case p is a 
list of the preconditions of the action a, and another 
predicate prec-holds(p) that is true just in case every 
sentence in the list p holds: 

succeeds(A)   :-  occurs(A),  prec(A,P), 
prec-holds(P). 

prec-holds([X|Y])   :- holds(X), 
prec-holds(Y). 

prec-holds([]). 

Finally, there is a dummy action init that takes 
place at time — 1 and is used to construct the initial 
situation. This action has no preconditions. 

occurs(init). ;true  at  time  -1  only 
prec(init, [] ) . 

To describe the shooting domain specifically, we first 
describe the initial situation as a consequence of the 
init action: 

causes-persistently(init,alive). 
causes-persistently(init,loaded). 

These axioms say that Fred is alive (and expected to 
remain so) and that the gun is loaded (and also ex- 
pected to remain so) in the initial situation. 

We also need axioms describing the various actions. 
Here are load and unload: 

causes-persistently(load,loaded). 
causes-persistently(unload,unloaded). 
prec(load,[]). 
prec(unload, [] ) . 

The fluents load and unload are negations of one 
another: 

causes-not(loaded,unloaded). 
causes-not(unloaded,loaded). 

Shooting is similar. It causes Fred to be dead forever 
and has a precondition of the gun being loaded. The 
fluents alive and dead are negations of one another: 

causes-forever(shoot,dead). 
prec(shoot,[loaded]). 
causes-not(alive,dead). 
causes-not(dead,alive). 

Finally, we need axioms saying what occurs when: 

occurs(unload). ;true  at  time  1 
occurs(shoot). ;true  at  time  2 
occurs(load). ;also  true at  time  2 
occurs(shoot). ;true  at  time  50 
occurs(load). ;true  at  time  51 
occurs(shoot). ;true  at  time  53 

When we indicate "true at time 2" above, we mean 
that these facts are inserted into the database with 
truth values indicating that they are true at these 
times; there is no way to represent this using conven- 
tional PROLOG syntax. The three occurrences of the 
shooting action are combined to get a truth function 
similar to that shown in Figure 1 except for the fact 
that the occurrences are all of unit time duration. 
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Abstract 

The planning problem in AI has traditionally 
been framed as a problem of search plus de- 
duction. But as researchers admit that the 
planning world may not be controlled perfectly 
or known completely by the planning agent 
this model looks less satisfying. One loses the 
crisp distinction between the provably good 
and provably bad plans, and is forced to choose 
among alternatives that offer various tradeoffs 
between likelihood of success and penalty for 
failure. Planning becomes a problem of choice 
under uncertainty. 

Decision theory offers a normative model 
for choice under uncertainty. But apply- 
ing decision-theoretic analysis to the planning 
problem raises questions concerning assessment 
of the probability and utility model. This pa- 
per centers on the utility model, paying partic- 
ular attention to the role played by the agent's 
explicit goals. In considering how to integrate 
symbolic goals with numeric utilities we take 
into account the contribution those goals make 
to the practical business of constructing plans. 

In this paper we explore relationships between 
the process of planning to achieve symbolic 
goals and planning to maximize utility, concen- 
trating on relationships that must hold between 
the goals and the utility function. We do so in 
three parts: First, we show relationships that 
ensure consistent solutions to the problem of 
planning to achieve explicit goals and planning 
to maximize utility. Then we present a gen- 
eral framework for building goal-oriented util- 
ity models that allows the incorporation of ex- 
plicit goals and at the same time respects the 
conditions that ensure a consistent relationship 
between utility maximization and goal satisfac- 
tion. Finally, we integrate these two results by 
showing the relationship between planning to 
achieve goals and maximizing utility with re- 
spect to goal-oriented utility functions. 

Steve Hanks 
Dept. of Comp. Sei. & Engr. FR-35 

University of Washington 
Seattle WA 98195 

hanks@cs.washington.edu 

1     Introduction: Planning under 
Uncertainty 

The planning problem in AI can be expressed as follows: 
given a set of goals G = {gj, gn,..., g„}, an initial state 
of the world So, and a set of operators {a^}, find 
quence of the aj that will cause all the g; to be true if 
executed beginning at SQ. 

Simplifying assumptions about the world—that no 
other events will occur and that the effects of all the op- 
erators are known completely and with certainty—allow 
classical planning algorithms to prove (in principle at 
least), for any sequence of operators, that the resulting 
world state either provably satisfies or provably fails to 
satisfy all the goals. Thus the problem faced by classical 
planners is one of search rather than choice: a planner 
searches for a plan that works, but does not attempt to 
choose among the feasible alternatives. 

As researchers admit that the planning world may not 
be controlled perfectly or known completely by the plan- 
ning agent—as the agent is seen to be uncertain as to 
its past, present, or future environment—the model of 
search plus deduction looks less satisfying. One loses the 
crisp distinction between the provably good and provably 
bad plans, and is forced to choose among alternatives 
that offer various tradeoffs between likelihood of success 
and penalty for failure. Planning, in other words, is a 
problem of choice under uncertainty. 

Decision theory offers a normative model for choice 
under uncertainty. Given again the initial world state 
So, and letting A be a sequence of operator instances 
(ai, a2, ..., am),1 we can define the expected utility of 
executing A in So as follows: 

EU(A) = ^TP(S|A,SO)U(S) 

where P(s|A,S0) is the probability that executing A in 
So will actually result in state s and U(s) is the utility 
the agent associates with world state s. Decision theory 
dictates that an agent perform that course of action A* 
among all possible courses of action A that affords it the 
highest expected utility. Note that decision theory says 
nothing about plan generation:  it dictates only how to 

We will refer to these sequences interchangeably  as an 
"action,"  "course of action," or "plan." 
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choose a course of action from among a set of alterna- 
tives. 

Applying decision-theoretic analysis to the planning 
problem raises questions in addition to those concerning 
how to generate alternatives. These problems center re- 
spectively around the probability model (computing the 
probabilities P(s|A,S0)) and the utility model (comput- 
ing U(s) for those members). Important questions that 
arise are how one assigns probabilities to the occurrence 
of certain events and numeric utilities to outcome states, 
as well as how one knows how to "stop projecting." The 
last problem, known as the horizon problem, arises be- 
cause in principle the result states s might represent the 
state of the world arbitrarily far in the future—there 
must be time such that projecting a course of action fur- 
ther into the future would have a negligible effect on the ' 
utility associated with that course of action. 

Some work has begun on computing the probabilistic 
planning model—[Hanks, 1990c], for example, confronts 
this problem. This paper centers instead on the utility 
model, paying particular attention to the role played by 
the agent's explicit goals, the set G above. 

Clearly the agent's goals must play a role in building 
the utility model (note that goals receive no explicit men- 
tion in the decision-theoretic formalism), in that states 
in which the goals are satisfied should tend to be assigned 
higher utility than states in which they are not. Excep- 
tions are certainly possible, however: one could imagine 
being able to satisfy one's goals, but at an unacceptably 
high cost. 

In considering how to integrate symbolic goals with 
a utility function we must take into account the con- 
tribution those goals make to the practical business of 
constructing plans: 

1. Goals are easily communicated to the agent, 
whereas numeric utilities are notoriously hard to 
assess consistently—see, for example, [Keeney and 
Raiffa, 1976, Hogarth, 1975, Savage, 1971]. 

2. Goals guide the search for plan alternatives, by pro- 
viding indices into plan libraries or transformation 
strategies. 

2 Previous work in decision-theoretic planning has mostly 
ignored problems associated with integrating goals and util- 
ity. [Feldman and Sproull, 1975], for example, associate a 
fixed utility with achieving a goal, then go on to define the 
cost of applying various operators (also in terms of these 
utility units), but never confront the problem of reconciling 
the two numeric assignments. [Dean and Boddy, 1988] and 
[Horvitz, 1988] make similar assumptions: that the applica- 
tion provides the planner with a utility function that identi- 
fies the benefit associated with achieving a given world state. 
Once again, they ignore questions of how goals might give rise 
to these functions, and how to ensure consistency between 
the utility benefit and the cost associated with achieving that 
benefit. [Etzioni, 1989] admits explicit symbolic goals, but he 
again separates "goal utility" from the cost of achievement, 
and provides no way to make the two notions compatible. 
These recent efforts have focused on the problem of decision- 
theoretic control—how an agent decides whether to act or to 
think about acting—rather than the problem of how to use 
decision theory to choose among alternatives. We argue in 
[Hanks, 1990a] that this effort is misguided. 

3. Goals guide the projection process in that they iden- 
tify those aspects of the world that are relevant 
and allow the planner to ignore all others ([Hanks, 
1990b]). 

4. Goals solve the horizon problem in that the last time 
point associated with a goal is the point at which 
projection can terminate. 

So traditional symbolic goals are crucial to the process 
of plan generation, and play a role in the construction of 
utility functions, which can then be used to compare 
alternative plans. In this paper we explore relation- 
ships between the process of planning to achieve sym- 
bolic goals and planning to maximize utility, concentrat- 
ing on relationships that must hold between the goals 
and the utility function. We do so in three parts: First, 
we show relationships that ensure consistent solutions 
to the problem of planning to achieve explicit goals and 
planning to maximize utility. Then we present a general 
framework for building goal-oriented utility models that 
allows the incorporation of explicit goals and at the same 
time respects the conditions that ensure a consistent re- 
lationship between utility maximization and goal satis- 
faction. Finally, we integrate these two results by show- 
ing the relationship between planning to achieve goals 
and maximizing utility with respect to goal-oriented util- 
ity functions. 

2     Satisfying Goals and Maximizing 
Utility 

The probabilistic analogue to the goal satisfaction prob- 
lem is to find that course of action that maximizes the 
probability of goal satisfaction. We might ask, then, for 
what forms of utility functions does choosing the plan 
that maximizes the probability of the goal lead to choos- 
ing the plan that maximizes expected utility? 

The answer is that this relationship holds only for sim- 
ple step utility functions, functions for which utility is 
a constant low value for outcomes in which the goal is 
not satisfied and a constant high value for outcomes in 
which the goal is satisfied. Such a function is shown in 
figure 1. Utility is represented along the vertical axis 
and the space of world states along the horizontal axis. 
G and G designate the set of all states that satisfy and 
do not satisfy the goal, respectively. 

To demonstrate this fact we first introduce some no- 
tation: assume that So is the (known) initial state, and 
that we can characterize the goal condition G as a set of 
world states—the set of states in which all the g; hold. 
We then define for a course of action A, 

P(G|A)=^P(s|S0,A). 

seG 

We now prove this specific class of step functions is the 
only form of utility functions for which 

P(G|Ai) > P(G|A2) => EU(Ai) > EU(A2)      (1) 

for any two courses of action Ai and AT. 

We first show that this form of the utility function is 
a sufficient condition for condition (1) to hold. Suppose 
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Figure 1: Step utility function. 

that p! and p2 are the probabilities that acts A! and 
A2 achieve the goal, respectively. Suppose further that 
Pi > po and that_we have two constants, UG and UG 
such that UG > UG. Then by algebraic identity 

(UG - UG) • pi + UG > (UG - UG) • P2 + UG. 

Rearranging terms, 

UG • pi + UG(1 - pi) >  UG ■ p2 + UG(1 - P2) 

So if UG represents the utility associated with satisfying 
the goal and UG represents the utility associated with 
failing to do so, then EU(Ai) > EU(A2). 

Next, we show that the utility function must necessar- 
ily take the form of a step function for condition (1) to 
hold. For simplicity, suppose we have only four states, 
si s2, S3, and s4, and we are choosing between two acts, 
Ai and A2. Suppose that the goal is satisfied in si and in 
s2, but not in the other two states. What restrictions on 
the utility function are necessary to guarantee condition 
(1)? We start by noting that 

P(G|A1) = P(s1|A1) + P(s2|A1) 

and likewise for P(G|A2), and examine what restrictions 
on the utility functions over the s; cause condition (1) to 
be true. 

First, the utility function must be constant over the 
regions where the goal is satisfied and where it is not 
satisfied. Suppose we have a utility function in which 
this is not the case, as in the following scenario: 

state P(s|Ai) P(s|A2) U(s) 
Sl 0.6 0.0 1 
S2 0.0 0.2 10 
S3 0.4 0.0 0 
s4 0.0 0.8 0 

P(G|Ai) = 0.6 P(G|A2) = 0.2 
EU(Ai) = 0.6 EU(A2) = 2 

So note that P(G|Ai) > P(G|A2) whereas EU(Ai) < 
EU(A2), thus contradicting condition (1). So it is nec- 
essary that U(si) > U(s2), and the only way to guaran- 
tee this in general is if U(s,) = U(SJ) for all s; and Sj 
such that s,;,Sj 6 G. An identical argument shows that 

U(sj) = U(sj) over G is a necessary condition as well. 

UGH 

V 
UGL 

UGH 

A 

V 
UGL 

Figure 2: Approximate step utility function. 

The final necessary condition is that the utility of the 
world states in which the goal is satisfied must be less 
than the utility of those in which is is not satisfied. This 
condition is obvious and the proof is omitted. 

In practice, only few utility functions will actually take 
the form of such a simple step function. Utility is likely 
not to be perfectly flat over any region, and it may con- 
tain continuous transitions rather than discontinuities. 
In the next three sections we discuss how to handle these 
cases. 

2.1     Noise in the step function 

What can be said if the utility function has the dis- 
continuity of a step function but is not otherwise con- 
stant? Suppose that we have a discontinuous utility 
function such that the states that satisfy the goal all 
have relatively high utility and those that do not all 
have relatively low utility as shown in Figure 2. UGi 
and UG# are the lowest and highest utility for states 
that do not satisfy the goal. UGL and UGH are the low- 
est and highest utility for states that satisfy the goal. 
Suppose we are considering two plans Ai and A2 with 
probabilities of achieving the goal px and p2, respec- 
tively. For what values of pi and p2 can we say that 
plan Ai is preferred to plan A2? Since we don't know 
the exact outcomes of the plans, we must do a worst- 
case analysis. The lowest possible expected utility for 
A: is p! ■ UGi + (1 - pi) • UG/. The highest possible 
expected utility for A2 is p2 • UG„ + (1 - p2) • UG„. Ai 
is guaranteed to be preferred to A2 just in case 

Pi ■ UGL + (1 - Pi) ■ UGL   >  p2 • UG/, + (1 - P2) ■ UGH. 

Rearranging terms, 

(UGL - UGL)Pl + UGL  >  (UG„-UG„)p2 + UG„ 

and finally 

Pi   > 
(UG/,-UG/,)p2 + (UG/,-UGL) 

(2) 
UG/ - UGL 

By comparing probabilities in this way we can eliminate 
the set of plans known to be sub-optimal and use more 
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refined methods (e.g. complete EU calculation) to iden- 
tify the best plan among the candidates left. (Note the 
similarity to [Wellman, 1988].) Furthermore, if we sub- 
stitute probability 1 for pi we can see that any plan with 
probability greater than 

cutoff(G) 
(UG£ - UGH) 

(UGH-UGH) 

is guaranteed to be in the candidate set (that is, among 
the set of non-dominated plans). The reason is that no 
plan can have a probability of achieving the goal greater 
than one, so there can be no plan with probability of 
achieving the goal high enough to be preferred to any 
plan that has probability of achieving the goal at least 
as great as the cutoff value. In order to compare plans 
in terms of their probability of achieving the goal us- 
ing inequality (2), we need not calculate precise point 
probability values. It is sufficient to establish upper and 
lower bounds on the probabilities. This can result in 
computational savings (see, for example, [Hanks, 1990c, 
Haddawy and Frisch, 1987]). 

A simple numerical example will help to illustrate how 
these results can be used. Suppose that 

UGr -13      UGH =-4      UG/, =+8      UGH =+15. 

Then inequality 2 becomes 

Pi   > 
19p2 

21 

If we have a plan Ax with pi = .7 then it is preferable to 
any plan with probability p2 less than 

19 

This means that once we have a lower bound on the 
probability of any one plan, if this bound is high enough, 
we can eliminate other plans from consideration based on 
their upper bounds.   Furthermore, the cutoff(G) value 

l±i  = 0.63, 
15 + 4 

so any plan with a probability of achieving the goal of 
at least 0.63 is guaranteed to be in the candidate set. 

Any plan that is related to all others by inequality (2) 
is guaranteed to be one that maximizes utility. What 
if there is no such plan? We can still quantify the de- 
gree of approximation involved in choosing the plan that 
has the highest probability of achieving the goal. Sup- 
pose the two plans with highest probability of achiev- 
ing the goal are Ai and A2 and that pi > p2. But 
suppose that A2 actually has a higher expected utility 
than Ai. To what degree does choosing Ai approx- 
imate maximizing expected utility? (In other words, 
how far wrong can we go by choosing Ai?) This de- 
gree of approximation can be expressed as the percent 
that Ai falls short of maximizing expected utility. In 
the worst case, EU(Ai) = pi ■ UGL + (1 - pi) ■ UGL and 
EU(A2) = P2 ■ UGH + (1 - P2) • UGH- The worst-case 
degree of approximation can then be defined as: 

.40 

EU(A2)-EU(Ai) 

EU(Ao) 

Figure 3: Continuous utility function. 

In the previous example, if pi — .7 and p2 = -35, the 
degree of approximation in choosing Ai is 

[.35(15)+.6(-4)]-[.7(8)+.3(-13)] 

.35(15)+.6(-4) 

So at best Ai is the act that maximizes expected utility 
and at worst its expected utility is 60% that of the best 
plan. 

2.2     Continuous utility functions 

Suppose now that the utility function has the flat re- 
gions characteristic of a step function but the transition 
between these regions is continuous rather than discon- 
tinuous. Figure 3 shows the graph of a univariate utility 
function that is continuous in the value of the attribute 
variable. The utility function can be qualitatively de- 
scribed by specifying the three distinct regions of the 
space of world states over which it is flat, transitionary, 
and flat again. If we have a symbolic description of each 
of these regions, plans can be described in terms of their 
probability of achieving an outcome that satisfies each 
of the descriptions. That is we can define, for a course 
of action A;, 

Pi(X) = ^P(s|A!), 

seX 
where X is one of the utility regions as in Figure 3. 

Suppose we are considering two plans Ai and A2 with 
probability distributions Pi and P2, respectively. For 
what sorts of distributions Pi and P2 can we say that 
Ai is preferred to A2? 

The lowest possible expected utility for Ai is 

Pi(X3)-U(X3) + (l-Pi(X3))-U(Xi), 

and the highest possible expected utility for A2 is 

P2(Xi)-U(Xi) + (l-P2(Xi))-U(X3). 

Ai is therefore guaranteed to be preferred to A2 just in 
case 

Pi(X3) ■ U(X3) + (1 - Pi(X3)) • U(Xi) > 

P2(Xi)-U(Xi) + (l-P2(Xi))-U(X3) 
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Pi(X3)-(U(X3)-U(X1)) + U(X1)> 

P2(X1).(U(X1)-U(X3)) + U(X3) 

P2(XQ ■ (U(XX) - U(X3)) + (U(X3) - U(XQ) 

(u(x3)-u(X0) Pi(X3)> 

and finally 
P1(X3)>l-P2(Xi). (3) 

Notice that the utility values no longer appear in the 
inequality. 

The smaller the X2 region, the easier inequality (3) is 
to satisfy. If Pi(X2) = P2(X2) = 0 then 3 reduces to the 
simple step function condition 

Pi(X3) > P2(X3). 

Inequality 3 holds not only for the utility function 
shown in the figure but for any utility function in which 
the utilities of states in region X2 are between U(Xi) and 
U(X3). 

2.3     Continuous utility functions with noise 

Now suppose we have a continuous utility function as 
shown _in Figure 3 with noise as in Figure 2. Suppose 
that UGL is the lowest utility in the X2 region as well 
as the Xi region, and that UG# is the highest utility in 
the X2 region as well as the X3 region. Then plan Ai is 
guaranteed to be preferable to plan A2 just in case 

P1(X3)-UGL + (1-P1(X3))-UGL > 

P2(Xi)-UGif+ (1-P2(X1)).UG* 
which simplifies to 

P2(Xi) • (UGtf - UGH) + (UGH - UGL) 
Pi(X3) > 

fUG, UGL) 

(4) 
The four forms of utility functions just analyzed are 

not the only possible forms one might consider. They are 
prototypical examples of how, by generalizing the notion 
of goal and relating it to utilities, goals can be used to 
characterize more general preference structures. 

Under the strict definition of goal (which has been 
a standard for AI), a goal is a logical expression that 
describes two regions of the outcome space: the region 
in which the goal is satisfied and the one where it is 
not. The set of outcome states that satisfy the goal 
have constant high utility and the set of outcome states 
that falsify the goal have constant low utility. We have 
now generalized the concept of goal. Under our new, 
more general definition, a goal describes a partition of 
the outcome space such that within each region of the 
partition, all utility values fall within given bounds. The 
strict definition of goal is the degenerate case, in which 
there are only two partitions and the upper and lower 
bounds in each region of the partition are equal. 

3    Utility Functions for Planning 
Applications 

We have so far discussed goal satisfaction and utility in 
abstract terms. Now we move on to give a more concrete 
application of these results. We must start, however, by 
making precise the elements of our utility analysis. 

3.1 World states and chronicles 

We have been vague to this point about the interpreta- 
tion of a "world state" s, to which we assign probability 
and utility values. States can be thought of as represent- 
ing either a snapshot of the world at a point in time or 
alternatively as a complete description of the world over 
all times. The latter is typically called a "chronicle" 
[McDermott, 1982]. The two are formally equivalent, in 
that a snapshot-like state can code arbitrary information 
about the course of events that led to its realization. 
We adopt a chronicle-based approach, which we argue 
in [Hanks, 1990c] is preferable for practical reasons: a 
chronicle constitutes an explicit record of a plan's hypo- 
thetical execution, and that record may prove useful in 
debugging or optimizing that plan. 

3.2 Temporally qualified goals 

Interpreting world states as chronicles facilitates reason- 
ing about time as well, particularly notions like deadlines 
by which and intervals over which propositions are to be 
made true. To accommodate the notion of a deadline 
or other temporal qualification, we will describe a goal 
using two components: an atemporal condition and a 
temporal qualifier (e.g. "have all the blue rocks at the 
depot by noon," "keep the lights out between midnight 
and 4AM"). The condition is a logical formula that is ei- 
ther true or false at each point in time in a chronicle, and 
the temporal qualifier describes the part of the chronicle 
over which the condition is to hold. 

The temporal qualifier component of a goal has two 
general forms, the existential form and the universal 
form. The existential form says that there exists a point 
within an interval at which the condition is satisfied 

3t : ti < t < U <p 

(where <j) is the goal condition), and the universal form 
says that the condition is satisfied at every point in an 
interval 

Vi : ti < t < t2 <j>. 
All types of temporal goals can be expressed as special 
cases of these two general forms. For example, a simple 
deadline "make 4> true before i2" can be expressed as 

3t : now < t < <2 <j> 

and a time point goal "make <j> true at ti" can be written 
as 

3i : ti <t <ti <j>. 
Note that the earliest relevant time for t\ is now while the 
end point t2 could extend infinitely into the future. How- 
ever, we will not consider temporal qualifiers in which 
t'i = +00 since they do not provide criteria for termi- 
nation of plan elaboration. 

Some examples of goals are 

• Have block A on block B by noon. 

3t : noiu < t < noon  on(A,B) 

• Get all the rocks to the depot by noon. 

3t : now < t < noon  all-rocks-at-depot 

• Keep my heart rate between 160 and 200 bpm from 
1:00 till 1:30. 

Vt :  1:00 < t < 1:30   heart-rate-in-range(160,200) 
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3.3     Goal-related utility 

We will associate with each goal g; a utility U,-(c) (where 
c is a chronicle). This function in turn can be separated 
into two components: degree of satisfaction and utility 
of satisfaction. 

3.3.1     Degree of satisfaction 

Degree of satisfaction, a real number between 0 and 1, 
measures the extent to which the goal (logical formula 
and temporal qualifier) is satisfied in the chronicle. A 1 
indicates absolute success, a 0 indicates absolute failure. 
Utility of satisfaction then measures the utility penalty 
associated with this degree of success. The reason be- 
hind this split—the reason we don't assess goal utility 
directly—is that degree of satisfaction can generally be 
measured independent of any particular problem or plan- 
ning situation, whereas the utility number assigned to a 
goal depends crucially on tradeoffs between that goal 
and other goals active in the current situation. 

The degree of satisfaction function for a goal can fur- 
ther be split into two components, corresponding to the 
atemporal condition and the temporal qualifier. The de- 
gree of satisfaction function for the atemporal condition 
measures the degree to which the condition is satisfied. 
This function will be DSA,-(t, c). The subscript i refers 
to the ith goal, which also specifies the goal's condition. 
The argument c is a chronicle, and the function mea- 
sures the extent to which the condition is satisfied at 
time t in chronicle c. Some conditions, e.g. "the truck's 
headlights are on," will always be assigned a value 0 or 
1, but others, e.g. "all the blue rocks are in the depot," 
might generate intermediate satisfaction values based on 
the percentage of rocks that are actually at the depot at 
time t in chronicle c. 

Next we associate a degree of satisfaction with the 
temporal qualifier—the interval or deadline at or by 
which the goal is to be satisfied. We do so with a func- 
tion DSTj(t), where the index i means that the func- 
tion depends on the goal's temporal qualifier. Note that 
there is no chronicle argument, because no logical for- 
mula need be evaluated to get the temporal degree of 
satisfaction—this quantity depends only on the goal's 
time argument. The meaning of DST will depend on 
whether the temporal qualifier is existential (deadline) 
or universal (interval). In the former case the degree 
of satisfaction measures the degree to which the dead- 
line is satisfied, so we can represent penalties for lateness 
and/or for earliness. For interval qualifiers the function 
might evaluate whether a time point is in the interval, 
or how far outside the interval it falls. 

We can combine DSA and DST to get an overall 
degree of satisfaction associated with a time point, that 
is 

DSi(t,c) = /i(DSAi(t,c),DSTi(t)). 

The choice of an appropriate /; will depend on the par- 
ticular goal, in particular on the tradeoff we want to 
express between violating the temporal and atemporal 
component. We probably want to limit the function to 
one of the class of conjunctive operators, that is the set of 
functions that satisfy f(x,y) < min(a;, y) which is to say 
that overall degree of satisfaction cannot exceed either 

; 
time 

Figure 4:  Degree of satisfaction functions for a univer- 
sally temporally qualified goal. 

of its components. Three reasonable alternatives would 
be 

f(x,y)    =    m'm{x,y) 

f(x,y)    =    x-y 

=     I   l    if x = X and y = l 
1
 *>   'y> 1   0    otherwise 

The first will always return a value at least as great as the 
second and the second at least as great as the third. The 
first implies that the goal is satisfied overall to the extent 
of its "weakest" component, the second implies that the 
two factors are utility independent ([Keeney and Raiffa, 
1976, Section 5.2]), and the third implies that only total 
satisfaction is satisfactory. See the discussion in [Dubois 
and Prade, 1984] for more discussion. 

Recall now that we are seeking a utility function for 
goal i that is a function of a chronicle, whereas the degree 
of satisfaction function depends on a time point as well. 
Consider, for example, the existential goal "have all the 
rocks at the depot by noon," and suppose that the truck 
makes two trips to the depot. The first time it arrives 
at 11:30 and brings with it half of the rocks. The second 
time it arrives at 12:30 with the rest of the rocks. Should 
degree of satisfaction be measured with respect to the 
first time point, the second time point, or some other? 
The first will probably have a higher DST value than the 
second, because it occurs before the deadline, whereas 
the second has a higher DSA value because at that point 
all the rocks are at the depot. A reasonable approach in 
the context of comparing alternative plans is to take the 
maximum DS value, so we define, for existential goals, 

U,;(c) = US;(maxtDS;(t,c)) 

where US; is the utility of satisfaction function, dis- 
cussed below. 

The situation for universal temporal qualifiers is some- 
what more difficult, since the relationship between satis- 
faction at a point and satisfaction over the interval can 
be a complex one. Consider the goal "keep my heart rate 
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between 160 and 200 beats per minute between 1:00 and 
1:30." Figure 4 shows plausible atemporal and temporal 
satisfaction functions, respectively. The atemporal func- 
tion is straightforward: the goal is totally satisfied if the 
heart rate at a time t is within the range, but tends to 
taper off as the rate goes outside. 

The temporal function now can measure how far out- 
side the stated interval boundaries the goal condition 
persists. If the boundaries are strict ones (that is if there 
is no utility benefit associated with exercising longer), 
then DSA;(t, c) would assign value 1 to all time points 
inside the goal's interval < ti,t2 > and value 0 to all 
points outside. If, however, there is some benefit to ex- 
tending the interval, the function can assign 1 to values 
in the intervals, then lower degrees of satisfaction to time 
points occurring prior to ti or subsequent to t2. We can 
then take utility to be the maximum total satisfaction, 
as follows: 

U,-(c) = US,-(ma*t-<tl, t2<t» E^f ^M^) 
where goal i's temporal qualifier is <ti,t2>. 

As a final example consider the goal "stir the sauce 
continuously between 9 and 9:15." Stopping even for an 
instant in that interval will ruin the sauce, but stirring 
outside the interval is irrelevant. We might associate 
with this goal a DSA function that assigns satisfaction 
1 if "stirring" is true at time t in chronicle c, and 0 other- 
wise. The temporal satisfaction function would likewise 
assign 1 if its argument were in the interval, and 0 other- 
wise. Suppose now that there is one point in the interval 
at which stirring ceases. According to the above mea- 
sure, we would sum the atemporal satisfaction function 
over the interval <9,9:15>, but the result would essen- 
tially be 1, since stirring was true over virtually the entire 
interval. In this case we want the utility function to be 
the product: 

U2(c)    =    USi(maxt/<t1,t2<t' nit- DS,-(*, 
t"-t< 

[) 

US; 01 t2     DSjft.c). 
<=t, t"-t' 

3.3.2     Utility of satisfaction 

The function US; maps a degree of satisfaction num- 
ber into a utility number, which will then be combined 
with utilities for other goals in computing the plan's 
overall utility. Why not use the degree of satisfaction 
value directly as utility? First, utility as a function of 
goals will typically be task dependent whereas degree of 
satisfaction is largely task independent. Second, at some 
point one has to consider the tradeoff between satisfying 
the various goals. What should a marginal improvement 
in gi's satisfaction be worth in terms of a decline in g2's 
degree of satisfaction? The answer to this question may 
be different depending on the exact circumstances, and 
this difference will be reflected in the way the goals are 
weighted relative to one another, and this weighting is 
accomplished by assigning them different US functions. 

The US functions also provide a way to express the 
tradeoff between goal satisfaction and resource consump- 
tion, the latter being represented in the utility function 
by the "residual utility" introduced below. 

3.4 The horizon problem revisited 

The introduction mentioned that goals can be used to de- 
termine when to terminate plan elaboration and that this 
is one of the main advantages of using goals in planning. 
When all our goals are all-or-nothing goals, it is clear 
that we can stop planning when we have reached the 
end time of the goal furthest in the future.3 What can 
be said when we are dealing with soft goals—deadlines 
the agent can violate and still get a utility benefit, or 
intervals for which achieving the condition outside the 
interval bounds is rewarded? 

In these cases one has to establish the planning horizon 
for each goal dynamically. For any goal we can compute 
the maximum utility we could possibly realize if the hori- 
zon were extended indefinitely into the future, and this 
number will decline as the horizon is extended beyond 
the deadline. If for some Ai and some goal g, we can 
demonstrate that receiving this maximum utility award 
would not cause it to be preferred to some other alterna- 
tive, we needn't extend the planning horizon any further. 
[Hanks, 1990c] uses this technique to limit probabilistic 
inference in plan projection. 

3.5 Utility functions for multiple goals 

So far we have only discussed utility for individual goals. 
An agent will typically be attempting to satisfy multiple 
goals simultaneously. We can assume that global utility 
is linear additive in the U,; functions, which is to say 
that 

U(c) 
i-\ 

U,:(c) + UR(c) 

where the U,- functions are utility functions for the goals 
and the function Up is a "residual" utility to be de- 
fined below. While there are no explicit weighting fac- 
tors attached to the U; and the Up functions, the utility 
function is nonetheless a weighted average—the relative 
weights appear in the US; functions. 

We should also point out that this functional form 
does not imply that any of the U, functions are linear 
additive in any attribute in c, a common and arguably 
unrealistic assumption of most decision-theoretic analy- 
sis. We are just assuming that the satisfaction of, and 
utility associated with goals g, and gj can be computed 
independently. In other words, they are independent in 
the goal hierarchy—neither is a subgoal of each other, 
and they are not both being performed in service of some 
higher-level goal. The g, represent only the agent's top- 
level goals. 

The function Up represents the "residual" utility as- 
sociated with the chronicle.4 It measures how well off 
the agent is apart from factors taken into account by the 
explicit goals. As such it measures two important and 
closely interrelated features of the chronicle: 

3 For a formal discussion of how the temporal relation be- 
tween actions and effects/goals can be captured in a proba- 
bility calculus see [Haddawy, 1990]. 

This function is called the "salvage value" in the litera- 
ture on sequential decision-making, but that term is inappro- 
priate for our purposes. 
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1. the resources  consumed in achieving the explicit 
goals, and 

2. how well the agent is prepared to meet expected fu- 
ture demands on those resources. 

Since the residual utility measures the ability to meet 
expected resource needs we can associate with it a time 
point: the latest time point associated with any explicit 
goal. Thus the goal utility functions U, evaluate the 
chronicle up to the point that the last goal is (possibly) 
satisfied, and the residual utility function evaluates the 
chronicle beyond that point in time. 

This notion of residual utility puts our formalism 
in sharp contrast with other approaches to decision- 
theoretic planning ([Horvitz et al, 1989], [Boddy and 
Dean, 1989], [Etzioni, 1989], for example), which asso- 
ciate with each goal not only a utility function but also 
a cost function measuring its resource usage. We argue 
that the cost, or value, of a resource may depend cru- 
cially on the expected future demands for that resource. 
Whether a truck's fuel tank is full at the end of the day is 
irrelevant, for example, if it is filled with fuel every night 
at the depot.5 Therefore associating a fixed cost with 
fuel will tend to make a planner favor fuel-conserving 
trips for no good reason. On the other hand, if a long 
trip through the desert is anticipated in the morning, 
conserving fuel may be absolutely essential—far out of 
proportion to its replacement cost. 

We should note a couple of things about the resid- 
ual utility function. First is that it re-introduces the 
nice property of a planning horizon. One must project 
up until the most distant goal horizon, but after that 
point in time the residual utility function summarizes 
future projection. The second point, of course, is that 
as a result the residual function may be quite hard to 
assess—this is undoubtedly the hardest assessment prob- 
lem lurking in our formalism. The general problem of 
arriving at, and evaluating beyond, a planning horizon 
is noted in the literature on decision theory, e.g. [Keeney 
and Raiffa, 1976, Chapter 9], but no satisfying system- 
atic approaches exist except for extremely regular prob- 
lem domains. On the other hand the sort of reasoning 
required—expectations about recurrent or regular goals 
and their implications—seems wholly appropriate for AI 
analysis ([Wilensky, 1978], for example). So while we do 
not attempt to minimize the scope of the unsolved prob- 
lem, we at least hope to have divided it up correctly. 

4    Goal-oriented Utility and the 
Probability of Goal Satisfaction 

In Section 2 a goal was characterized as describing a 
partition of the state space such that within each region 
of the partition, utility is within given bounds. Goals 
distinguish regions of relatively high utility from regions 
of relatively low utility. The utility of a plan can then 
be characterized simply in terms of its probability of 
achieving a particular goal.   In Section 3 we described 

5 A better example might be a rental truck whose contract 
specifies that the truck be returned empty at the end of the 
rental period. 

how utility functions could be defined in terms of partial 
goal satisfaction. We now show how the probability of 
goal satisfaction is related to goal-derived utility. 

4.1     Probability of complete satisfaction and 
complete dissatisfaction 

A goal determines a utility function over the set of all 
possible chronicles. This utility function can be de- 
scribed in terms of the region over which the goal is 
completely satisfied, the region over which it is not at all 
satisfied, and the intermediate region. For example, con- 
sider the existentially temporally qualified goal "get all 
the rocks to the depot by noon." All chronicles in which 
all the rocks are at the depot before noon will have the 
same high utility value, relative to this goal. There will 
typically be some time point after which satisfying an 
existential goal will have no utility benefit. Say in this 
case that it's 5:00pm. Then all chronicles in which no 
rocks are at the depot before 5:00pm will have the same 
low utility. All other chronicles will have some interme- 
diate utility with respect to this goal. So at this point 
the chronicles obey the conditions set down in Section 
2.2, in which the goal describes three regions of chronicle 
space. The region of high utility is just described by the 
goal itself: 

3t : now < t < noon   all-rocks-at-depot 

The region of low utility is described by the sentence 

Vi : now < t < 5:00  no-rocks-at-depot 

And the region of intermediate utility is described by 
the sentence formed by conjoining the negation of each 
of these. 

Now consider the universal goal "keep my heart rate 
between 160 and 200 beats per minute from 1:00 until 
1:30." All chronicles in which my heart rate is within 
range over all of the specified interval will have an equally 
high utility value. Chronicles in which my heart rate is 
within range only at time points far from the interval of 
interest, and chronicles in which the rate is always well 
out of the desired range will have no utility benefit with 
respect to this goal. All other chronicles will be assigned 
some intermediate utility value. So chronicle space is 
again divided into three regions. Suppose that the time 
horizon is 12:00 to 2:00 and the heart rate horizon is 80 
bpm to 220 bpm. The region of high utility is again just 
described by the goal itself: 

Vi :  1:00 < t < 1:30  heart-rate-in-range(160,200) 

The region of low utility is described by the sentence 

V* :  12:00 < t < 2:00  heart-rate-out-of-range(80,220) 

And the region of intermediate utility is described by 
the sentence formed by conjoining the negation of each 
of these. Figure 5 shows how the goal divides chronicle 
space into the three utility regions. 

In general, the high utility region of chronicle space for 
either an existentially or universally temporally qualified 
goal will just be described by the goal itself. The low 
utility region will be described by a sentence of the form 

Vt : t' < t < t" i>, 

where t' < tx, t" > t2, and i/> -+ -xf> (<j> being the atem- 
poral goal condition). 
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_ chronicle 
space 

Vt: 1:00 < t < 1:30 heait-ral£-in-range( 160,200) 

Vt: 12:00 <t<2:00 heait-rale-out-of-rage(80,220) 

Figure 5:   Utility function for a universally temporally 
qualified goal. 

4.2     Satisfying multiple goals 

Section 2 discussed the relation between maximizing the 
probability of a single goal and maximizing expected 
utility. How can these results be applied to multiple 
goals? Under the assumption of Section 3.5, that global 
utility is linear additive in the utility functions for the 
various goals, the situation is relatively simple. We de- 
rive results for the case in which all the utility functions 
for the goals are simple step functions, which will be 
the case if both the atemporal and temporal degree of 
satisfaction functions always return either 0 or 1, for ex- 
ample. The results are easily generalized to the more 
complex cases discussed in Section 2. Assume for the 
time being that the residual utility is zero. Incorporat- 
ing non-zero residual utility will be discussed in the next 
section. Suppose we have two goals so that global utility 
is the sum of the utility for each of the goals 

U(c) = Ui(c) + U2(c). 

Suppose further that we have two plans Ai and A2. 
We show that if plan Ai maximizes the probability of 
achieving each of the goals individually then it maxi- 
mizes global expected utility. If the two regions of high 
utility are Gi and G2 then 

P(G1|A1)>P(Gi|A2) 

P(G2|Ai) > P(G2|A2) 

implies that 

EU!(A0 > EU!(A2) 

EU2(Ai) > EU2(A2) 

and adding the two 

EU(Ai) > EU(A2). 

Similar results hold for the noisy step, continuous, and 
noisy continuous forms of utility functions discussed in 
Section 2. 

4.3     Residual utility as noise 

Residual utility can be treated as noise in the utility 
function. Since plans must be compared according to 
their probability of satisfying each goal separately, the 
residual utility must be factored as noise into the utility 
function for each goal. Let UR|_| be the highest residual 
utility value and UR^ be the lowest over all possible 
chronicles. Suppose we have a goal with a step utility 
function_with constant high value UG and constant low 
value UG. This can now be analyzed as a step function 
with noise where the high and low utility values are 

UGH = UG + URH 

UGL = UG + URL 

UG„ = UG + URH 

UGi = UG + U RL- 
So inequality (2) becomes 

Pi   > 
(UG-UG)p2+(URH-URL) 

UG-UG 

Pi    >    P2 + 
u RH -U RL 

(5) UG- UG 
So the smaller the range of possible residual utility values 
relative to the range of the utility of completely achiev- 
ing and completely failing to achieve the goal, the more 
useful the goal is in comparing candidate plans. And as 
long as 

U RH U RL < 1 
UG-UG 

we can get some mileage by comparing plans in terms 
of their probability of completely achieving the goal and 
of completely failing to achieve the goal. Similar results 
hold for continuous utility functions with noise. 

5     Related Work 

Our work has focused on exploring the relationships be- 
tween symbolic goals and numeric utilities. We have 
examined the problem of building utility functions from 
symbolic goal descriptions, particularly when those goal 
descriptions make explicit mention of time constraints. 
We have also analyzed the relationship between the "tra- 
ditional" planning problem (find a sequence of operators 
that will, or will probably, achieve the goals) and the 
corresponding decision problem (find a sequence of op- 
erators that maximizes utility). 

Most of the work exploring the intersection of planning 
and decision theory has ignored the problem of building 
a utility model (taking a preference structure or util- 
ity function as given). This is the case with [Horvitz 
et al., 1989] and with [Wellman, 1988]. Another ap- 
proach, that of [Feldman and Sproull, 1975] and [Boddy 
and Dean, 1989], is to define the decision problem in a 
narrow enough domain (e.g. robot navigation on a grid) 
so that the preference measure becomes obvious (e.g. 
Euclidian distance from a goal coordinate). 

A third approach maintains the explicit representa- 
tion of goals in the system. The framework in [Hansson 
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et al., 1990] contains only symbolic goals and no notion 
of tradeoffs or partial satisfaction. Probabilities measure 
the likelihood that a partial solution will eventually lead 
to one that will (certainly) satisfy the goal. Their utility 
model is therefore the simple step function we identi- 
fied, in 2, with the problem of planning to maximize the 
probability of goal satisfaction. 

The framework in [Etzioni, 1989] also preserves the 
notion of symbolic goals, but under very stringent con- 
ditions of independence (that methods for achieving dis- 
tinct goals will not interact) that are usually violated 
in prototypical blocks-world planning scenarios. He as- 
sumes a degree-of-satisfaction function, like ours, but 
does not explore the temporal/atemporal distinction. 
Goal-related utility is then the product of degree of sat- 
isfaction and a weighting factor, and global utility is the 
sum of the goal-related utilities. His effort is not ori- 
ented primarily toward exploring the utility model, and 
as such he does not discuss the issues involved with par- 
tial goal satisfaction, residual utility, and the relation 
between decision-theoretic and symbolic planning. 

The notion of partially satisfied goals and their role in 
the decision-making process appears prominently in the 
literature on fuzzy mathematics and decision analysis. 
In particular our notion of a degree-of-satisfaction func- 
tion bears close resemblance to a fuzzy-set membership 
function. The seminal paper in this area is [Bellman 
and Zadeh, 1980]; also see the papers in [Zimmerman 
et al, 1984], of which the most relevant to this paper 
is [Dubois and Prade, 1984]. They discuss the role of 
aggregation operators in the decision-making process. In 
the language of fuzzy-set theory a goal may be expressed 
as a fuzzy set, a plan's membership function with re- 
spect to that set indicates the extent to which the plan 
satisfies that goal. An aggregation operator combines 
membership functions for individual goals into an aggre- 
gate membership function which is an indicator of global 
success—this is called the decision set. A decision maker 
then selects an alternative that is "strongly" a member 
of the decision set. Dubois and Prade categorize and 
analyze various aggregation functions. 

So our analysis is similar to the efforts in fuzzy de- 
cision making in that it emphasizes the representation 
problems associated with expressing partial satisfaction 
of goals. Fuzzy sets may be a more appropriate rep- 
resentation than degree of satisfaction when the latter 
(a numeric function) cannot reasonably be assessed. If 
we can only assess vague satisfaction measures like "rea- 
sonably well satisfied," "utter failure," and "complete 
success," the fuzzy-set methodology provides a way to 
incorporate these measures into a precise analysis. As 
such it is essentially complementary to our analysis. 

6     Conclusion 

Classical planning techniques and decision-theoretic 
analysis can play complementary roles in decision mak- 
ing. The former provides a computational theory of how 
to generate plans, given a set of symbolic goals; the latter 
provides a normative theory for comparing alternative 
plans, given utility and probability valuations. 

This paper explored the question of how to build a 

utility model for a domain given a set of symbolic goals 
of the sort used by planners. Our conclusions about 
the relationship between goals and utilities are as fol- 
lows: classical symbolic (boolean-valued) goals are in- 
sufficiently rich to represent many aspects of a reason- 
able planning domain. We thus extended the notion of 
a goal to allow partial satisfaction. We characterized a 
goal as consisting of atemporal and temporal constraints 
and defined functions describing the value of satisfying 
either constraint partially. The agent's utility is then 
measured in terms of the extent to which it satisfied its 
goals as well as how efficiently it did so (as measured by 
the residual utility function). 

Under certain circumstances, namely that the poten- 
tial residual utility is small relative to the utility associ- 
ated with the goals, we can demonstrate a strong corre- 
spondence between maximizing utility and maximizing 
the probability of satisfying goals. Planning to maximize 
goal probability is a special case of utility maximization. 

Our representational framework attempts to capture 
the best features of both symbolic planning and numeric 
utility optimization: the (symbolic) goals, provide guide- 
lines for the planner in its task of generating alternatives. 
Utility functions associated with the goals along with the 
residual utility function provide a principled way of com- 
paring those alternatives. 

Future work should proceed in three areas: 

• Assessment. The problem of assessing utility func- 
tions, especially the goals' utility of satisfaction 
functions and the residual utility function, still re- 
mains. The difficult task is to generate, for each new 
planning problem, utility functions that accurately 
reflect the agent's current and expected future ob- 
jectives and resource needs. 

• Computation. We have provided a representation 
framework, but not a computational theory. It 
remains to be seen whether the decision-theoretic 
choice paradigm can be efficiently applied, though 
preliminary work, [Hanks, 1990c, Wellman, 1988], is 
encouraging, neither of these programs attempted 
to build the utility model at run time. 

• Validation. We made several assumptions about 
forms of various components of the utility model, 
for example that temporal and atemporal degree of 
satisfaction were utility independent, and that util- 
ities for separate goals were linear additive. We will 
need to validate these assumptions by applying the 
framework to complex planning problems. 
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Abstract 

Planning in realistic domains forces us to con- 
front two main issues: uncertainty and urgency. 

Uncertainty arises because the planner is nei- 
ther omnipotent, omniscient, nor alone in the 
world. As such it will typically lack perfect in- 
formation about current and future states of 
the world or about the exact effects of various 
events (including its own actions). 

Urgency is a more practical matter: planning 
takes time, and passing time can lead to fore- 
gone opportunities or worse. These two factors 
combine to produce a situation in which the 
agent cannot plan completely in advance: un- 
certainty will prevent it from being able to infer 
a best course of action, and urgency will ensure 
that even if it did so the opportunity to pursue 
such a plan will be lost. 

Both these points argue for some sort of run- 
time decision making, or "reactive planning" 
as it has come to be called. Reactive planners 
typically make decisions at run time based on 
a limited amount of information (e.g. only that 
which is currently available from sensors) and 
on the basis of a minimal amount of inference. 

Neither uncertainty nor urgency obviate the 
need for more deliberative decision making, 
however. Planning under uncertainty carries 
with it its own set of issues, having to do with 
representing uncertainty in the domain, effi- 
ciently generating planning options, and taking 
time pressure into account in the process. 

Realistic planning therefore generates new 
problems in three areas: in execution, in delib- 
eration, and in coordinating the two processes. 
This paper will discuss these issues in the con- 
text of a system we have are continuing to de- 

Acting versus 

velop. 

1     Introduction: 
Deliberating 

An agent situated in a complex and dynamic world is 
continually faced with the difficult task of trying to fig- 
ure out what to do next. It is difficult even to formulate 

the problem precisely, in that the consequences, bene- 
fits, and costs of a course of action may be difficult to 
ascertain. Preferences reflecting the agent's goals, de- 
sires, and needs, are even harder to fathom, and tend to 
change over time. 

The representation problems—modeling a complex 
and dynamic world, and capturing an agent's beliefs, 
goals, needs, and desires concerning that world—touch 
on many unresolved issues in the field today. The con- 
trol problem—how to manage this information in such 
a way that the agent acts effectively and efficiently—is 
equally troublesome. 

The control problem consists of balancing two reason- 
able approaches to operating in the world: the first is 
to make as many decisions as possible as far ahead of 
time as possible, the second is to defer making decisions 
as long as possible, and thus to act at the last possible 
moment. The look before you leap" and "cross that 
bridge when you get to it," which highlight the distinc- 
tion between deliberating and acting. 

Arguing for the former position is the fact that one 
tends to have more options the further ahead one thinks, 
thus forethought can tend to improve one's lot. Further- 
more, commiting to act in a particular way tends to im- 
prove one's state of information about future states of 
the world, leading to more informed choices and better 
decisions. 

On the other hand, one's information about the im- 
mediate future is typically much better than information 
about the distant future, arguing that better decisions 
come as a result of waiting as long as possible. Further- 
more, whenever one builds a plan one makes assump- 
tions about future states of the world, and significant 
changes to the world may well occur between the time 
a decision is made and the time the resulting plan is to 
be executed, rendering the plan ineffective and the plan- 
ning effort wasted. Finally, detailed prediction and prior 
commitment to detailed plans of action may simply be 
beyond the cognitive capabilities of the agent (and might 
generate only a minimal benefit anyway). 

Clearly neither policy, think ahead or act at the last 
moment, should be carried out to the exclusion of the 
other, and clearly one difficult problem facing the agent 
is whether it should try to generate and commit to some 
plan of action to achieve a goal, or whether it should 
postpone commitment, perhaps until new information 
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3. Watch the environment for urgent situations that 
may affect the success of the current plan and deal 
with them appropriately. 

The rest of this section elaborates on these responsibili- 
ties and discusses a way they can be implemented using 
RAPs as described in [Firby, 1989]. 

2.1     Generating Actions for a Plan Step 

There are two major problems involved in generating ac- 
tions for an abstract plan step at execution time: it must 
be done without projection or comparison of alternative 
action sequences, and different sequences of action may 
be needed to carry out the same step in different situa- 
tions. For example, a plan might contain a step like "go 
to the store." Clearly such a step must be broken down 
into many simpler actions before it can be carried out 
in the world and, just as clearly, those actions depend 
on whether the store is across town or across the street. 
Furthermore, if the selected actions don't actually place 
the agent at the store it does not make sense to continue 
with the next plan step. 

We use a plan expansion library to deal with the prob- 
lem of choosing appropriate actions under stringent time 
constraints. The library consists of a hierarchical collec- 
tion of predefined methods for each abstract plan step 
that the execution system might be called on to perform. 
Use of a library makes the generation of actions for a plan 
step quick and easy since an appropriate method (i.e. 
set of actions) can simply be looked up when needed. In 
essence, the plan library represents the agent's knowl- 
edge of how to get things done and each entry serves 
both as an abstract planning operator, or "primitive", 
out of which plans can be assembled, and as a record of 
actions that can be taken to realize that primitive at run 
time. 

The Reactive Action Package, or RAP, is the basic 
plan library representation unit in our system. A RAP is 
a declarative structure that links a goal (i.e. plan step), 

a test for confirming the achievement of that goal, a col- 
lection of methods to use to achieve the goal in different 
situations, and a test of applicability for for each method 
to define the situations in which it might be used. Both 
the goal completion and method applicability tests take 
the form of queries to the current world model. 

The execution system carries out plan steps using the 
following algorithm. First, a plan step is selected for 
execution (see Section 2.3) and if it represents an atomic 
action it is executed directly, otherwise its corresponding 
RAP is looked up in the library. Next, the step's check 
for completion is used as a query to the world model 
and, if satisfied, the step is considered complete and the 
next step can be run. However, if the step has not yet 
been satisfied, its method-applicability tests are checked 
against the world model and one of the methods with 
satisfied tests is selected nondeterministically. Finally, 
the substeps of the chosen method are incorporated into 
the current plan in place of the step being executed, 
and that step is suspended until the chosen method is 
complete. When all substeps in the method have been 
executed, the step is reactivated and its completion test 
is checked again. If all went well the step's applicability 
condition will now be satisfied and execution can proceed 
to the next step in the plan. If not, method selection is 
carried out again and another method is attempted. 

An extremely important point is that the tests for con- 
firming the achievement of a goal and selecting between 
alternative methods make reference to the current state 
of the world model, which means that all sensing opera- 
tions required to acquire or update the information refer- 
enced by these queries must be included in the methods 
for achieving the goal. There is no other way to ensure 
that the right data appears in the world model at the 
right time. This point seems obvious when one realizes 
that the choice of which action to take must occur at 
run time, the choice depends critically on the state of 
knowledge at that time, and the sensing operations to 
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comes to light. 
In the AI literature this dichotomy has surfaced as the 

question of whether an agent, at any moment, should 
plan or should act. The former involves mental activ- 
ity only, e.g. generating new plans or refining one's pre- 
dictions about the future. The latter involves effecting 
changes to the external world (or perhaps sensing the 
world) but the nature of those operations depends only 
on information immediately at hand. 

Two arguments are often advanced in favor of an agent 
that primarily or even exclusively acts (or perhaps "re- 
acts" is a better term): that the urgent nature of the 
world means that the penalty for inactivity is high. The 
image often suggested is that of a robot agent getting 
run over by a truck while trying to decide how to get to 
the other side of a road. The second argument is that the 
uncertain nature of the world means that the agent will 
typically lack information crucial to the decision-making 
process until the time comes to act. Here the image is 
of a robot unable to plan to get a drink of water (oil?) 
because it is unable to infer the exact position of the 
drinking glass ahead of time. 

Of course advocates of the deliberative approach sug- 
gest equally compelling images: robots painting them- 
selves into corners, running out of gas, or failing to antic- 
ipate unfortunate chemical reactions, all of which could 
have been avoided with a little forethought. 

The point is that (1) intelligent agency requires both 
capabilities, and (2) as a practical matter different is- 
sues tend to arise in the attempt to implement the two 
modes of behavior. For this reason we propose an ar- 
chitecture based on the dichotomy between action and 
deliberation,1 a diagram of which appears in Figure 1. 

This paper attempts to set out the issues associated 
with implementing action- and deliberation-oriented sys- 
tems. It also describe the interaction between systems of 
the two sorts, since an additional point follows from the 
discussion above: (3) that integrating representations 
for, and coordinating the behaviors of, the two modes 
of behavior is a crucial problem in designing an intelli- 
gent agent. 

The remainder of this paper devotes itself to repre- 
sentation and control issues in action and execution, in 
planning and deliberation, and in coordinating the two. 

2    Issues in Execution 

The execution system is charged with the responsibility 
of taking action to carry out a plan. Traditionally, the 
notion of a plan has been a sequence of atomic actions 
that can be implemented directly in hardware and in- 
cludes no conditionals, loops, or sensing. When a plan 
is that detailed the execution system can simply execute 
each planned action in sequence.   In a realistic world, 

'We use the term "deliberation" rather than ''planning" 
because the latter suggests the "classical planning" paradigm 
of generating provably-correct plans in full detail, which is 
not at all what we are advocating here. As a first cut, delib- 
eration refers to a class of operations carried out with respect 
to the agent's model of the world whereas action refers to op- 
erations carried out with respect to the external world. 

however, the deliberation system is faced with uncer- 
tainties and time constraints that make construction of a 
complete sequence of atomic actions impossible. Instead, 
a plan will always contain steps at widely different levels 
of abstraction, and the execution system must generate 
atomic actions on its own for both the most specific and 
the most general of those steps. 

When plan steps are too vague to execute directly, 
they must be treated as goals to achieve rather than 
simply as actions to execute. This shift in the seman- 
tics of a plan step frees the deliberation system to rea- 
son abstractly and to use the execution system to take 
care of any detailed environmental interactions that are 
overlooked. It also frees the execution system to adapt 
to the specific circumstances it encounters at run time 
by choosing atomic actions as needed rather than in ad- 
vance. The deliberation system can simply plan to "take 
a glass out of the cupboard" and the execution system 
can figure out how to move the arm to achieve that goal 
after the cupboard has been openned and a suitable glass 
identified. However, by making the execution system re- 
sponsible for choosing actions at run time, we run the 
risk of re-introducing the entire planning problem under 
the guise of execution. 

Ensuring a timely response to urgent situations re- 
quires that any projection done by the execution system 
must be tightly controlled. The only way to guarantee 
such control is to be able to curtail the projection pro- 
cess at any time and make further decisions using only 
the information gathered to that point. Since urgency 
may force arbitrarily little projection, we have chosen to 
simplify the projection control problem by not allowing 
the execution system to do any projection at all. The 
execution system has access to the current state of the 
world model, current active sensor values, and whatever 
expected future states of the world have already been 
derived by the deliberation system, but it does not gen- 
erate and compare alternative courses of action. 

Incomplete projection and inherent uncertainty in the 
world model force the execution system to confront the 
fact that it cannot know everything that might affect 
its choice of actions for a plan step. Therefore, action 
choices must be predicated on partial information and 
inappropriate actions will sometimes be chosen by mis- 
take. Similarly, the world will sometimes change in un- 
predictable or dangerous ways that prevent some part 
of a plan from achieving its desired result. To remain 
robust in such situations, the execution system must be 
able to check that the actions executed in service of a 
plan step actually achieve their intended effects and, if 
they do not, the system must either adapt and try again 
or else admit failure. Furthermore, the system must 
watch for and deal with urgent situations not anticipated 
in the plan. 

Our execution system therefore has the following re- 
sponsibilities: 

1. Generate atomic actions to achieve an abstract plan 
step using no projection and an imperfect world 
model. 

2. Confirm the results of those actions to ensure that 
the intent of the plan step is actually achieved. 
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acquire that knowledge are actions too. If all actions are 
to be treated the same way (and they should be), sensing 
operations must occur in the same plans as the actions 
that require the information they yield. 

2.2    Dealing with Plan Step Failures 

Choosing a method for a plan step given a RAP from 
the plan library is a straightforward task. Sometimes, 
however, a RAP will contain no applicable method, or an 
atomic action will fail because its preconditions are not 
met in the external world even though they are true in 
the world model. In these situations the action or plan 
step involved fails because it cannot achieve its intended 
effect. When a failure occurs, the execution system re- 
considers the plan step that chose the method with the 
failed action. Often the world will have changed since 
that method was selected, and in that case one of the 
other methods for the step can be used instead. Even 
if the situation hasn't changed, it may be appropriate 
simply to try the same method again. For example, a 
grasp operation may fail because the arm was bumped 
at a critical moment. Nothing in the world will have 
changed when the grasp operation is reconsidered, and 
it just needs to be tried again. 

The execution system retries a plan step, whether an 
explicit failure has occured or not, until its completion 
test is satisfied or none of its methods are applicable in 
the current situation. The tenacity of this implicit loop- 
ing behavior gives the execution system a great deal of 
robustness in the face of uncertainty and incorrect plan 
choice. A method can be tried, and if it doesn't work, it 
can be retried or another can be attempted in its place. 
There is no substitute for this ability to try methods 
over again when an agent's world model is incomplete 
and uncertain, because mistakes are inevitable and must 
be dealt with routinely. No execution system faced with 
real sensors and effectors can expect all actions to work 
properly the first time they are tried. 

Unfortunately, while repeatedly retrying to achieve a 
plan step makes the execution system robust, it raises 
another problem: when to stop. If grasping the glass 
continues to fail because the arm keeps getting bumped, 
it is fruitless to keep trying the same operation over and 
over again; some factor must be involved that is not 
being taken into account by the current method. This 
problem is addressed simply in our execution system. 
A futile loop is detected whenever a plan step tries the 
same method twice in exactly the same situation (as rep- 
resented in the world model) without success. That plan 
step then fails in exactly the same way as if it had no 
applicable method, and its enclosing plan step is given 
a chance to select another method. This is not a com- 
pletely satisfactory solution, however, and the problem 
of dealing with futile action/environment loops remains 
an important problem for all intelligent agent architec- 
tures to address. 

2.3    Choosing What to Execute 

A plan consists of a partially ordered network of goals at 
varying levels of detail and choosing which plan step to 
refine and execute next is a difficult scheduling problem. 

In general, there may be many different goals that can be 
worked on next, either because the deliberation system 
has not yet committed to a specific ordering, or because 
the plan contains several steps that can be carried out 
equally well in any order (or even simultaneously). 

The best way for the execution system to choose 
among possible next plan steps without using any looka- 
head is still an open research issue, but a simple algo- 
rithm is described in [Firby, 1989]: the deliberation sys- 
tem assigns each plan step a priority based on its im- 
portance or expected utility. The execution system then 
looks at all possible next plan steps and chooses the one 
with the highest priority, breaking ties in favor of nearer 
deadlines.2 The selected step is either executed directly 
or one of its methods is chosen and incorporated into the 
current plan at a priority modified by notations in the 
method. The plan is now examined again and another 
step is selected. If nothing untoward happens, this algo- 
rithm has the effect of incorporating actions for a step 
into the plan and then selecting and executing those ac- 
tions one by one.3 However, the system can shift its 
attention to a high-priority step should one arise. 

2.4     Monitoring Urgent Situations 

The ability of the execution system to shift attention to 
higher priority plan steps can be used to recognize and 
deal with urgent problems and opportunities. Plan steps 
can be augmented with a test for activity and remain 
dormant until that test is satisfied in the world model. 
Using this device, RAP methods can be written to in- 
clude high priority substeps to deal with expected dif- 
ficulties, or recognize possible opportunities. By gating 
those substeps with appropriate activity tests, they be- 
come active at a high priority and interrupt the current 
course of action precisely when they are necessary. The 
only caveat is that a plan must explicitly include steps 
to handle all problems or opportunities that might arise 
during its execution. This restriction can be mitigated 
somewhat by including default steps in parallel with all 
plans to deal with common everyday problems like run- 
ning low on gas, or meeting enemy troops. Strategies for 
using this method to monitor and protect situations in 
the world are discussed at length in [Firby, 1989]. 

The ability of the execution system to cope with ab- 
stract goals can also be exploited to allow quick reaction 
to things like loud noises or flashes of light. Assuming 
that the sensing system is designed to detect such ba- 
sic and threatening events asynchronously, we can auto- 
matically generate a new goal at a high priority to deal 
with an event when it occurs.   This goal can then be 

This is actually a simplification. The execution system 
also tries to focus its attention on one goal at a time by 
prefering to execute all of the actions in one method before 
switching to actions in another method. See [Firby, 1989] for 
more details. 

The execution method of expanding a plan step into more 
and more detail until atomic actions are reached bears a 
resemblance to many "classical" planning techniques. One 
difference is that the expansion is depth first based on the 
current situation and backtracking results from trying and 
failing in the real world. 
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deliberated upon if there is time, passed directly to the 
execution system, or incorporated into the current plan 
and effectively passed to both systems simultaneously. 
When it reaches the execution system it is treated like 
any other plan step and if it has a high priority it will in- 
terrupt whatever is being done. A single uniform notion 
of plan steps as goals is therefore used both for ordinary 
and exceptional situations. 

3    Issues in Deliberation 

We noted above that deliberation is the process of rea- 
soning within the confines of the agent's world model. 
In Figure 1 the deliberation subsystem consists of the 
planner along with the model manager—the module re- 
sponsible for maintaining the agent's model of the world. 
Deliberative tasks are therefore three: 

1. to propose, repair, refine, or otherwise improve the 
agent's plans (future commitments to act) 

2. to make predictions about future states of the world 
based on what is currently known 

3. to react to new information and assess how it affects 
the agent's beliefs, plans, and so on. 

The three are tightly interconnected: deciding on a 
course of action requires predicting future states, and 
future states of the world in turn depend on what the 
agent will do. We can, however, study the process of 
prediction without regard to how current commitments 
were arrived at, we can study the process of generating 
and refining plans without regard to how the necessary 
predictions are made, and we can study the process of 
monitoring and belief revision without regard to what 
will be done in light of significant changes to the model. 
We therefore discuss, in turn, the issues associated with 
in the world, and generating commitments to act. 

3.1     Probabilistic temporal projection 

The general problem of temporal projection is how to 
predict whether some proposition <p will be true at some 
time point t, using evidence occurring temporally prior 
to t. Three sorts of evidence get used in the computation: 

1. reports from the sensors 

2. symbolic causal rules representing the agent's model 
of how things change in the world (both in response 
to the agent's own actions and to other events) 

3. background information about the "usual" states of 
proposition, the occurrence of events, and so on. 

We will take the causal rules to be statements of the 
form "if event E occurs while some fact P is true, then 
Q will become true at the next instant in time." (See, 
e.g., [McDermott, 1982].) 

Uncertainty can come from a number of sources: 

1. one can doubt whether the sensor always correctly 
reports on y?'s state 

2. one can be unsure as to whether a relevant event E 
actually occurred at some point in time 

3. one can lack confidence in the rules: perhaps the 
rules mentioning ip aren't really necessary and suf- 
ficient predictors of i^'s state changes. 

We have adopted a probabilistic approach to the prob- 
lem and thus compute the quantity P(<pt) w'tn back- 
ground information taking the form of prior probabili- 
ties. We take into account all forms of uncertainty listed 
above: faulty sensors, unpredicted events, and incom- 
plete or incorrect causal models. 

Important computational problems arise in imple- 
menting this approach, in that a tremendous amount 
of evidence must be brought to bear in computing the 
probability. Sensory observations of p can extend arbi- 
trarily far back into the past, as can the relevant causal 
rules (since they are implicitly quantified over all time 
points). Most of this evidence, however, will not affect 
the tp's probability significantly. 

Evidence loses its impact—its power to change a prob- 
ability estimate—for two reasons: 

1. To the extent that the evidence is "unreliable" (a 
faulty sensor report or a causal rule whose precon- 
dition does not hold), it should not affect the prob- 
ability. 

2. The more temporally distant a piece of evidence is 
(the longer it occurred before t), the more likely 
it is that some other event occurred in the mean- 
time, changing <p's state and rendering the earlier 
evidence irrelevant. 

In [Hanks, 1990c] we make precise the notions of relia- 
bility, temporal distance, and impact. 

Although computing tp's exact probability requires 
that we consider a potentially infinite amount of in- 
formation, we might expect that under the right 
circumstances—sensors that are reasonably reliable and 
changes that occur reasonably infrequently—we can 
compute a good approximation of the probability using 
only a few pieces of evidence. The question is how good 
need a "good" approximation be? 

This information is provided by the application in the 
form of a probability threshold T. The threshold may 
be generated as part of the planning process—we may 
decide, for example, that plan Px is preferable to plan Po 
if the probability of some <p exceeds some value r. For 
example, I may plan to drive to work instead of riding 
my bicycle if the chance of rain is greater than 60%. In 
that case we don't care about an exact answer to the 
question "what is the probability of rain," but only to 
what side of the threshold (0.6) the exact answer lies. A 
"good" approximation is one that reports correctly with 
respect to the threshold. We present in [Hanks, 1990c] a 
heuristic algorithm for limiting the search for evidence, 
the limit being computed on the basis of how close the 
current estimate is to the threshold. 

Probabilistic assessment is triggered by a "probabilis- 
tic query," which is a question of the form "to what 
side of threshold r does P(<pt) fall?" Information about 
probabilistic assessment is returned in a data structure 
called a belief, which says something like "the probabil- 
ity of proposition <p at time t is {above,below} threshold 
r," and also apprises the application of its current es- 
timate for P(<Pt)- Beliefs also represent a commitment 
by the model manager to notify the application if new 
information changes the system's estimate with respect 
to the threshold (see Section 3.4 below). 
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3.2     Plan projection 

Plan projection is the process of answering the question 
"given what I now know about the world, if I were to ex- 
ecute plan P at some future time t, what might I expect 
to happen?" or more particularly, "will the intended 
effects of my plan actually be realized?" 

In some sense the probabilistic temporal reasoning al- 
gorithm provides a method for plan projection: a pro- 
posed plan is a sequence of events, an action is an event 
that can trigger causal rules, and the projection question 
becomes a probabilistic query, just as above. 

The method is inadequate, however, for reasons both 
formal and practical. First of all, the probability calculus 
involves several assumptions reasonable for infrequent, 
unplanned events, but unreasonable for a series of events 
comprising a plan.4 Furthermore the representation of 
actions as causal rules (and thus having effects restricted 
to binary-valued random variables) is too restrictive: it 
does not allow for easy representation of parameters like 
a truck's fuel consumption, contents of its cargo bay, and 
so on. 

As a practical matter, an action (event) in a plan typ- 
ically has many effects. Moving the truck takes time, 
consumes fuel, wears down the tires and battery, causes 
its cargo to move, may cause the truck to become dirty, 
and so on. One would have to represent each such ef- 
fect as a separate rule, and the program would have to 
repeatedly compute the rules' preconditions. 

More serious, however, is the fact that the information 
returned by a probabilistic query is sparse at best. Sup- 
pose a planner put together a course of action, posted it 
to the world model, then posed a query about the likeli- 
hood of success. Suppose the probability of success was 
low, what then does the planner do? The problem is 
that the belief returned in response to a temporal query 
does not allow the planner to diagnose the likely failure 
and repair the plan. The planner needs to know both 
that and why plan failure may occur. 

To that end we introduce the notion that an action 
is a mapping from state descriptions into outcome sets.- 
A state description is a formula, but we require that the 
descriptions comprising an action's domain partition the 
set of possible worlds. Outcome sets are likewise sets of 
formulas, but the set of legal formulas has been extended 
to represent things like real- and set-valued propositions. 
We are thus in the position where given a world state we 
know exactly what effects the action will have, but we 
may not know which world state will hold at execution 
time.5 

Our view shifts somewhat: queries cause us to com- 
pute the probability that a set of propositions will be 

4Basically the assumption is that events will occur infre- 
quently relative to the length of time that preconditions to 
their rules remain true. See [Hanks, 1990c, Chapter 3], 

This is an oversimplification: our action representation 
allows for nondeterministic effects by allowing an action's 
state-description formula to contain formulas of the form 
"chance p" which are always taken to hold with probabil- 
ity p. Therefore the probability that this state description 
will be realized, and thus what effects the action may have, 
cannot be known ahead of time. 

true in the (single) future world, whereas projection as- 
signs a probability distribution over sets of future worlds, 
and within each a proposition is either certainly true or 
certainly false. The probability of a goal formula be- 
ing true is the probability that the real world will end 
up being one of those future worlds in which the goal 
is (certainly) true. The result of a projection is a sce- 
nario tree: a tree of possible worlds representing alterna- 
tive outcomes for the plan. Each path through the tree 
(called a "chronicle") indicates one way the plan's exe- 
cution may proceed; we can associate a probability with 
each chronicle, thus supply the probability that the plan 
will succeed. The scenario tree branches every time an 
action's effects depend on a prevailing state of the world, 
and that state cannot be determined with certainty (at 
plan or projection time). 

As a practical matter we cannot generate the entire 
scenario tree, unless, of course, we have perfect knowl- 
edge about what the world will be like at execution time. 
We therefore need to keep some of the paths implicit. 
Keeping most of the tree implicit saves space and time, 
but in doing so we lose the ability to make precise char- 
acterizations about the plan's effects. Suppose, for ex- 
ample, that driving the truck over a muddy road may 
cause it to become dirty, and that we are projecting a 
plan that involves a trip over road R. We may or may 
not want to represent the two alternatives "truck arrives 
clean" and "truck arrives dirty" explicitly. If we do so 
we double the number of chronicles in the scenario tree, 
but if we don't we can only infer the disjunction "truck 
arrives either clean or dirty." 

Balancing the need for parsimony against the need to 
articulate important distinctions in a plan's outcome is 
the problem confronted by the projector. The projector 
proceeds under the assumption that no distinctions are 
important unless it is provided with information to the 
contrary. This policy tends to result in a "fully implicit" 
tree. But at some point during the projection or sub- 
sequent planning process, "questions" get raised about 
the world. These questions can come directly from the 
planner ("what is the probability that the plan will suc- 
ceed") or they can arise in the projection process itself 
when the projector has to compute the probability that 
a particular chronicle will be realized. These questions, 
which are exactly the probabilistic queries we discussed 
in the previous section, tell the projector what aspects of 
the world are important, and thus what parts of the sce- 
nario tree should be made explicit. The projector exam- 
ines the scenario tree and tries to make explicit exactly 
those portions of the tree that will allow an unambigu- 
ous answer to the query at hand. [Hanks, 1990b] is a 
summary of the action and scenario-tree representation 
and the projection algorithm. 

3.3     Integrated projection and the world model 

Note from the discussion above that the process of proba- 
bilistic temporal reasoning and projection are intimately 
connected: queries initiate projection (scenario-tree ar- 
ticulation), which gives rise to more queries, and so on. 
We can thus view the planner's world model as a net- 
work of belief data structures,  each of which is based 
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on evidence consisting of sensory observations, causal 
rules, prior probabilities, and hypothetical commitments 
to act. Generating these beliefs—answering queries- 
involves both projection and probabilistic assessment, 
but the planner is never aware of this distinction. 

3.4 Monitoring and revising the world model 

The deliberation system is responsible for maintaining 
the integrity of the world model in light of new evi- 
dence. New evidence presents itself in one of two ways: 
observations are received from the sensors and posted 
to the world model, and new planning commitments are 
received from the planner and likewise posted. 

In either case the projection/assessment algorithm has 
assumed that its current (at the time of assessment) set 
of observations and plan commitments are the only such, 
events, and it has furthermore posted monitors to the 
database to look for interesting new events, each mon- 
itor being associated with a belief. A monitor looks 
for particular patterns over particular intervals of time 
(the form of both depend on the individual assessment). 
When new information triggers the monitor it notifies 
its belief, which incorporates the new evidence into its 
assessment. If the new information causes its informa- 
tion to change with respect to the belief's threshold, it 
goes on to notify everything that depends on the belief 
(which might be other beliefs, or might be application- 
supplied functions that would cause a plan commitment 
to be questioned). 

3.5 Generating planning options 

So far the world model has accepted potential plans as 
given; eventually we have to confront the problem of 
how they are generated in the first place. We have just 
begun work on this topic, so our ideas are still tentative, 
but it may be worthwhile to point out how the problem 
appears within our framework and the direction the work 
is taking. 

The approach we are experimenting with involves the 
synthesis of decision-theoretic choice with transforma- 
tional planning. The sequence goes something like this: 

1. The agent is given a set of (symbolic) goals, which 
suggest initial candidate plan alternatives. These 
alternatives will tend to be quite vague at first. 

2. Through the projection process the agent tries to 
establish, on decision-theoretic grounds,6 that one 
of these alternatives is preferable to the others. This 
attempt will almost certainly fail at first because 
the vague nature of the alternatives will not allow 
precise predictions about the future. 

3. The result of this attempt—the scenario structures 
returned by the projections—will, however, point 
out significant gaps in the agent's state of informa- 
tion about the alternatives, and may also point out 
where an alternative is likely to fail. This informa- 
tion will suggest plan transformations, which will 
take the form either of changes to an alternative, or 

6Essentially this just means that the agent will make its 
decision on the basis of tradeoffs between probability of suc- 
cess, reward for success, and penalty for failure. 

perhaps an indication of where the alternative needs 
to be further elaborated. 

4. Returning to Step 2, the agent once again tries to 
establish a dominating alternative. 

5. The process continues either until one alternative 
dominates the others, or until no further transfor- 
mations apply, or until time pressure forces the plan- 
ning process to terminate (see below). Since the 
agent will always have estimates of the expected 
utilities associated with its current alternatives, it 
can at any point choose the alternative with the 
highest estimate though it can't be sure that sub- 
sequent analysis might reveal that it made a poor 
choice. 

The existing interface provided by the world-model 
manager is well suited to this sort of analysis: probabil- 
istic queries are just the sort of information the planner 
will need to do the decision-theoretic analysis. Many- 
questions remain, however. The first is how to pose the 
problem in the language of decision theory. The for- 
mulation requires both a probability model and a utility 
model of the domain. Much of the work on probabilistic 
projection is oriented toward providing the probability 
model; the utility model is a topic of current research 
[Haddawy and Hanks, 1990], Next the nature of the 
plan transformations needs to be explored. Work like 
[Linden and Owre, 1987] and [Simmons, 1988] explores 
the general technique of iterated transformation and pro- 
jection; it remains to be seen how these techniques can 
be integrated into our model of probabilistic projection 
and decision-theoretic choice. 

4     Issues in Coordination 

Coordinating the subsystem that interacts with the 
world and the subsystem that interacts with the world 
model suggests a new set of issues, again involving both 
representation and control. The representation issues 
center around the question of how the world model 
should represent the agent's behavior, i.e. the perfor- 
mance of the execution system, and how information 
gathered by the execution system should be incorporated 
into the deliberation system's world model. 

4.1     Representation 

We can identify three main requirements for a represen- 
tation that will support both deliberation and execution. 
The first is that since predicting the future requires a 
model of the agent's behavior, whatever representation 
is used by the execution system to guide its behavior 
must also serve as model of that behavior for the delib- 
eration system. Similarly, since influencing the future 
requires that the deliberation system affect the behavior 
of the execution system, the deliberation system must 
be able to communicate to the execution system, using 
that same representation, suggestions for future actions. 
Finally, since the deliberation system relies on the ex- 
ecution system to collect information about the world, 
their models of sensors and sensing activities must be 
compatible. 
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Recall from Figure 1 that the deliberation and execu- 
tion system share the RAP library—it represents instruc- 
tions executable by the execution system, the planner's 
"plan library," and the projector's "model of action." 
Two features of the RAP library system that make it 
amenable for all three uses are its hierarchy and its anno- 
tations. The hierarchy was discussed briefly in Section 2: 
a RAP has associated with it a proposition (condition it 
intends to achieve) along with a set of methods any of 
which might effect the desired state under the proper 
circumstances. 

The problem of biasing the execution system arises 
when the planner/projector arrives at a good course of 
action and needs to ensure that the execution system ac- 
tually carries it out. The problems here are more prac- 
tical than theoretical. The ways a planner would change 
the behavior of the RAP system are two: by choosing in 
advance which method to select in executing a particular 
RAP, and by specifying an order in which RAP system's 
execution agenda, and the only problem is how to relate 
the representation of a RAP in the planner/executor's 
world model to the actual instantiation of that RAP in 
the agenda. 

RAP annotations were not discussed in Section 2, 
but play an important role in projecting the effects of 
the execution system's actions. Each RAP is annotated 
with the effects it will have if executed—conditions it 
will cause to be true in the world, resources it will con- 
sume, and so on. These annotations are exactly what 
we meant in Section 3.2 by outcome sets. Of course not 
all of a RAP'S effects (outcomes) will be relevant under 
every set of circumstances, but the task of the projection 
algorithm is to separate the important outcomes and in- 
teractions from the irrelevant. The correspondence be- 
tween RAP annotation and the projector's action model 
is therefore very tight. 

The final representation issue involves the sensor 
model. The execution system is in charge of the agent's 
sensors, and the only way the world model gets infor- 
mation about the world is through sensor reports. The 
projector's model of a sensor report is that of an obser- 
vation, which consists of a proposition, a time point, and 
a number indicating the agent's estimate of the sensor's 
reliability. Furthermore, the world-model manager gen- 
erates monitors in the course of forming beliefs, that are 
charged with the responsibility of looking for relevant 
observations that might subsequently be added to the 
world model, and notifying the appropriate beliefs. The 
RAP system also has a concept of monitors, which can 
be used to generate sensor operations that check peri- 
odically whether a particular condition becomes true in 
the world [Firby, 1989, Section 4.7], There is thus a tight 
connection between monitors in the execution sense and 
monitors in the deliberation sense: deliberation moni- 
tors give rise to execution monitors, and thus to sensing 
operations. Deliberation monitors further give the exe- 
cution system an indication of what sensor reports are 
currently relevant to the agent's world model: only sen- 
sor reports for which deliberation monitors are currently 
active need be passed from the execution system to the 
deliberation system. 

4.2     Control 

We mentioned the fundamental control issue at the be- 
ginning of this paper: how does an agent decide whether 
to act on the basis of its current state of information or 
instead to do further deliberation, information gather- 
ing, or both before committing to a course of action. 

This decision, called the problem of "decision- 
theoretic control," has received a lot of attention in the 
literature lately, for example in [Boddy and Dean, 1989], 
[Etzioni, 1989], [Horvitz et al, 1989]. The problem is 
posed as to whether the agent should spend the next 
unit of time in "physical activity" or in "mental activ- 
ity," that is in acting or in deliberating. The decision 
involves balancing the possible benefit of discovering a 
better course of action during that next time unit against 
the possible cost of opportunities foregone by not acting. 
We argue in [Hanks, 1990a] that it may well be impossi- 
ble to make this decision in a principled way, since doing 
so requires (1) that we have a good characterization of 
the improvement in the plan we expect to realize from a 
unit time spent in deliberation, (2) that we have a good 
characterization of the opportunity cost associated with 
delaying action by one time unit, and (3) that the deci- 
sion about whether to plan or to act must be made in a 
negligible amount of time. 

Our position has been that in many cases the decision 
on whether to act, plan, or gather more information will 
be clear: the execution system can be charged with the 
responsibility of reacting to emergencies like fires, attack- 
ing animals, or oncoming cars, and react to them with- 
out recourse to the deliberation system at all. Indeed, 
to get the response time necessary to avoid catastrophe 
the agent cannot refer to any higher-level processes. By 
the time the decision-theoretic control systems decided 
that it was crucial to act immediately it would already 
be too late. 

But urgency is not the only reason one wants to stop 
working on a plan. The other reason, and one ignored 
by the "reactive planners," is that the planner may lack 
information necessary to choose one alternative over an- 
other. This situation will be noticed during the projec- 
tion process in one of two ways. The first arises when 
the choice between two alternatives depends on whether 
a particular fact will be true or false, but the probability 
estimate for that fact is equivocal. In that case the plan- 
ner can delay the choice between those alternatives and 
schedule an operation to gather the required information 
if it knows how to do so. By posting a monitor that is 
looking for that new information the planner can ensure 
that it will automatically reconsider the choice once new 
information is received. 

The other way deliberation can be suspended is if the 
projection process gets "bogged down." The projector 
has associated with each projection a maximum number 
of branches allowed for a scenario tree. Expansion of 
that tree is suspended when that number is exceeded, a 
condition indicating that the agent does not have enough 
information about the future state of the world to make 
good predictions about the effects of its actions. Once 
again, projection can be suspended and resumed when 
new information refines probabilities, causing branches 
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to be discarded as improbable. 
We conclude, therefore, that the decision to act rather 

than deliberate arises in a number of situations, most of 
which do not require a conscious decision by the agent 
to do one or the other. This is a good thing in our view, 
since making that decision in a principled way is not 
going to be possible at runtime. 

4.2.1     Simultaneous action and deliberation 

A strange assumption implicit in the decision- 
theoretic-control paradigm is that deliberation and ac- 
tion cannot happen simultaneously. There seems to be 
no good reason to make this assumption, yet that is the 
assumption one makes when one speaks of trading a time 
unit of inference (deliberation) against a time unit of ac- 
tion. If we relax that assumption things get much more 
difficult, in that the opportunity cost of deliberating be- 
comes harder to compute. Options like "think about the 
problem while acting so as to keep your options open as 
long as possible" become available. This kind of behavior 
is common in everyday life—waiting in a long line for a 
movie, for example, while simultaneously discussing the 
possibility of going elsewhere. 

When we admit the possibility of simultaneous action 
and deliberation our attention focuses on coordinating 
the two processes rather than choosing between them. 
When should the deliberation system interrupt the cur- 
rent course of execution because it has discovered a bet- 
ter way to achieve the goal (but perhaps too late)? Sim- 
ilarly, when should the execution system interrupt the 
deliberation system because it has discovered the plan is 
going wrong, and what should the deliberation system 
do at that point? How does one facilitate the sharing 
of representations (as outlined above) when the two pro- 
cesses are running more or less independently? These are 
the questions we believe are central to building an agent 
that acts, and reacts, intelligently in its world. Our cur- 
rent research centers around coordinating the indepen- 
dent and simultaneous operation of the execution and 
deliberative systems. 

5    Related Work 

Some of the most influential ideas in the AI literature 
come from the "classical planners" such as STRIPS [Fikes 
and Nilsson, 1971], NONLIN [Täte, 1977] and DEVISOR 

[Vere, 1983]. The basic model behind these systems is to 
plan everything in advance and prove that it will work. 
There has been a lot of work to enhance these systems in 
various ways by adding non-monotonic notions of proof 
and domain-dependent search heuristics [Wilkins, 1988, 
Dean et ai, 1987] but the notion that a plan cannot be 
executed until proven correct remains unchanged. We 
claim that this idea is fundamentally flawed because ur- 
gency, uncertainty, and exogenous events make it im- 
possible for an agent to prove realistic plans correct in 
advance. An agent must be able to plan without proof 
and let the execution system take care of the details. 
Such a plan won't always work, but if you cannot act in 
the real world without a provably correct plan, then you 
cannot act at all. 

In response to the impossibility of constructing a prov- 
ably correct plan before acting, some researchers have 
been building systems in which explict plans are not re- 
quired. The basic idea behind these systems is to use 
either a programmer [Brooks, 1987] [Agre and Chap- 
man, 1987], or an automatic system [Kaelbling, 1988], to 
transform a description of the agent's goals into a ma- 
chine to achieve those goals. Within the machine there 
is no explicit set of goals, world model, or contemplated 
plan of action. Information flows from the machine's 
sensors through a decision network to enable or disable 
actions; plans and goals appear only implicitly in the 
machine's interaction with the world. Using a stateless 
decision network ensures fast response to changes in the 
environment, but it does not allow action choices to be 
influenced by deliberative processes. When goals are not. 
represented explicitly, they cannot be changed dynam- 
ically and there is no way to reason about alternative 
plans for carrying them out. We claim that the ability 
to act on changing goals in a reasoned manner is the hall- 
mark of an intelligent agent and must not be neglected 
in the face of urgency and uncertainty. Our execution 
system is designed for quick response informed by a de- 
liberate plan. 

Numerous viewpoints exist on ways that deliberation 
and action might be combined within a single agent ar- 
chitecture. These views fall into two broad catagories: 
uniform and layered architectures. Uniform architec- 
tures use a single representation and control structure for 
both action and deliberation while layered architectures 
use different algorithms and knowledge representations 
to perform these functions in different layers. 

One example of a uniform architecture is the PRS sys- 
tem [Georgeff et ai, 1986] which interleaves planning 
and acting by using the same engine to project the fu- 
ture, propose plans, and initiate actions. However, while 
PRS allows goals, plans, and world knowledge to be rep- 
resented in a common language interpreted by a single 
processor, it does not make any commitment as to ex- 
actly how planning and acting should be interleaved. All 
control decisions are encoded in the PRS language (i.e. 
meta-KAs) and PRS itself is intentionally silent on lan- 
guage content. Thus, PRS is a framework in which agent 
architectures can be couched but it is not itself an agent 
architecture. Other researchers have also developed uni- 
form frameworks in which control knowledge can be en- 
coded as domain specific rules [Hayes-Roth, 1990] but, 
as yet, they too have little to say on the general problem 
of when to deliberate and when to act. 

The Entropy Reduction Engine, [Bresina and Drum- 
mond, 1990], is an example of a layered agent architec- 
ture. This architecture includes three distinct layers: 

• the reactor, which initiates actions based on a plan- 
net modified by situated control rules SCRS, 

• the projector, which constructs new SCRs to direct 
the reactor based on the plan-net and goal con- 
straints, and 

• the reductor, which generates goal constraints to di- 
rect the projector toward solving the system's over- 
all goals. 
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Each layer is designed to work independently, but con- 
trol information flows from goal to constraint to SCR to 
action. The advantage of such an approach is that each 
layer constitutes a separate process, and there is no need 
to decide between deliberating and acting; the reactor is 
always acting and the reductor and projector are always 
deliberating. 

A problem with the Entropy Reduction Engine is that 
each interface between layers involves a different rep- 
resentation, and information only flows one way—from 
goals to actions. As a result, there is no way for the 
activities of the reactor to influence the activities of the 
layers above. This is particularly important when the 
world model used during deliberation is not complete 
(which we argue is inevitable) and actions in the plan 
net do not have their usual or intended effects. Suppose 
an SCR fires in a certain situation and causes an action 
selection that does not change the world in any currently 
discernable way. Presumably the same SCR will fire again 
and the reactor will be caught in a futile loop, performing 
the same action over and over without making progress. 
We argue that the unreliability of world models and the 
uncertain effects of actions must be accepted as central 
aspects of any agent architecture and the execution pro- 
cess must be able to recognize problems as they arise and 
communicate that knowledge to the deliberation system. 

The division between uniform and layered architec- 
tures is an interesting one because it reflects a bias as to 
which problems the implementors wish to address. Uni- 
form architectures such as PRS make the assumption that 
deliberation and action are so closely intertwined that 
they cannot fruitfully be separated. Within a uniform 
architecture, all of the deliberation machinery can nat- 
urally and easily be brought to bear on every action de- 
cision the system makes. Unfortunately, computational 
cost and complexity quickly slow such a system to the 
point where it cannot react in a timely manner. To cope 
with time pressure the system must begin to make ex- 
plicit control decisions about when it should deliberate 
and when it should "just act." The problem for such 
a system is to decide what it means to "just act" and 
then decide how the trade-off between action and delib- 
eration should be made. The most common approach 
is to make control decisions explicit in the plan repre- 
sentation and allow the system to reason about its own 
reasoning procedures (e.g. meta-KAs in PRS and control 
plans in [Hayes-Roth, 1990]). One must be careful that 
such schemes do not lead to an infinite regress of meta- 
reasoning. 

Layered architectures like the Entropy Reduction En- 
gine and that used on the ALV [Payton, 1986] make the 
assumption that reaction time is so critical and deliber- 
ation is so slow that action must often be taken without 
resort to any deliberation at all. As a result, delibera- 
tion and, action are separated into pieces that use dif- 
ferent algorithms and often different world models and 
plan representations. Unfortunately, this division raises 
a new communications problem: how can the different 
pieces share each other's knowledge and commitments. 
The most common approach is to pass ever more detailed 
action descriptions down the layers toward the hardware 

and then pass success and failure messages back up. One 
must be careful that such communication schemes are 
made rich enough that each layer does not have to model 
the activities of the layer below. 

We claim that different reasoning processes are ap- 
propriate for acting and deliberation because action is 
driven by urgency while deliberation needs time to con- 
sider alternatives and consequences. Therefore we have 
adopted a partitioned rather than a uniform architecture 
and we address the communication problem by using a 
shared world model and plan representation. Deliber- 
ation and action both manipulate plans and the world 
model but use different algorithms focussed on the dif- 
ferent problems that each must address. 

6     Conclusions 

Intelligent agency requires two distinct capabilities: de- 
liberating to consider alternative futures when time per- 
mits, and acting when urgency or lack of knowledge 
demands it. The division between the two processes 
is more pragmatic than theoretical but still very real. 
Uncertainty, urgency, and the complexity of the world 
require adaptability and reactivity when taking action. 
The same uncertainty and complexity complicates pro- 
jection and the comparison of possibilities while delib- 
erating over alternative plans of action. The different 
aspects of "planning" that are emphasized during delib- 
eration and action require the use of separate systems 
and algorithms for their implementation. 

Our architecture consists of an execution system based 
on RAPS [Firby, 1989] and a deliberation system based 
on a probabilistic world model manager and projector 
[Hanks, 1990c]. A proposed transformational planner 
generates and refines plans based on information sup- 
plied by the model manager. These plans are represented 
explicitly at all levels of refinement and are available to 
guide the execution system as it interacts with the world. 
To this end the execution system is charged with the re- 
sponsibilities of: (1) making detailed action choices to 
carry out planned actions in the face of uncertainty, (2) 
coping with the failure of those actions to achieve their 
intended results, and (3) watching for and dealing with 
urgent problems or opportunities. Similarly, the deliber- 
ation system is charged with the responsibilities of: (1) 
proposing and refining plans to guide the execution sys- 
tem, (2) making predictions about future expected states 
of the world, and (3) coping with any plan changes re- 
quired when new information arrives or the execution 
system detects a problem. 

Although the algorithms for deliberation and action 
are different, the two activities are parts of the same 
process. They share a central world model and a rep- 
resentation of plans of action. The world model is a 
record of what is currently believed about past, present, 
and future states of the world. It supplies the execution 
system with the information needed to choose between 
methods for a plan step and to confirm that a plan step 
has been achieved. It supplies the deliberation system 
with the grounding needed for making inferences and 
predictions about the future. Sharing the model makes 
new information acquired by the execution system avail- 
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able immediately to the deliberation system, and allows 
new projections of the future made by the deliberation 
system to inform further choices in the execution system. 

A common world model lets the deliberation and exe- 
cution systems exchange information, but a shared plan 
representation is what really ties the two systems to- 
gether. Plans are the description of what the agent in- 
tends to do and are used by the deliberation system for 
projecting the future and by the execution system for 
guiding action selection. A shared plan representation 
allows any plan under consideration by the deliberation 
system to be executed directly, and any plan refinements 
generated by the execution system to be incorporated di- 
rectly into ongoing deliberations. A shared representa- 
tion also allows the deliberation system to use the same 
plan library when considering possible futures as the ex- 
ecution system uses when selecting actions at runtime. 
A common plan representation gives the agent a single 
consistent vision and purpose. 

6.1     Some Parting Philosophy 
The classical planning paradigm makes two very conve- 
nient assumptions: 

1. That there exists a set of "primitive actions," which 
provides a convenient level of abstraction for use in 
plans — below that level the planner doesn't have 
to worry about execution at all. 

2. That the world is certain, simple, and closed, which 
leads to an easy criterion for choosing a plan: a plan 
is good if it provably works. 

Neither of these assumptions are entirely bad. There 
probably is some detail the planner should ignore (the 
exact position of a glass in the kitchen, for example), 
because: (1) it generally won't know details of this sort 
before execution time, (2) such details probably won't af- 
fect the plan's ultimate success very much, and (3) there 
are so many details that the planner will be swamped if 
it tries to take them all into account. 

Closed-world assumptions are also fairly harmless if 
judiciously applied: the agent probably does have control 
over and reasonably complete knowledge about many 
imporant aspects of the world sometimes, and making 
closed-world assumptions makes the process of reason- 
ing about possible futures much more efficient [Hanks, 
1990c, Chapter 5]. 

The problem is that these assumptions have been ap- 
plied too broadly: primitive actions are taken to be fixed 
and complete, and the closed-world assumption is ap- 
plied to all propositions at all times. In fact, the situa- 
tion is often even worse in that the assumptions are of- 
ten actually inherent in the representation itself (e.^. the 
situation calculus representation of events, which makes 
reasoning about asynchronous non-planned actions very 
difficult, and the STRIPS action representation with its 
add and delete lists). As such, it becomes impossible 
for systems using these representations even to reason 
situations in which the assumptions are violated. 

What we've tried to do is build a system in which these 
assumptions (atomic actions and a closed world) can be 
applied when appropriate, where the meaning of "appro- 
priate" depends on both the planning problem at hand 

and the execution environment. The RAP representation 
provides a reasonable and flexible notion of an atomic 
action because the execution system ensures that either 
(1) the details involved in carrying out a RAP goal are 
taken care of "transparently," or (2) the planner will be 
notified that some anomaly (planning failure) has been 
detected. 

The projection susbsystem makes the closed world as- 
sumption for particular aspects of the world and over 
particular periods of time, but is also sensitive to the fact 
that these assumptions might be violated. It is willing to 
revise its beliefs if subsequent information, discovered at 
execution time, demands it. The projection system also 
"knows when it doesn't know enough" to make decisions, 
and can pass actions to the execution system that will 
provide it with the necessary information. 

The important point is that while we attempt to em- 
ploy simplifying assumptions appropriately, we know 
that these assumptions are too strong in general and 
therefore accept that mistakes and inconsistencies will 
arise through their application. Much of the planning 
process must wait until more detailed information be- 
comes available and often an agent's interaction with 
the world will uncover new information that invalidates 
previous plans. A real agent architecture must allow 
a flexible and complex interaction with the world that 
the traditional notion of planning and execution cannot 
support. We offer a system in which planning becomes 
a continuous process of deliberating over evolving par- 
tial plans, which are designed to guide an action system, 
while at the same time gathering information and acting 
on the world to achieve the agent's goals. 
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Abstract profile of a mechanism under various conditions. When the 

performance of apian in our system goes outside its envelope, 
the plan may no longer be appropriate for the current envi- 
ronmental conditions. This paper details the construction 
and use of a particular envelope in a multiagent, real-time 
problem solving system that fights simulated forest fires. It 
also discusses the general utility of envelopes for improving 
the efficiency of plan execution. 

Envelopes are structures which capture expecta- 
tions of the progress of a plan. By comparing 
expected progress with actual progress, envelopes 
can notify the planner when the plan violates 
those expectations. The planner then has the op- 
portunity to modify the plan to increase its effi- 
ciency given the unexpected progress. This paper 
presents a specific example of the construction and 
use of an envelope, followed by a discussion of the 
general utility of envelopes for improving the effi- 
ciency of plan execution. 

1     Introduction 

Most AI planners test the postconditions of an action after 
its completion to see if it succeeded, but in our domain, ac- 
tions take so long to execute that advance knowledge of the 
probable outcome is valuable. Therefore, we monitor actions 
during execution. We represent the a priori expectations of 
action progress, which we compare with the actual state, in 
structures we call envelopes. By comparing actual progress 
to the expectations about progress stored in envelopes, we 
can see whether a plan1 is executing better or worse than we 
expected. 

Inefficiency in plan execution encompasses wasteful use 
of resources in a plan that is succeeding, ineffective use of 
resources in failing plans, and even the costs of recovering 
from a failed plan. Envelopes are chiefly concerned with 
the efficiency of plan execution, and only indirectly with the 
planning process. In this paper, we will show an envelope 
that categorizes the progress of a plan as better, worse, or as 
expected. If progress is better than expected, we can increase 
the efficiency by reducing resource expenditure; if worse, we 
can act to avert plan failure, possibly by adding resources. 

The term "envelope" derives from the idea of a "perfor- 
mance envelope" in engineering, describing the performance 

'This research was sponsored by DARPA-AFOSR con- 
tract F49620-89-C-00113; the Office of Naval Research, un- 
der a University Research Initiative grant, ONR N00014- 
86-K-0764; the Office of Naval Research, contract # 
N00014-88-K-0009; and a grant from the Digital Equipment 
Corporation. 

Because our plans are structures of one or more actions, 
we will use the terms interchangeably. 

2    Monitoring Plan Execution 

There is an obvious advantage to knowing how a plan is 
progressing when the planner can act based on that knowl- 
edge; if the plan is failing, the planner can either abort the 
plan (avoiding throwing good resources after bad) or add re- 
sources to the plan so as to avert the failure. In domains 
where actions are not interruptible or are of such short du- 
ration that there is no time to add or subtract resources from 
an action in progress, there is clearly no utility to monitoring 
an executing action. But fighting a forest fire can require the 
efforts of many agents over many days, so that plans execute 
over long time spans and there is ample time to add and 
subtract resources. Therefore, in our domain (simulated in a 
testbed called Phoenix [l]), it pays to monitor a plan during 
its execution. 

Doyle's work [2] addresses monitoring, but in a robotics 
domain using a STRIPS-style action model with specified 
preconditions and postconditions. Monitoring verifies the 
truth of the preconditions and postconditions: 

... we assume that the successful execution of ac- 
tions can be verified by instantaneously verifying 
the action's preconditions before its execution and 
instantaneously verifying its postconditions after 
its execution. This approach proves inadequate for 
some actions. [2] 

Doyle goes on to describe cases that require just the sort of 
continuous monitoring that envelopes are designed for, such 
as actions that are extended over time and can fail at any 
point, and actions involving looping, which can be viewed as 
extended action.2 

Our work is closest in spirit to that of Sanborn and 
Hendler [6].   Their simulated robot, which tries to cross a 

2The example of looping that he gives is of filling a bucket 
from a hose, which we believe is more naturally viewed as an 
extended action. 
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Figure 1: A fire (shaded region) has been set in the Phoenix forest, seen here 1 hour 13 minutes afterwards. The wind is 
from the East at 3 kph. The polygon of dashed lines marks both the projected shape of the fire after about 17 hours and the 
intended placement of fireline for the indirect-attack plan. Other lines are rivers and roads. 

busy street, must monitor the objects in the world (cars rush- 
ing past) and predict whether they will run over it. We view 
this as an envelope around the plan of crossing the street, 
attempting to avert the catastrophic failure of the plan, not 
to mention the robot. This is a clear case of an extended 
action (though performed as a loop of single steps forward 
and backward) in which forewarning of failure is critical. The 
forewarning is achieved by predicting the location of the cars 
and the robot; we will see the significance of prediction for 
envelopes below. 

Envelopes have been implemented as a general mechanism 
in Phoenix. Performance falling outside expected bounds is 
termed a "violation," and violations notify the planner so 
that its planning knowledge can be brought to bear on the 
situation. The purpose of envelopes, then, is to provide infor- 
mation to the planner that guides its decision-making during 
plan excution. While the planner has a number of options, 
it typically responds to violations as we have mentioned— 
adding or subtracting resources. Without envelopes, these 
opportunities to increase efficiency would go unnoticed. 

3    Constructing an Envelope 

In Phoenix, simulated forest fires are controlled by bulldoz- 
ers cutting fireline around the fire. In some cases, it is too 
dangerous for bulldozers to cut a fireline close to the fire, 
and so we use what is called "indirect attack," in which the 
bulldozers cut a line some distance away. In indirect attack, 
a central fireboss coordinates the actions of the bulldozers. 

For example, in Figure 1, the intended placement of fireline, 
to be cut by several bulldozers, is the polygonal shape sur- 
rounding the fire. The fireboss selects a polygon such that 
the estimated time required for n bulldozers to cut the line, 
BT(n), is less than the estimated time remaining until the 
fire spreads to the polygon, FST; the difference is the amount 
of slack time in the plan. 

Figure 2 illustrates how an envelope for the multiple- 
bulldozer, indirect-attack plan is constructed. We define 
"progress space" as the percentage of the fireline which is 
completed, PFC, versus time (elapsed simulation time, t). 
The point at the upper right is the estimated time that the 
fire arrives at the polygon, tfa, and 100% of the fireline is 
dug. Lines 1 and 2 are defined by the expected rate that some 
number of bulldozers can cut fireline: line 1 has a slope of 
100/i?T(n), because n bulldozers must cut 100% of the line; 
line 2 has a slope of 100/ßr(n-l). iP is the time that these 
estimates were made and the envelope was built. U, is the 
latest time at which n bulldozers can start digging line and 
expect to finish the fireline before the fire arrives. 

The filled circle labeled CP represents the current posi- 
tion in progress space—(tno„,, PFCn0w)- The location of CP 
within the regions of progress space indicates how the plan 
is progressing: crossing below line 1 suggests that the plan 
will fail, since the bulldozers would need to cut the fireline 
at a rate faster than we think they can;3 crossing above line 

3The plan will not necessarily fail, since the bulldozers 
might do better than we expect, even though they so far 
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Figure 2: An envelope for the Indirect-Attack Plan 

2 suggests that we should save resources by retiring a bull- 
dozer, since n—1 of them should be able to cut the remaining 
line in time. The area between the lines is the envelope—the 
range of expected performance—and going outside it is a vio- 
lation of the envelope, signalling to the agent that something 
should be done.4 

4    Using Envelopes 
The plan library of each Phoenix agent contains skeletal 
forms of envelopes as well as plans. Part of the definition of 
a plan denotes what envelopes, if any, should be instantiated 
to monitor the execution of that plan. Consequently, when 
a plan is instantiated at run-time, the associated envelopes 
are also instantiated, and the envelopes initialize themselves 
from plan variables, such as the BT{n) and t/a variables 
above. Each envelope provides a monitor method whose pur- 
pose is to updat» the current progress (CP) and locate it in 
progress space. Then, while the plan is executing, a periodic 
action called "monitor-envelopes" causes the agent to verify 
that the plan is progressing satisfactorily by running these 
monitor methods. 

The monitor method checks sensory information previ- 
ously gathered and stored in the plan variables, such as the 
current positions of the bulldozers and the fire, and deter- 
mines which region CP lies in. If CP is within the region 
for acceptable progress, nothing more happens. However, if 
CP has crossed into a region of unexpected progress (either 
better or worse), the envelope is violated and the monitor 

have not, or the fire might take longer to reach the fireline 
than we thought, say if it rains. 

4Conceptually, the envelope is just that area of progress 
space, but we also use the term to describe the data structure 
representing this area and associated code for creating the 
envelope and updating CP. 

method adds an item to the agent's agenda so that the agent 
can notice and respond to the violation. In Figure 3, we show 
an envelope in which the CP falls into the failure region. 

While the fireboss could do many things as a result of this 
violation (for example, the fireboss might buy time, say by 
dumping fire retardant on the fire or expanding the polygon 
around the fire), consider the case in which it sends another 
bulldozer to help dig line. A new envelope must be set up 
for monitoring this modified plan. The failure boundary for 
the new envelope will be determined by a line whose slope is 
100/BTn + l. The additional bulldozer is sent, and the fire 
is successfully contained within the original polygon, which 
means the modified plan has succeeded, where the original 
plan would almost certainly have failed. 

We have mentioned that multiple envelopes might exist 
simultaneously; one way that this occurs is when a plan and 
a step in the plan both have envelopes. For example, in the 
multiple-bulldozer, indirect-attack plan, each step of digging 
a side of the polygon has an envelope. This allows the fire- 
boss to apportion the time constraints from the overall plan 
to the steps in the plan. A violation of a step's envelope 
may indicate a problem with the whole plan, or may simply 
mean that other steps will have to do better than expected. 
Therefore, the step envelopes do not eliminate the need for 
the plan envelope—the latter integrates the information from 
step envelopes. 

Furthermore, since digging a side of the polygon will in 
fact be executed by bulldozers and not by the fireboss, the 
envelope for that step must be an explicit data structure that 
can be communicated to the bulldozers. We call this an agent 
envelope, since it is monitored by the agent who receives 
it, allowing the fireboss to turn its attention elsewhere. If 
a violation occurs, the agent reports back to the fireboss, 
who assesses the significance of the violation by consulting 
the plan envelope.   Agent envelopes free the fireboss from 
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Figure 3: Plot of the Multiple-Bulldozer, Indirect-Attack Envelope in Phoenix, showing a violation at nearly 12 hours into 
the simulation. The recent progress is flat because the bulldozers have stopped to refuel. 

the task of monitoring the progress of component plan steps 
carried out by other agents—the fireboss assumes the agent's 
progress is within expectations unless it receives a violation 
report from the agent. Powell and Cohen [5] discuss the 
use of envelopes to coordinate activities among echelons in 
multiagent, operational planning. 

Another way that multiple envelopes occur is when data 
dependencies exist between envelopes. For example, the es- 
timate of when the fire will reach the polygon, tfa, is crucial 
to the way that progress space is carved into regions. Un- 
fortunately, that estimate is based on inexact information, 
because the fireboss does not know exactly where the fire is 
or exactly what the local wind conditions are. Therefore, 
we put an envelope around our estimate and periodically re- 
calculate it. Should the re-calculation indicate that the tf* 
estimate is quite wrong, the tfa envelope is violated, and this 
causes the envelope on the plan to be revised. 

5    Utility of Envelopes 

It is intuitively obvious that information about the progress 
of a plan cannot hurt and could well prove invaluable. How- 
ever, the agent must put effort into gathering this informa- 
tion, and therefore the cost of envelopes must be worth their 
benefit. To summarize the possible benefits, using envelopes 
allows an agent to: 

• modify a failing plan so as to prevent its failure 

• abandoning a plan that is irretrievably failing. 

• retire surplus resources from a plan that is going unex- 
pectedly well. 

• improve a plan that is going unexpectedly well.   For 
example, in the multiple-bulldozer, indirect-attack plan, 

it can move the vertices nearer the fire so as to reduce 
the forest lost. 

• reduce communication overhead between cooperating 
agents via agent envelopes, that is, by allowing them to 
share expectations and only communicate when those 
expectations are violated. 

Envelopes cost the planner in three different ways: the 
cost of setting them up, the cost of monitoring them at time 
intervals, and the cost of responding to violations. Assessing 
these costs is complicated by the way they can be traded off 
against each other. For example, a planner could create a 
"quick and dirty" envelope, using estimates that are of low 
quality but quick to compute. Employing such an envelope 
burdens the planner later, since spurious violations are more 
likely and time spent responding to them will be wasted. On 
the other hand, a planner can put a lot of time and effort 
into creating a great envelope, with precise boundaries based 
on the best information, resulting in regions that categorize 
the situation quite well. Violations of a high-quality enve- 
lope can be better trusted to indicate a problem with the 
plan. We can create such high-quality envelopes in Phoenix 
for some activities, but the cost of creating them is high. For 
example, the speeds with which a buDdozer travels and digs 
line can be predicted quite accurately using expensive oper- 
ations that iterate over the points on its route and sum the 
costs. The benefit is that the envelope reflects very closely 
the probable time required to dig a segment of fireline. The 
cost is the expense of calculating this information, a cognitive 
task that competes with other necessary cognitive activities 
for available "thinking" time5. This tradeoff balances the 
cost of building an envelope now with the costs of respond- 
ing to violations later. 

JFor more on Phoenix agents' cognitive structure, see [ll 
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Another tradeoff is in the monitor methods of the en- 
velopes. It's important not to make these too time-intensive, 
since the cost will be incurred many times over the course of 
plan execution. For instance, how old should sensory infor- 
mation be before the monitor method discards it and mea- 
sures the environment anew? One option is to use quick, 
inexact procedures in the monitor method and then, if a vi- 
olation occurs, double-check them with better procedures to 
verify whether the violation is spurious. 

In very time-pressured situations, an agent will probably 
want to choose quick and dirty ways of doing things (in- 
cluding building, monitoring and responding to envelopes), 
while in less pressured situations, it will probably want to 
choose higher quality methods; therefore, the Phoenix agent 
architecture allows for this choice. 

An extreme tradeoff is to eliminate envelopes entirely and 
deal with the plan failure when it arises, that is, dispense 
with monitoring the progress of the executing plan and rely 
on reports from the field that the plan has failed. Clearly, in 
Phoenix, we will have to repair or replace the current plan 
when the fire is reported to be escaping from the incomplete 
polygon. The cost of this failure, besides the time to replan, 
is the loss of more forest and the additional time and effort 
of bulldozers to control it. The cost of failure must be com- 
pared to the costs of using envelopes, which we've noted will 
depend on the choices made by the agents. We believe that 
on average these costs will exceed the overhead cost of using 
envelopes. The same argument can be made with respect to 
improving a plan that is succeeding: if we can save a little 
forest by moving the vertices towards the fire when the poly- 
gon is being dug faster than anticipated, does this outweigh 
the cost of using envelopes? 

These tradeoffs imply that envelopes have limited util- 
ity for some environments and tasks. If the environment is 
highly variable, so that the estimates and predictions that are 
built into the envelope don't last, and so that any envelope 
will be violated shortly, the overhead costs may swamp any 
benefits. On deeper reflection, though, since envelopes are 
used for actions that assume some constancy to the environ- 
ment, such actions would not be used in these highly variable 
domains. Predictability is the key issue: prediction, used ei- 
ther for planning or building envelopes, is simply not useful 
in these unpredictable domains. As we mentioned in Sec- 
tion 2, Sanborn and Hendler's simulated robot depends on 
the predictability of the cars' paths, even though the domain 
is highly variable. Our approach differs from theirs because 
they have tightly connected the predictions to the robot's 
actions, while we notice a violation and let the planner de- 
liberate as long as it wishes over how to solve the problem. 
We do this because actions can be quite costly; for example, 
sending another bulldozer to the fire is time-consuming and 
commits resources which might be required elsewhere. 

and obstacles. Performance will be assessed based on a com- 
bination of cost factors such as forest burned, bulldozer time 
spent, agents lost, and cognitive overhead incurred. We also 
intend to experiment with the tradeoffs mentioned above, 
such as balancing the cost of setting up an envelope with the 
cost of responding to violations. 

Another line of research views envelope violations as an 
opportunity for learning [3]. Envelopes provide information 
about plans vulnerable to failure, as well as an opportunity to 
test ways of repairing plans. These repairs, when successful, 
can be used to modify the plan library. 

We also intend to apply envelopes to the problem of as- 
sessing the progress of tasks that involve, not acting in the 
world, but thinking. Many thinking tasks in Phoenix, such 
as path planning and predicting fire spread, can be computa- 
tionally expensive and the time available for them is limited. 
If we can model these computational tasks so that we can 
predict their progress well enough to use envelopes, we can 
control them and increase their efficiency. A brief discussion 
of the use of envelopes for real-time control appears in [4]. 

7    Conclusion 

We have shown an example of how to build and use an en- 
velope for a plan in a fire-fighting domain. This envelope 
notices when the plan is failing or succeeding too well. The 
planner can then adjust the plan to the changing conditions, 
thereby increasing the efficiency of its execution by minimiz- 
ing the loss of forest and other costs. We've argued that 
the predictability of the environment indicates whether en- 
velopes will be useful: if the domain is too predictable, plans 
cannot fail, so there is no point to monitoring them, and if 
the domain is too unpredictable, plans would not be of a du- 
ration for which envelopes would be useful. For the middle 
ground—environments that are uncertain but not too unpre- 
dictable, which we think are quite common—we argue that 
the benefits derived from the opportunity to increase plan 
efficiency will outweigh the costs of creating, monitoring and 
responding to envelopes. 
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6    Current and Future Work 

We have integrated envelopes into the Phoenix testbed, and 
added instrumentation to assess the cognitive load on the 
various agents. We will test the utility of envelopes by com- 
paring the performance of agents with and without them. In 
particular, we will run a number of different fires in the simu- 
lator, varying the factors contributing to unexpected success 
or failure of plans, such as weather, mechanical breakdowns, 
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Abstract 

In this paper we describe preliminary results 
from an effort to use the MARUTI real-time op- 
erating system as the platform for the develop- 
ment of an AI system which can integrate plan- 
ning and reaction in complex environments. 
This work is motivated by the needs of the 
types of mission critical reasoning which must 
occur during emergencies which arise in com- 
plex domains. The primary thrust of this on- 
going research is to enable a system to directly 
react to failures and unexpected events. Criti- 
cally important is the ability to correctly han- 
dle time dependent reasoning (directly modeled 
on the MARUTI operating system) and reac- 
tion, and to integrate such reaction with higher 
level plans for normal operation or error recov- 
ery. 

1     Motivation 

For systems to handle contingencies that might arise in 
complex environments, there are three critical capabili- 
ties they must demonstrate: 

1. Real-time response. Failures have a time criticality 
attached to them. The time between the occurence 
of a failure and damage (to a mission or a piece 
of equipment) resulting from that failure is often 
short, but not instantaneous. Thus, for many po- 
tential failures there is a "sampling time" which, if 
guaranteed, will permit the problem to be detected 
prior to the negative results. These sampling times 
can be predetermined, but they must be guaranteed 
— this is a hard real-time, as opposed to a speed, 
requirement. 

2. Context sensitivity. The appropriate actions to be 
taken upon encountering a failure must be sensitive 
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to the overall "mission status" at the time the failure 
occurs. For example, in an aircraft control system, 
if a minor failure occurs the pilot should usually be 
notified and required to authorize the system to take 
an appropriate automated repair action. However, 
if that same failure occurs during combat, the pilot 
(who is too busy to notice) should not be disturbed, 
and the repair action should be taken automatically 
or delayed. Upon completion of the engagement, the 
pilot should be notified about the actions taken or 
a request for authorization can then be sought. 

3. Planning or rule-based reasoning coupled with re- 
action. When a situation requiring an emergency 
response occurs, the system must project how re- 
pair actions to be taken might effect (i) other re- 
pairs or normal operations and (ii) the long range 
goals of the mission. Thus, in a fuel critical mis- 
sion a repair which might involve an extra engine 
burn should not be taken without notifying the pi- 
lot that this might cause an additional fuel shortage. 
To allow this kind of behavior, the system must use 
traditional AI models of expert system rule reason- 
ing (for a shallow model) or temporal projection (if 
a deep model of the reasoning is required). How- 
ever, along with this long-term behavior, the system 
must make short term (or "reactive") adjustments 
that will preserve mission integrity. Thus, an action 
which preserves flight stability must be taken with- 
out first spending critical time in reasoning about 
long term effects. After integrity is restored, the 
long term consequences can be considered. 

One way to achieve such behaviors is to implement 
AI planning technology, particularly "reactive planning 
systems" on a guaranteed scheduling, real-time operat- 
ing system. In this manner we are able to take advantage 
of the reliability provided by the OS, while using the AI 
technology to guide the reactions taken by the system. 
Our work in integrating AI and real-time computing fo- 
cuses on the joining of two ongoing research efforts: an 
AI system designed to provide reaction and a real-time 
operating system developed for guaranteed scheduling 
in mission critical computing environments. In the re- 
mainder of this paper we briefly describe the two systems 
being merged (section 2 and section 3). We also describe 
some experiments already performed which have shown 
the feasibility of implementing the system (section 4). 
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We conclude with a discussion of some of the critical re- 
search areas (in both AI and real-time) mandated by the 
sorts of applications described in this section. 

2    Planning in dynamic domains 
The classical approach to building AI planning systems1 

has been relatively unsuccessful in application when at- 
tempts have been made to extend AI systems to work in 
complex domains. These systems have significant prob- 
lems with inefficiency - generating complete and accu- 
rate plans in even simple domains is an exponentially 
hard problem [2], and in more complex domains, par- 
ticularly those involving other agents interacting with 
the planner, it is undecidable [19]. In addition, the ba- 
sic control structure of typical planners, which assumes 
that plans can be generated and then separately exe- 
cuted, will often fail in such environments. Change in 
the world occuring during the running of a plan may 
render portions of it either temporarily or permanently 
unachievable. Appropriately responding to such changes 
in the environment requires a reactive component not 
available to most current planners. 

As a simple example, consider a robot attempting to 
cross a street with a traffic flow. The robot cannot sim- 
ply wait until a large enough gap occurs as (a) this may 
simply never happen, leaving the robot standing on the 
curb ad infinitum or (b) once the gap appears and the 
robot starts, one of the oncoming cars might change 
speed, direction, etc. 

The difficulty in getting current planning systems to 
handle these dynamic situations is caused by the reliance 
of many of the current planning techniques on some very 
strong underlying assumptions: 

1. the planner has complete knowledge of the world 
relevant to its task, 

2. change in the world is brought about only by 
the planner's executing primitive plan steps. This 
change may be modelled discretely, and the planner 
is completely aware of all effects of its actions. 

3. the planner acts alone in the world; there are no 
outside forces. 

Unfortunately, real-world planning situations rarely con- 
form to these assumptions. Typically occuring domains 
may include continuous change over time, incomplete 
specifiability at any point in time, and change due in 
part to the actions of other agents. Thus, the traditional 
planning paradigm has been shown to be inadequate in 
practical situations and much current research focuses 
on solutions. (A good set of papers on such work can be 
found in the Proceedings of the DARPA Workshop on 
Knowledge based Planning, Austin, Texas 1987.) 

Our past research has focused on the development of 
techniques for managing observation and action in dy- 
namic domains, known as dynamic reaction (DR) [9] and 
extending it to interact with a planning system via an 
abstraction hierarchy which combines monitoring and 
planning [10, 2l]. This model is designed for dynamic 
worlds, where change is ongoing regardless of an agent's 

1A review of these can be found in [ll]. 

actions - strictly goal-directed methods are inadequate. 
Given observations of the world, the planning agent must 
coordinate its actions in order to act in harmony with 
ongoing events in the world. 

In the DR model, an agent performs an activity until 
either (i) its goals lead it to select some new action, or 
(ii) some event in the world forces it to react. Since non- 
determinism is inherent in dynamic worlds, a nontrivial 
amount of computation is required to arrive at and keep 
track of the current state of the world. The world is 
observed as a matter of course in DR, and relevant ob- 
servations drive the selection of actions. In this way, the 
system does not explicitly track conditions for the safe 
execution of its actions. Projected failures are signalled 
through ongoing, independent observation provided by 
asynchronously processed, entities known as monitors7. 

The DR model has been used to handle the interac- 
tions arising in the "Traffic World", a rapidly chang- 
ing simulation domain in which objects move rapidly 
through the simulation under external control. The "re- 
acting agent" must cross this environment without being 
impacted, but under the control of a higher level direc- 
tional goal. A full description of this work can be found 
in [9, 19]. 

In addition to the need for a reactive component, plan- 
ning systems must be able to achieve long-term goals and 
to preserve the integrity of previously achieved goals. To 
handle reaction, the system must reason using a world 
model which closely matches the external world (this is, 
in fact, the same level as the model we have been using 
in the DR system). To interact with a more traditional, 
higher-level planner, however, the system needs to ab- 
stract away from the actual motions of the vehicles etc. 
If the planning system is too sensitive to the short term 
changes occuring in the world it is unable to generate 
long term plans due to the resulting combinatorial explo- 
sion. Coupling of DR with a more traditional planning 
model is accomplished via an abstraction-based planning 
architecture. 

To deal with this problem we have developed a sys- 
tem which is capable of reasoning with multiple levels 
of abstraction of the world (a full description and for- 
malization of this model of abstraction can be found 
in [lO]). Keeping these levels consistent with one an- 
other, handling the interactions at each level in different 
time scales (for example the reactor may need to react in 
milliseconds, while the planner can take minutes), and 
propagating the perceptual information to the appropri- 
ate level are the critical problems which we have been 
addressing to allow planners to integrate "high-" and 
"low-level" knowledge. 

Consider the following situation: a path planning sys- 
tem is to prepare a route over some map. The system 
designs a set of points to reach and deadlines to reach 
them. Such a system need not know the actual loca- 
tion of other objects in the world, it simply needs to 
know roughly how difficult different regions are to tra- 
verse. Once the plan starts executing, however, the sit- 

The scheduling of these monitors can be performed in 
real-time. This is the essence of the work described in Sec- 
tion 4. 
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uation changes drastically. The reactive controller needs 
to know what other objects are in the perceptual field, 
what their heading and directions are, and when they 
will interact with the current path. The high level plan- 
ner generates plans like "GET-TO POINT-A DEAD- 
LINE: +24min." The reactive controller controls moves 
like "PROCEED-LEFT NOW!" 

In fact, the path planner itself may have no work to 
do during the actual running of the plan (this is a sim- 
plifying assumption used in several domain-dependent 
planning systems). However, if the world starts to get 
complicated, this assumption won't hold. Once, due to 
some reaction, the planner is to miss a deadline, it must 
replan and decide what route to take. During this re- 
planning, however, it may not remain still - the objects 
which are causing it to miss the deadline may still be 
around! 

The solution to handling such problems, lies in design- 
ing a system which can be reasoning "simultaneously" 
about different levels of the problem. In the DR model a 
preprocessed version of low-level perceptual data is sup- 
plied directly to the monitors which process it (actually 
hierarchically) to check a particular condition (the di- 
rection of a particular car, the speed of some object, 
whether any new object has appeared, etc.) When a 
monitor discovers that some condition holds, it updates 
a global "state-of-the-world" model (used for providing 
accurate information if needed by the high level planner) 
with a symbolic abstraction of what it has seen (for ex- 
ample "Speed CAR1 40-60units"). This information is 
also reported to higher-level monitors, which are used to 
control the actions of the system. 

The planning component of our system is invoked via 
higher level (more abstract) reactive agents (higher-level 
monitors) which compute violations of required condi- 
tions. Thus, as the lower level reactors change the di- 
rection of movement, this is reported to a higher level 
entity which is checking that a deadline can or cannot 
be reached. It too updates the state-of-the-world model, 
but with higher level information - the information is 
kept at a level of abstraction useful to the path planner 
(for example, what previous deadlines have been met, 
the current location of the object, and the projected time 
to reaching the destination). The planner is then able 
to take over, when time permits and do the appropriate 
replanning. Just as was the original plan, this new plan 
is "compiled" down to new monitoring tasks, and the 
system continues. 

To make this system work, a scheduler must be used 
to allow the planning and reacting agents to work to- 
gether as time permits. Low-level monitoring must oc- 
cur frequently, but for short periods of time. How much 
processing is required depends on the number of objects 
which the reactor must take into account. The higher 
level monitors and the planner itself require more pro- 
cessing time, but over longer intervals. Thus, as the time 
taken by pure reaction is reduced, the higher levels get 
more time. In a "safe" environment, this allows the plan- 
ner to take almost complete control. Thus, in a highly 
reactive situation (crossing the street) the system is pri- 
marily reactive. In a relatively static world, the system 

FREQUENCY OF 
SCHEDULING 

Figure 1: Abstraction and Scheduling 

becomes more like a traditional strategic planner. (See 
figure 1). 

This work was originally implemented to run in a sim- 
ulated environment which was an extension to the Traf- 
fic World modeling the path planning system described 
above [7, 8]. A more ambitious project, currently under- 
way, simulates the environment for a household robot 
in a world consisting of a large number of objects, sev- 
eral agents, and a physical simulation consisting of over 
seventy thousand discrete locations. The success of pre- 
liminary experiments in this domain is described in [21]. 
A drawback of this system, however, is that it uses a 
simplistic scheduling algorithm which cannot guarantee 
the scheduling of requests or provide the sorts of support 
afforded by realistic operating systems. 

To overcome this, we have begun work which focuses 
on the interspersed scheduling of reactive and planning 
tasks using the MARUTI real-time operating system. In 
the next section we summarize the work done in the 
development of the MARUTI system. This is followed by 
a description of some experiments performed to examine 
the use of the MARUTI system for implementing the 
DR-based planning model. 

3     The MARUTI Operating System 

The MARUTI operating system is designed to support 
hard real-time applications on a variety of distributed 
systems while providing fault tolerant operation[l4, 5, 
15]. Its object oriented design provides a communication 
mechanism that allows transparent use of the resources 
of a distributed system. Fault tolerance is provided 
through a consistent set of mechanisms which support 
a number of policies. Most importantly, MARUTI sup- 
ports guaranteed-service scheduling, in which jobs that 
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are accepted by the system are guaranteed to meet the 
time constraints of the computation requests under the 
requested degree of fault tolerance. As a consequence, 
MARUTI applications can be executed in a predictable 
and deterministic fashion. 

The development of hard real-time applications re- 
quires that the analyst estimate the resource require- 
ments for all parts of the computation and then make 
sure that the resources are available in a timely man- 
ner to meet the timing constraints. It tends to be a 
cumbersome process. As a part of MARUTI system a 
set of tools have been developed which support the hard 
real-time applications during various phases of their life 
cycle. 

MARUTI is an object-oriented system whose unit en- 
tity is an object. While the concepts of objects and en- 
capsulation has been used in many systems, incorporat- 
ing these concepts in a hard real-time system required 
numerous extensions. Objects in MARUTI consist of 
two main parts: a control part (or joint), and a set of 
service access points (SAPs), which are entry points for 
the services offered by an object. A joint is an auxiliary 
data structure associated with every object. Each joint 
maintains information about the object (e.g., computa- 
tion time, protection and security information) and its 
requirements (service and resource requirements). Tim- 
ing information, also maintained in the joint, is dynamic 
and includes all the temporal relations among objects. 
Such information is kept in a calendar, a data structure, 
ordered by time, which contains the name of the services 
that will be executed and the timing information for each 
execution. 

An application is depicted by a collection of services 
gathered in a computation graph — a directed graph in 
which the vertices represent services, and the arcs rep- 
resent the precedence (or other relationships) between 
vertices, e.g., children are services requested by parents. 
A job is defined in terms of a computation graph. It 
is submitted to the system by naming the root of the 
computation graph. A job may have timing and fault 
tolerance requirements associated with it. In MARUTI 
a computation graph is associated with each job. 

Objects communicate with one another via semantic 
links. These links are called semantic because they also 
perform some type and range checking in the values they 
carry. This concept permits implementation of other se- 
mantic checks as a part of the implementation of the 
semantic link. Objects that reside in different sites need 
agents as their representative on a remote site. An agent 
is responsible for the remote transmission of messages 
and also for the external data translation of these mes- 
sages. 

There are two types of jobs in MARUTI , namely real- 
time and non-real-time. A real-time job is assumed to 
have a hard deadline and an earliest start time. For 
non-real-time jobs, no time constraints are specified and, 
therefore, jobs are executed on the basis of time and re- 
source availability. MARUTI does not consider priori- 
ties for real-time jobs and all accepted jobs are treated 
equally[23]. (Priorities can be easily incorporated, for 
example, by implementing a scheme for the revocation 

of jobs or a multi-priority queue.) 
MARUTI views the distributed resources as organized 

in various name domains. A name domain contains a 
mutually exclusive set of resources. This concept is used 
in the implementation of fault tolerance using replica- 
tion. In addition, this division of resources is useful for 
the distribution, load balancing, fault independence, and 
feasibility analysis of fault tolerant schemes. 

MARUTI is organized in three distinct levels, namely 
the kernel, the supervisor, and the application levels. 
The kernel is a collection of core-resident server ob- 
jects. The kernel is the minimum set of servers needed 
at execution time and is comprised of resource manip- 
ulators. The main task of the supervisor level objects 
is to prepare the jobs for execution by making reserva- 
tions through the resource manipulators. The functions 
of the kernel are: dispatching, loading, time and commu- 
nication. The services provided at the supervisor level 
include: allocation, schedule verification, binding, login 
service, and name service. 

The object principle and the use of the joints allow 
each access to an object to be direct, and the binding phi- 
losophy of the operating system supports it uniformly. 
Access to an executing object is an invocation of a par- 
ticular service ofthat object. The joint allows many jobs 
to invoke a particular service concurrently, while provid- 
ing full access and timing control. 

The resources needed for the execution of the applica- 
tions are reserved through the resource manipulators at 
the supervisor level, prior to the the start-time of the ap- 
plication. The communication channels, CPU, memory, 
disks, and all other necessary resources are made avail- 
able so that contention is ruled out, and timing guaran- 
tees can be issued by the system. 

The use of joints, and specifically of calendars, allows 
verification of schedulability, reservation of guaranteed 
services, and synchronization. Projection mechanisms 
support propagation of time constraints between differ- 
ent localities. These projections, maintain the required 
event ordering and assure the satisfaction of the timing 
constraints. Furthermore, these data structures facili- 
tate the management of mutual exclusion and protection 
mechanisms. 

Communication among objects is achieved in a dis- 
tributed fashion. Related objects at remote sites are 
linked through local agents. Each local agent is respon- 
sible for communication between its locality and its cor- 
responding remote service, as well as for representing 
the remote site in the communication for schedulability 
verification and reservation ([l, 12, 13]). 

Through the use of semantic links exceptions and va- 
lidity tests are reduced after a link is established. The 
links are created by the binding and loading processes, 
and the protection mechanisms are activated and autho- 
rizations established prior to run-time. This allows di- 
rect access afterwards. Semantic links to remote objects 
are established through their respective agents. 

Jobs in MARUTI are invocations of services in exe- 
cutable objects. The requirement of a reactive system3 

3 Reactive systems are those that accept new jobs while 
executing already-accepted guaranteed jobs[6] 
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justifies supporting real-time and non-real-time execu- 
tion disciplines. We note that the non-real-time jobs are 
assumed to be preemptable so that their processing re- 
quirements can be satisfied in the time slots which are 
available between the executions of real-time jobs. 

Fault tolerance is an integral part of the design of 
MARUTI. The joint of each object may implement fault 
detection, monitoring, local recovery and reporting[l7]. 
Initially, each joint contains a consistency control mech- 
anism to manage alternatives (redundant objects with 
state information) or replicas (redundant stateless ob- 
jects). The resource allocation algorithm supports a 
user-defined level of fault tolerance, where redundancy 
can be established temporally (execute again) or physi- 
cally (parallel execution of alternatives). 

Space redundancy supports node and link failures us- 
ing roll-forward recovery techniques. Critical services 
may be provided by forum and quorum protocols. Prim- 
itives are provided to the user to specify the desired level 
of fault tolerance by replication or retries, alternate ser- 
vices or different modules, voting mechanisms or ma- 
jority queries, backward and forward recoveries. This 
flexibility improves the design of resilient systems. 

A capability based approach is used for protection and 
security [16]. This system is completely predefined prior 
to execution of the jobs. The necessary information for 
the capabilities are stored in the joint, and the capability 
itself is furnished by the user. 

Jobs in MARUTI are viewed by the system as compu- 
tation graphs. Tools are provided to assist in the design 
and verification of application code. To use the primi- 
tives and tools developed, a set of language extensions 
is required. For that reason, a precompiler is used to 
convert a MARUTI program into standard programming 
language constructs. The precompiler also automatically 
generates the joints. While MARUTI supports many dif- 
ferent fault tolerance mechanisms, applications can be 
written without knowledge of the policy used. 

The MARUTI project is an attempt to examine new 
ways of building verifiable systems which provide a com- 
prehensive set of services in support of the requirements 
of mission critical systems including hard real-time, dis- 
tributed operation, and fault tolerance. We started out 
with a new design and one of the goals of the project was 
to investigate new and different ways of implementing 
this system. Our approach has been to start by design- 
ing the system in a general way so that new concepts 
introduced can be evaluated systematically. The design 
incorporates primitive mechanisms but leaves policies to 
the application builders. One of the results of this work 
has been the first comprehensive formulation of the the- 
ory of Time-driven systems (as opposed to the interrupt 
driven design of traditional real-time systems). We be- 
lieve that time driven design is simpler and more easily 
verifiable while directly supporting real-time operation. 
Our experience so far has shown that the complexity 
of the applications is substantially reduced by this ap- 
proach. 

MARUTI has been designed as a platform for the 
study of real-time systems. Its characteristics facilitate 
the development and testing of many different classes of 

applications. We organized this project to allow us the 
greatest flexibility in using MARUTI as a research tool. 
Our first implementation is a prototype on top of Unix , 
running in a distributed environment. This has allowed 
us to port MARUTI to a number of platforms and up- 
grade to faster and better machines as they become avail- 
able. The current prototype has been designed mainly 
for functional verification and ease of modification[l8j. 

4    Real-time AI 

For the planning system described in Section 2 to be 
applicable to complex problems a large amount of run- 
time support for real-time computing is necessary. The 
monitors, viewed as concurrently occuring entities, must 
be implemented in one of two ways: either a massively 
parallel MIMD architecture must be provided, a pro- 
hibitively expensive option for the simple computations 
made by the monitors, or a real-time scheduling sys- 
tem must be used to allow the monitors to access shared 
computational resources (serial or parallel, single or dis- 
tributed). In the past year, we have been perform- 
ing experiments focusing on the use of the facilities of 
MARUTI to support the scheduling needs of the plan- 
ning system. 

The first experiment tried in the integration of 
MARUTI and the planning system was the development 
of a simple real-time control demo aimed at exploring 
the feasibility of implementing the monitoring capabil- 
ities (crucial to the planning system) using MARUTI 
objects. A simple "line tracker" was developed, using 
the monitors of the AI approach. This example was 
then implemented using MARUTI code and run on the 
MARUTI operating system. This task had two goals: 
first, we wished to find out how difficult it would be to 
write monitoring code (formerly developed in Lisp) in 
the augmented C provided by MARUTI, an 1 secondly 
we wished to make sure that the MARUTI scheduler 
could handle the requirements of the monitoring tasks. 

The goal of the tracker was to follow the position of 
a rapidly moving line. The position of the line was rep- 
resented by its X coordinate and it changed with time 
which was represented as the Y coordinate. Therefore, 
at time 50 if the position of the line was 12, and the 
tracker was at 10 it should increase its value for the next 
iteration. On the other hand, if its value was 15 then it 
should decrease the value. 

The system was implemented using three monitors: 
Left-monitor, Right-monitor, and Tracker. Tracker 
would broadcast the current X position to the other mon- 
itors which would compare that X to the observed line 
value (globally available). If the line was to the Left of 
the current value. Left-monitor would require tracker to 
decrement the X value. If the line was to the right of the 
current value, right-monitor would require an increment. 

We were pleasantly surprised by the results of this ef- 
fort. The code was easily developed using the objects and 
services provided by MARUTI. Further, the line tracker 
worked as predicted, with no augmentations needed to 
the current MARUTI system. The tracker, using asyn- 
chronous scheduling of the three monitors and a separate 
process for moving the line (thus making the tracking 
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Figure 2: The line tracker: results 

task less deterministic) converged on correct X values 
and kept the tracker within a small bounded interval of 
the rapidly moving line. Figure 2 shows part of the out- 
put of a standard run. The Y dimension represents time, 
the filled circles represent the position of the tracker at a 
given point in time, while the empty cirles represent the 
position of the line. As can be seen, the line is moving 
rapidly with respect to the speed of the tracker. Still, 
the tracker is able to stay close to the line and make 
appropriate adjustments as necessary. 

To examine the capabilities of using MARUTI to in- 
tegrate monitoring with some (simple) rule-based plan- 
ning (using the abstraction technique described in Sec- 
tion 2), we have implemented a demonstration of the 
use of the MARUTI -based planning system as a more 
complex controller. We have developed a simple "pur- 
suer/evader" scenario, in which a "plane," controlled in 
two dimensions by the planning system, must capture an 
"evader" which is separately controlled by a user. In ad- 
dition, a set of simple "rules of engagement" are used by 
the system to determine behavior. (A schematic view 
of the system, along with the rules of engagement are 
shown in figure 3). 

In the implemented scenario, the pursuer must decide 
how to update its course and speed based on a combi- 
nation of the actions taken by the evader (which are de- 
tected via monitoring information extracted from a sim- 
ulated sensing capability) and a user controlled "mode" 
over which the pursuer has no control. The system 
reaches a decision as to whether to "track" the evader 
(converging on a position near the evader and then set- 
ting course and speed to be equivalent to the evader's) 
or whether to "attack" (setting course and speed so as 
to converge on the actual location of the evader). The 
system must, of course, be able to switch modes quickly 

Modes: 

Attack: speed * max; course * Intersect. 

Track: 

II dlsl(p,e) < Y units 

then speed=speed(e) 

course s course(e) 

else speed = max 

course s loc(e) - Y/2. 

Rules of engagement: 

mode ■ track. 

It condltjon(red) & dlsl(e.base) < X units 

mode > attack 

else-lf conditfon(yellow) & dlstfobase) < X/2 units & 

approachlng(e,base) 

mode > attack 

else-lf condition (green) & dlst(e,base) < X/8 units & 

approaenlngte.base) 

mode c attack 

Figure 3: Pursuer/Evader 

if the externally generated condition changes (say from 
"red' to "yellow") or if the evader changes direction. In 
experiments, the system has reliably been able to pursue 
the appropriate course of action and to make appropriate 
decisions. 

This demo, although still relatively simple, requires 
the primary capabilities for mission critical planning (de- 
scribed in Section 1): 

1. Real-time response. The pursuer must monitor the 
evader and the world condition both rapidly and 
often enough to guarantee a response before it can 
be outmaneuvered. 

2. Context sensitivity. The appropriate actions to be 
taken by the pursuer are contingent not only upon 
the monitored actions of the evader, but also based 
on the current mode (attack or track) and the ex- 
ternally dictated condition. 

3. Planning or rule-based reasoning coupled with reac- 
tion. The pursuit control planner, although sim- 
ple, makes decisions as to how to set the speed and 
direction of the pursuer based on the rules of en- 
gagement coupled with the mode. The system must 
both react to the evader and make appropriate at- 
tack/track decisions and the corresponding course 
adjustments. 
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We are currently focusing on extending these capabili- 
ties, automating the provision of scheduling information 
to the real-time operating system, generating more flex- 
ible real-time scheduling (to meet the sometimes chang- 
ing demands of the AI system), and demonstrating all of 
this in a more realistic demonstration of mission critical 
planning. 

5     Current Research Directions 

The use of the MARUTI-based AI planning system to 
perform mission critical emergency response in a more 
realistic domain requires new capabilities for both the 
AI and real-time components of the system. 

5.1     AI Requirements 

The scheduling requirements of the monitoring and plan- 
ning components of the AI system are currently gener- 
ated by hand. Thus, although a description of the nec- 
essary monitors and their interactions with the planners 
are developed in the original planning, their scheduling 
needs are currently computed separately and then added 
to the code in an appropriate manner. It is clear that for 
such a system to scale up to considerably larger tasks, 
the scheduling requirements must also be generated by 
the overall planning system. 

We are currently working on an approach to this prob- 
lem based on a formula for maximum reaction delay 
developed by Georgeff and Ingrand [4]. This formula, 
AJ? = p/l — nt is used to represent the maximum 
amount of time that a system can take in reasoning 
about changes in the world without being forced to ig- 
nore events. We are currently exploring the use of this 
formula in another way, to determine the critical inter- 
vals at which the world needs to be sampled given n 
events. Thus, a monitor which takes Xm time to exe- 
cute its primary condition checking must be scheduled 
at intervals of AR with a time of Xm. The Xm's can be 
precomputed for each class of monitor, while the values 
of AR are computed based on the expected number of 
certain types of events in the environment, which can 
be computed at planning time (with a known probabil- 
ity). Thus, these numbers serve as a reasonable heuris- 
tic for generating the scheduling deadlines needed by the 
MARUTI system (i.e. the time and frequency require- 
ments of each of the objects). 

This roproach to computing the scheduling dead- 
lines also dovetails neatly with the abstraction-based 
approach described in section 2. In such systems, the 
change in the world at higher levels of abstraction (such 
as a projected missing of some deadline in the path plan- 
ning system), can be expected to happen significantly 
less frequently than actions at the lowest level (such 
as the change in the position of moving objects in the 
world). Thus, the scheduling deadlines generated by this 
approach will be less frequent for the higher level objects 
(which also take longer; Note the correspondence with 
Figure 1). 

In addition to this applied work, we are currently 
working on extensions to a formalization of the abstrac- 
tion work which focuses on the recognition of informa- 
tion which significantly violates expectations projected 

at run-time. We have currently formalized the moni- 
toring tasks in a temporal logic which allows the prop- 
agation of information between levels using a notion of 
abstract logics. We are now working towards extending 
this approach to handle non-monotonic abstract logics 
and a localized control of inconsistencies arising during 
monitoring [22]. 

5.2     Real-Time Requirements 

To support the sort of complex reasoning required by the 
mission critical AI planning demonstration described in 
this paper, the MARUTI system needs to be extended 
to handle more flexible scheduling. While a dynamic 
scheduler that could guarantee all requests would be met 
would be ideal, such a system cannot be built. Instead, 
either a guaranteed request scheduler or a. more dynamic 
scheduler can currently be implemented. As the guaran- 
teed scheduling is crucial to mission critical computing, 
we are currently exploring ways to provide more flexibil- 
ity without compromising this important feature of the 
system. 

One approach we are exploring is the use of non-real- 
time jobs (those scheduled by MARUTI as time permits) 
to augment the capabilities of the system. Thus, tasks 
which are determined to be useful, but not essential, can 
be scheduled as non-real-time jobs. These tasks include 
both AI related events (such as minor variations on the 
plan introduced for optimization) as well as information 
gathering and record keeping tasks executed by the real- 
time system to provide feedback for the future scheduling 
of similar tasks, or to provide a higher level of fault tol- 
erance. (This work is somewhat similar to that of Durfee 
[3] which has examined the use of a distributed real-time 
system to support AI applications. Durfee has examined 
the use of "dummy" events, which are scheduled by the 
real-time system but which only execute if time allows.) 

A more ambitious approach is the use of a context- 
switching like approach, which allows a set of schedules 
to be predetermined and then switched in response to 
information gained at run-time. In MARUTI this facility 
is provided as scenario facility in which jobs run in a set 
of predefined scenarios. Such a capability would allow 
for the AI system to recognize specific situations and 
literally change the mode of execution to react to them. 
This approach dovetails neatly with the use of cached 
plans, a technique currently used in the AI community 
to improve the efficiency of reaction in planning svstems 
(cf. [20]). 

In addition to extensions to MARUTI to support the 
AI work, the operating system is being improved in nu- 
merous other ways. These include: 

1. Support of transparent heterogeneous computing, 

2. Support of multiprocessors at a computing node, 

3. Native kernel development, 

4. Extended program development support environ- 
ment. 

6     Conclusions 

In this paper we have discussed preliminary work in 
the implementation of an AI planning/reaction system 
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which can run on the MARUTI hard real-time operat- 
ing system. In addition to reviewing both the AI and 
real-time technologies, we have performed several sim- 
ple demonstrations showing the feasibility of using these 
techniques for mission-critical planning systems - those 
which must guarantee real-time response in reacting to 
complex situations. We also describe some of the chal- 
lenges which such guaranteed-response AI systems pose 
for both the AI and the real-time computing communi- 
ties. Current efforts focus both on a continuing effort to 
implement the extensions to both parts of this system, 
and on the development of more complex scenarios for 
testing these ideas. 
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Abstract 

Responding to environmental change is perhaps 
the most difficult aspect of designing agents to 
plan and act in complex dynamic environments. 
In this paper, we analyze the environmental re- 
sponse requirements of such an environment, pro- 
vided by the Phoenix forest fire fighting simula- 
tor, and describe three mechanisms that together 
address the demands of that environment. The 
limitations on response imposed by the environ- 
ment are described in terms of "windows of re- 
sponse opportunity". This framework matches the 
demands of the different types of environmental 
change occuring in the environment to the abili- 
ties and limitations of the mechanisms intended to 
address change. As applied in the Phoenix envi- 
ronment, it motivates the design of three differ- 
ent mechanisms that address three different types 
of change. The three mechanisms, reflexes, lazy 
skeletal expansion, and responsive adaptation, are 
described in detail, and their interaction with the 
environment is illustrated in an example. 

1     Introduction 

Environmental conditions change. In the most advantageous 
cases, the change is caused by the efforts of agents working to 
control aspects of the environment. In the least, the changes 
are caused by environmental forces, which may or may not be 
predictable. Whether the environmental change is detrimen- 
tal to an agent depends upon whether the agent's actions, 
both thinking and effecting, are responsive to those changes. 

Responsiveness requires timely appropriate action in re- 
sponse to environmental change. When a truck is driving 
toward you in your lane, timely is immediate and appropri- 
ate is a simple evasive action.   When a hurricane is due to 
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arrive tomorrow, timely is within the next day and appropri- 
ate is a complex combination of actions intended to protect 
home and family. Different types of environmental changes 
require different types of responses. An agent must take ac- 
tions appropriate to and within the time frame of the types 
of events in its environment. In this paper, we describe how 
agents in the Phoenix system are responsive to changes in 
their environment. 

2     Responding to Change in Phoenix 

Agents in Phoenix work to contain simulated forest fires in 
Yellowstone National Park[4]. Fires are contained by re- 
moving fuel from their paths, causing them to burn out. 
This process, called building nreline, requires the coordina- 
tion of several field agents to surround the fire with fireline. 
One agent, the fireboss, coordinates the activities of semi- 
autonomous field agents, bulldozers, to build fireline at many 
points around the fire. Fire spread is influenced by many 
environmental factors: wind speed, wind direction, terrain 
cover, elevation gradient, and moisture content. The fire's 
overall shape and spread is determined by these factors, but 
so many minute factors are involved in the precise spread of 
the fire that it is not possible to predict the exact time at 
which a particular point on the map will catch fire. 

2.1     Response requirements for the Phoenix 

environment 

The primary constraint on responsiveness is time. For any 
environmental change, there is a "window of response oppor- 
tunity", the time during which the agent can respond. In the 
example of the truck in the wrong lane, the window is very 
narrow and once the window has passed, it is simply too late 
to act. 

The window starts when an environmental change is per- 
ceived (T-uti). It ends when the effects of that change occur 
(Twe). These two points define the window, the time delay 
between perception of a change, real or impending, and its 
effect (shown in Figure 1). For certain classes of environmen- 
tal change, the delay will be short (e.g., the truck); for some, 
it will be longer (e.g., the hurricane). However, environmen- 
tal forces are not the only influence on window size. Actions 
often require some start up time or overhead between their 
initiation and their effects; for example, the time delay be- 
tween deciding to put on the car brakes and the car's stop 
is significant enough to require a safe following distance. So, 
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Figure 1: Environmental Change Window of Response 

response overhead (Tw) can narrow the window. The win- 
dow that remains is the amount of time left to decide how 
to act. 

The Phoenix environment includes two qualitatively dif- 
ferent kinds of environmental change distinguished by their 
response windows. Narrow response windows are common 
when environmental change is unpredictable. For example, 
when agents work close to the fire, rapid response is neces- 
sary if the fire suddenly threatens to engulf them. Wider 
response windows are common when environmental change 
is gradual. For example, it takes simulated hours or days to 
surround even small fires which allows at least hours to make 
strategic decisions about containment. 

Because agents must respond to both types of change, they 
need mechanisms to address both. A narrow window sug- 
gests rapid decision making (to minimize the decision time) 
and simple action (to minimize the response overhead). If 
the window is too narrow, it precludes deliberation and com- 
plex responses, but encourages reactivity. A wide window 
affords time to deliberate over the best response. Reactive 
and deliberative approaches have different fundamental limi- 
tations: reactive approaches guarantee response within fixed 
time bounds and so cannot use additional time even if it is 
available; deliberative approaches cannot guarantee response 
within short fixed time, but can exploit additional decision 
time. The fundamental differences in time usage for the 
two approaches conflict, which precludes incorporating them 
both in the same mechanism. Thus, Phoenix agents need 
two separate mechanisms: a reactive mechanism, which we 
call reflexes and a deliberative mechanism, which we call lazy 
skeletal expansion. 

Together, reflexes and lazy skeletal expansion form a two- 
layer response system. As in Brooks' subsumption architec- 
ture [3], each layer provides a particular level of competence. 
Reflexes address change that occurs faster than lazy skeletal 
expansion can respond to it; lazy skeletal expansion coordi- 
nates actions and avoids detrimental plan interactions. 

As discussed, the response window is defined by the time 
delay between when a change is perceived and when its ef- 
fects are felt. The response window assumes that the agent 
notices the change at the moment that the window opens 
and immediately starts formulating a response. However, 
because agents may have already committed to other actions 
(e.g., attending to different fires), additional time may pass 

Tcb   Twb 

a:   Commitment is flexible within 
demands of response window 

cb wb wd ce 
b:  No response flexibility due to 

commitment 

Figure 2: Environmental Change Window Compared to Re- 
sponse Flexibility 

between when the environmental response window opens 
and the agent notices it. Lazy skeletal expansion attempts 
to minimize the additional time by deferring commitment, 
as much as possible, to a precise course of action. When 
necessary commitments have a duration less than the re- 
sponse window, environmental change can be addressed by 
lazy skeletal expansion. Figure 2, part a, displays this re- 
lationship, with Tcb indicating the commitment beginning 
and Tce indicating commitment end; note that the commit- 
ment ends before the response window does. When the win- 
dow has shorter duration than the commitment, then the 
planner may commit to a course of action that may be ren- 
dered impossible by the environment (as shown in Figure 2, 
part b), thus, resulting in plan failure. Because it isn't al- 
ways possible to defer commitment, another mechanism is 
required to adapt the commitment structure (i.e., plans) 
in response to the detrimental environmental change. We 
call this mechanism responsive adaptation because it adapts 
plans in progress in response to detrimental environmental 
change. 

All agents, fireboss and field agents, share a common agent 
architecture that includes these response mechanisms. That 
architecture consists of four basic components: sensors, ef- 
fectors, reflexes and a cognitive component. Sensors perceive 
the state of the environment. Effectors take physical action 
for the agent in the environment. Reflexes change the set- 
tings of effectors to respond within a narrow window. The 
cognitive component is responsible for tasks related to delib- 
erative response, action coordination and resource manage- 
ment. The cognitive component includes both lazy skeletal 
expansion and responsive adaptation. In response to envi- 
ronmental conditions, it selects plans from the plan library 
and adds them to a partially ordered agenda structure, called 
the timeline, for later execution (this process is part of lazy 
skeletal expansion and wDl be explained in more detail in Sec- 
tion 2.3). The information and control relationships among 
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these components are displayed in Figure 3. 
The three mechanisms: reflexes, lazy skeletal expansion 

and responsive adaptation, account for the range of response 
that are demanded by the Phoenix environment. Reflexes 
change what the agent is currently doing. Lazy skeletal ex- 
pansion changes what the agent is planning to do. Respon- 
sive adaptation changes how the agent was planning to do 
something. The remainder of this section will describe, in 
detail, the three mechanisms that together ensure respon- 
siveness in Phoenix. 

2.2     Reflexes 

Reflexes provide time-bounded responses to critical situa- 
tions. They compensate for the time delay between when 
a situation occurs and when the cognitive component can 
notice and deal with it. As such, they constitute an archi- 
tectural component specialized for rapid, simple response. 

Reflexes are associations between sensors and effectors me- 
diated by two simple functions, one for triggering reflex ex- 
ecution based on sensor readings (the trigger function) and 
one for changing effector settings based on those sensor read- 
ings (the response function). Trigger functions are simple 
functions of the sensor readings, such as whether the value 
exceeds a threshold or equals some value. Response func- 
tions make simple changes to effectors, turning them off or 
on or making minor parameter adjustments. These functions 
rely only on currently available sensor readings; reflexes re- 
tain no persistent state information other than the values 
of the operating parameters. These parameters define reflex 
sensitivity and are set by the cognitive component. 

Reflexes are activated in tandem with the sensors and ef- 
fectors. After a sensor executes, trigger functions, which link 
the sensor to particular reflexes, are executed to determine 
whether the associated reflexes should be activated. The 
trigger function may rely on values from more than one sen- 
sor; in which case, it simply checks the most recent readings 
for the critical sensors. When activated, the reflex executes 
the response function to change effector settings. For exam- 
ple, when the sense-road-heading sensor has a value different 
than the sense-agent-heading sensor, the follow-road reflex 
changes the heading parameter of the movement effector to 

maintain the road heading. 
The time required for response by the reflexes is bounded 

by the activation rate of the sensors. Reflexes are executed 
immediately after the sensors and require little time to exe- 
cute. Thus, the agent can respond as quickly as its sensors 
can notice the environmental change, which reduces the re- 
sponse time from the cycle time of five simulation minutes re- 
quired by the cognitive component, to seconds of simulation 
time. This approach can be contrasted with that adopted 
in PRS[7]. PRS includes all responses (called KAs) in the 
same framework and relies on the most crucial of them be- 
ing quickly selected and executed. That is, it relies on fast 
KAs for reacting to crucial situations. This produces a guar- 
anteed "reactivity delay" of s + t where s is the maximum 
time to determine the KAs applicability and i is the cycle 
time (as dictated by the maximum time required to execute 
a primitive action). 

Reflexes respond to environmental changes that have nar- 
row response windows. Consequently, imminent disasters 
are prevented, but sometimes, at a cost of temporarily stop- 
ping progress in a plan. As a result, when reflexes change 
the settings of an effector, superseding those of the cognitive 
component, the reflexive component sends a message to the 
cognitive component warning it of the change. This interac- 
tion is described in further detail in Section 2.4. 

2.3     Lazy Skeletal Expansion 

Lazy skeletal expansion responds to environmental change 
characterized by wide response windows. Deferring commit- 
ment to a precise course of action maximizes the opportunity 
for change to influence decisions. Skeletal plans provide a 
structure in which to base action decisions, which expedites 
action coordination and minimizes interactions. 

Deferred commitment is accomplished by interleaving 
three basic activities: find, expand, and execute. Find plan 
actions are placed on the timeline as part of plans (to defer 
commitment to a particular plan or action) or in response 
to exceptional conditions (as noted by messages from the re- 
flexive component or from other agents). These actions use 
their context within the timeline to search the plan library 
for skeletal plans appropriate for the context and the cur- 



rent state of the world. For example, if the find plan action 
is to get an agent to the fire, the context includes informa- 
tion about the type of fire fighting plan it is part of, the 
techniques being used to fight the fire, and the coordination 
needed with other agents, in addition to the location of the 
fire. Expand plan actions instantiate the plan's network of 
actions on the timeline. Execute actions calculate variable 
values, manage resources, and control the agent's interac- 
tions with the world. As the timeline actions are executed, 
plans and actions become incrementally added, sensors and 
effectors are activated, and the agent pursues the plan. Ac- 
tions become eligible for execution only when the siblings 
that precede them have already executed; even then, exe- 
cution may be deferred until information about the state of 
the world is available. Because plans are combinations of 
primitive actions and plan expansion actions, this leads to 
interleaving of action and planning. 

Skeletal plans have four parts: applicability conditions, re- 
source requirements, execution methods, and an action net- 
work. Applicability conditions describe the conditions un- 
der which the action is appropriate. Resource requirements 
describe the expected time, information (as represented by 
variables), and physical resource needs of the action. Exe- 
cution methods are the procedures for executing the action, 
i.e., what gets called when the action is chosen for execution. 
An action network is a network of problem solving actions as- 
sociated by temporal and data dependencies. Figure 4 shows 
a "generic" Phoenix plan as it might become expanded on 
the timeline. Vertical lines indicate that the higher action 
placed the lower action on the timeline. Horizontal lines are 
temporal relations between actions. The boxes under the 
action further describe some of its characteristics. 

Skeletal planning has previously been applied in domains 
in which planning and acting are completely separate, can- 
cer therapy advice [13] and experiment design [6]. While the 
goals and implementation of these other skeletal planning 
projects are rather different, the structure of the planning 
is much the same. Lazy skeletal expansion is similar to the 
planning method employed in PRS[7]. KAs, the represen- 
tation for procedural knowledge, include an invocation con- 
dition, which specifies when the KA is useful, and a body, 
which describes the sequence of subgoals which constitute 
the procedure. Thus, the structure of PRS is similar, but 
the control is distinct. At each execution cycle, PRS checks 
all KAs for applicability, selecting one for execution. In 
Phoenix, only actions on the timeline are considered for ex- 
ecution. Thus, PRS provides for more reactive planning, but 
at the expense of being unable to allocate time and schedule 
actions beyond an execution cycle. The timeline structure 
in Phoenix was designed to support real-time scheduling of 
actionsfll], but does complicate plan modification. 

2.4     Responsive Adaptation 

When lazy skeletal expansion overcommits to a course of 
action and crosses over an environmental response window, 
plan failures can occur. Failures occur when the plan either 
cannot continue or cannot succeed if it does continue. In 
effect, the environmental change response window conflicts 
with plan commitment. In Phoenix, this mismatch is a result 
of: non-local interactions, uncertain or obsolete information, 
unpredicted changes, and novel situations. 

Non-local interactions occur when the agent attempts to 
respond, in parallel, to different environmental changes and 
so overcommits its resources. For example, the fireboss treats 
each fire in the environment as a separate situation, mak- 
ing decisions about containment largely independently; yet, 
the resources for controlling the fires are fixed and must 
be shared between the situations. Consequently, decisions 
about changing resource allocation to a particular fire impact 
and may thwart resource expectations for plans in progress 
on a different fire. 

Uncertain information causes failure when the agent is 
forced to commit resources without being certain of the mag- 
nitude of the need. For example, fires that appear at the 
periphery of view may look small to a watchtower, but may 
actually be conflagrations. Without better information, the 
fireboss must take an "educated guess" at the real situation 
and commit field agents to contain it, accepting the possibil- 
ity that more or fewer agents may actually be needed. 

Unpredicted changes naturally produce failure. Fire fight- 
ing involves working in constrained situations that are vul- 
nerable to unexpected changes. If the wind changes unex- 
pectedly, a previously safe area in which to build fireline may 
become dangerous. 

Finally, novel situations require commitment to plans that 
may not actually be best for the situation. When environ- 
mental change results in a novel situation, the agent may not 
know to respond. 

The responsive adaptation mechanism responds to envi- 
ronmental changes by adapting plans in progress. Plans pro- 
vide the structure for controlling action coordination, unde- 
sirable plan interactions and resource use. Thus, the expec- 
tations included in the plan structure should be preserved, 
while still addressing the changes in the environment; so, re- 
sponsive adaptation should change the intended plan by the 
minimum required for the agent to resume acting. It should 
make the changes as quickly as possible because computa- 
tion time is itself a resource and because the response window 
may have been closed before the response is computed. 

Because the process of adapting plans is an action within 
the context of the plan, it should be accessible to other 
problem solving mechanisms that direct and constrain the 
agent's actions, such as resource allocation. Because respon- 
sive adaptation is activated when exceptional conditions oc- 
cur, it should provide broad coverage of possible situations; 
it is the mechanism of last resort. Georgeff etal in [7] de- 
scribe examples of bizarre behavior in PRS that results from 
"mis-applying" actions to novel situations. Without a gen- 
eral replanning capability, an agent repeatedly performs the 
same inappropriate behavior. 

2.4.1     Detecting Failures 

The agent detects failures when it cannot successfully con- 
clude an action or plan. Three mechanisms signal failures: 
execution errors, reflexes, and envelopes. Execution errors 
occur when an action cannot execute to completion because 
the state of the world does not match the assumptions, in- 
formation is not yet available, or, for some problem solving 
actions, no solution exists. When the agent encounters a 
dangerous environmental condition, reflexes change effector 
programming to remove or at least reduce the danger. If 
this change of programming conflicts with the programming 
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Figure 4: "Generic" Phoenix plan as represented on the timeline with information about inter-dependencies 

previously set as part of a plan action, then the reflex signals 
a failure. 

Both execution errors and reflexes signal obvious failure in 
that the plan is actually prevented from executing. Deter- 
mining whether an on-going action can ever succeed requires 
active monitoring of the progress of the action. Envelopes de- 
tect impending failures [8; 12]. They perform sophisticated 
monitoring of the plan's progress in the world, integrating 
the efforts of many agents, to determine whether the plan 
can complete within its environmental and resource limita- 
tions. If a plan will be unable to complete successfully under 
the present conditions, the performance envelope is violated 
and an impending failure is signaled. 

2.4.2     Responding to failure 

The detection mechanisms signal failures by adding ac- 
tions that find recovery plans to the timeline, placed in par- 
allel with the action that initiated them. These actions in- 
clude readUy available information about the failure trigger, 
the agents involved, and the error type. Recovery actions 
are structured like other planning actions in that they have 
a context within other plans; they reference variables and in- 
formation available in that context; they are scheduled like 
other actions; and they employ the same planning method- 
lazy skeletal expansion-for deciding on response. As a type 
of planning action, adaptation can be smoothly integrated 
into the planning process. As a timeline action, adaptation 
has access to the same memory structures and is subject 
to the same resource management techniques as are other 
timeline actions. 

Responsive adaptation in Phoenix searches the plan li- 
brary of general recovery plans for one appropriate to the 
failure. These plans are represented in the same action de- 
scription language as the domain plans and so are interpreted 
by the standard execution methods. The plan structure as 
it is represented on the timeline (and displayed in Figure 4) 
defines a context or locality for action, indicates depen- 
dencies between actions and distinguishes decision points. 
These structural characteristics provide backtracking points 
for adapting the plan. Decision points are actions in the plan 

structure that rely on environmental context to direct their 
execution. Any action that binds variables or calculates vari- 
able values based on context is a decision point. Actions that 
select other plans for execution use environmental context to 
determine applicability, and so are certainly decision points. 
The following recovery plans use the plan structure to iden- 
tify decision points and dependencies between the decision 
points and the failure point to support recovery: 

• Wait and then re-execute the failed action. 
• Reinstantiate the action, updating values for its vari- 

ables. 
• Select an alternative execution method for the failed 

action. Some execution methods sacrifice accuracy for 
computation speed; sometimes, the accuracy is neces- 
sary. 

• Re-calculate values for variables used in the action. 
Some variables are calculated by actions that were 
executed earlier in the plan; this action involves re- 
executing a previous action that set a variable used in 
the failed action. 

• Substitute other variables of the same type as those 
used in the action. 

• Substitute a similar plan step for the failed action that 
produces approximately the same effect in the environ- 
ment. 

• Allocate additional resources to the plan. 
• Re-execute the parent plan selection action, i.e., re- 

plan. 

The recovery plans make mostly simple repairs to the 
structure of the evolving plan. As such, they can be used 
in different situations, do not require expensive explanation, 
and ensure full coverage of all possible failures-the agent 
must be able to do something. SIPE [14] and IPEM [2] 
rely on a similar strategy of replanning by general plan re- 
pair methods. This strategy sacrifices efficiency for general- 
ity and so results in a planner capable of responding to any 
failure, but perhaps in a less than optimal manner. 

Like any plan in Phoenix, recovery plans have applica- 
bility conditions to guide their selection.   When a failure is 
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Figure 5: Bulldozer building fireline in indirect attack plan 

recognized, the find-plan method searches the recovery plans 
for the most appropriate and adds it to the timeline at the 
current location for execution. Because these responses are 
general, they may not always work. Failure of a recovery 
plan works much the same as any failure, except that rather 
than repair the recovery plan, the system will select another 
method to repair the original failure. Thus, responsive adap- 
tation should always have some response to environmental 
change that has eluded the other mechanisms. 

3    An Example from Phoenix 

Fires are fought by building barriers to prevent further 
spread. Building fireline close to the edge of the fire min- 
imizes the loss of forest, but maximizes the agent's vulner- 
ability to the fire. A more conservative strategy is to fight 
fires with indirect attack, which involves predicting the likely 
spread of the fire and building line around it so that the field 
agents can completely surround the fire before it reaches the 
fireline. 

The indirect attack plan determines where to build fireline 
to contain the fire at some designated point in the future, al- 
locates the field agents needed to do so, and sends the field 
agents out to build their first segments of fireline. Relying 
then on lazy expansion, the plan is expanded further in re- 
sponse to messages from the field agents on their status, e.g., 
if they've encountered problems, need fuel, or have finished 
their last assignments. Only when information about field 
agents' status is known does the planner commit the agents 
to a course of action and so further expand the plan. In this 
way, the planner can be responsive to environmental changes 
that impact what the agents should be doing and exactly how 
they should be doing it. 

^ Lazy skeletal expansion may keep agents from being as- 
signed to work in a currently dangerous area, but it will not 

necessarily keep them from danger if the situation changes. 
If the wind has shifted or the fire spread more rapidly than 
predicted, the fire may cross the assigned fireline segment. 
Figure 5 shows a bulldozer (on the left) building a fireline 
segment (shown as a dotted line) which has been crossed 
by fire (shaded grey area south of the bulldozers). When 
sensors detect fire in the bulldozer's path, they trigger an 
emergency-stop reflex. This reflex programs the movement 
effector to stop, thus re-setting the programming installed as 
part of the plan. The reflex sends a message to the cogni- 
tive component which causes a failure signaling action to be 
added to the timeline, registering the emergency stop. 

When the failure action is noted and executed, the plan- 
ner searches for an appropriate response. Several recovery 
responses are possible: the plan variable for the fireline seg- 
ment could be re-calculated, the build line action could be 
replaced by another type of build line action, or the parent 
plan could be replaced by another. In this case, the agent 
chooses to re-calculate the fireline segment variable because 
it is the cheapest action that is applicable. In Figure 6, 
the bulldozer has executed this recovery plan and completed 
building the fireline while still avoiding the fire. If this action 
had not worked because the fire had engulfed the endpoint 
of the fireline segment, the bulldozer could replace the origi- 
nal build line on path action with an alternative action, build 
line parallel to fire action that would change its behavior to 
direct attack, or it could have selected a new plan entirely. 

4    Understanding Responsiveness in 
Phoenix 

The three responsive mechanisms in Phoenix cover the range 
of environmental change that an agent will encounter in this 
environment. These mechanisms work because they are de- 
signed to address the demands and exploit the facilitating 
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Figure 6: Bulldozer completes building line, albeit not in the originally planned location 

characteristics of the environment. Reflexes can rely on sim- 
ple triggers and make simple responses because rapid catas- 
trophic change is easily recognized and can be averted by 
simple evasive response. The reactive strategy supported by 
reflexes has been successful in other systems operating in 
domains with these demands [1; 5]. Moreover, catastrophic 
change is relatively rare in the Phoenix environment. Gener- 
ally, Phoenix provides a forgiving environment. Agents may 
pursue plans that are not the best and still manage to contain 
the fire, but at a higher cost. This forgiving nature allows 
the agent to use skeletal plans in different situations and to 
rely on general methods for responsive adaptation without 
risking disaster. 

Action in the environment is characterized by stereotypi- 
cal plans. Most of the basic strategies for fighting forest fires 
in Phoenix can be represented by a relatively small number of 
skeletal plans. Additionally, because most actions take place 
in different geographic locations, interactions are essentially 
limited to resource contention, which can be accommodated 
in the plan structure. Thus, we reduced the need for reason- 
ing about plan interaction by using skeletal structures that 
have "compiled out" that reasoning. 

With their responsive mechanisms, agents can respond to 
any environmental change. Unfortunately, in the current 
state of development, they cannot always recognize change, 
and their responses are not always successful. Change is dif- 
ficult to recognize when its detection depends on something 
not happening or depends on interactions of action and en- 
vironmental forces. For example, the fireboss must conjec- 
ture that a bulldozer agent has become incapacitated when 
it fails to make contact. The fireboss must predict that a 
plan will not succeed when the fire starts to expand more 
quickly than it can be surrounded. Fortunately, research on 
envelopes [8; 12] will address recognizing detrimental envi- 
ronmental change, as early as possible, in these difficult to 

detect situations. 
Responses are not always successful because the plan li- 

brary is incomplete. The scope of environmental factors that 
define situations and the difficulty of anticipating precisely 
the width of response windows for change in different situ- 
ations makes it difficult to build a plan library that offers 
"best" plans for any situations. The agent should learn ap- 
propriate plans for itself by experimenting in its environ- 
ment. A project currently in progress seeks to have the 
agents do just that [9; 10]. 

Phoenix provides a rich environment in which to explore 
notions of responsiveness. It forces agents to confront quali- 
tatively different types of environmental change and respond 
to them. Understanding the nature of the response demands 
of the environment is crucial to the design of mechanisms for 
addressing those demands. The success or failure of agents 
depends upon the ability of those mechanisms to respond 
appropriately to their environment. 
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Abstract 

In many real-world situations, a planner is part 
of an integrated problem-solving environment 
and must operate concurrently with other plan- 
ners and special purpose inference engines. Un- 
like the traditional AI planners, planners op- 
erating in such concurrent environments have 
to contend with an evolving problem specifica- 
tion, and should be able to interact and coordi- 
nate with the other modules on a continual ba- 
sis. This in turn poses several critical require- 
ments on the planning methodology. In this 
paper we identify the ability to incrementally 
accommodate the changes necessitated by the 
externally imposed constraints into the existing 
plans, and the ability to understand and reason 
about the rationale behind externally imposed 
constraints at an appropriate level of detail as 
two crucial requirements for planning in such 
environments. We then explore directions for 
extending classical hierarchical planning frame- 
work to handle those requirements. 

1     Introduction 

In many real-world situations, a planner is part of an 
integrated problem-solving environment and must oper- 
ate concurrently with other planners and special pur- 
pose inference engines (collectively referred to as SDMS 
in this paper). The SDMS concentrate on different spe- 
cialized considerations and interact with the planner 
to post various feasibility and optimality driven con- 
straints on the evolving plan. Consider, for example, 
the problem of generating process plans in concurrent 
design environments [Cutkosky and Tenenbaum, 1990, 
Kambhampati and Tenenbaum, 1990, Kambhampati 
and Cutkosky, 1991].1 A goal of concurrent design is to 
do as much manufacturing planning and analysis as pos- 
sible during design evolution, rather than waiting for the 

*We acknowledge the support of Office of Naval Research 
under contract N00014-88-K-0620. 

1A process plan specifies the sequence of setup, fixtur- 
ing and machining operations for manufacturing a given part 
(typically described as a set of machinable features). 

design to be complete. A typical planner in this environ- 
ment will have to operate concurrently with SDMS spe- 
cializing in such considerations as geometric analysis, fix- 
turing, tolerancing etc., all of which influence planning. 
Another example is the DARPA logistics planning sce- 
nario where several disparate specialized planners (such 
as evacuation planners, mission planners etc.) are re- 
quired to cooperate with each other to make a global 
transportation plan. 

Planning in these environments a continual rather 
than one-shot process as the constraints imposed by the 
SDMS on the plan force the planner to contend with a 
continually evolving problem specification. The planner 
needs to respond to the specification changes in a con- 
tinual rather than batch driven mode (i.e., the planner 
cannot wait for all the changes to be complete) as the 
feedback from the planner often guides the behavior of 
the other modules in the environment. Further more, 
the planner needs to understand the rationale behind 
the externally imposed constraints so that it can play an 
active role of coordinating its actions with the SDMS . 

The classical planning paradigm [Chapman, 1987] fails 
to adequately handle the requirements of these envi- 
ronments as it considers planning as a one-shot task of 
constructing a partially ordered sequence of actions for 
achieving a given set of goals. The planner works un- 
der the assumption that it is an isolated module with 
all knowledge relevant to plan generation at its disposal. 
This paradigm only accounts for the intra-plan interac- 
tions, and ignores the interactions between the planner 
and the other modules of a problem-solving environment. 

To deal with the special requirements of planning 
in concurrent environments, the planning methodology 
needs to be extended to provide the following capabili- 
ties: 

• Incremeniality  and  accommodating  external con- 
straints 

The planner needs to respond to the changes in 
its specification and externally imposed constraints 
by updating its plan efficiently and conservatively. 
During this update process, it needs to be incre- 
mental and reuse as much of its existing plan as 
possible, as starting from scratch every time some 
constraint changes can be prohibitively expensive. 
Thus, to function effectively in a concurrent envi- 
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ronment and interact with other modules efficiently, 
a planner needs to be incremental in its operation. 

•  Coordination  and understanding  rationale  behind 
externally imposed constraints 

To anticipate external interactions and to coordi- 
nate its actions with other modules in the environ- 
ment, a planner in a concurrent environment needs 
to be able to understand and reason about the ratio- 
nale behind the externally imposed constraints. To 
facilitate this, a systematic interface methodology 
between the planner and the other heterogeneous 
modules of the environment needs to be developed. 

Intuitively, the planner needs to be incremental in or- 
der even to survive as a passive module in a concurrent 
environment, while it needs the ability to coordinate its 
actions with the SDMS to play an active role in guiding 
the global problem-solving activity. 

To facilitate incremental modification of plans in re- 
sponse to evolving specifications, the planner should be 
able to analyze the plan at multiple levels of detail 
and focus modification at the appropriate level. Fur- 
ther, it should use least-commitment strategies dur- 
ing planning, as over-constrained plans do not lend 
themselves well for flexible reuse [Kambhampati, 1989, 
Kambhampati, 1990a]. The criterion for accommodat- 
ing external constraints is for the planner to be able to 
incorporate the changes imposed by those constraints 
while reusing as much of the existing plan as possible 
and preserving the correctness of the overall plan.2 This 
requires the planner to reason about the effect of the 
external constraints on the correctness of the existing 
plan and make minimal modifications to it to regain 
correctness.3 To analyze the effect of external constraint 
on the correctness of the plan, as well as to modify the 
plan conservatively, the planner needs to represent and 
reason about the internal dependencies of its plans in a 
systematic fashion. 

Since, hierarchical nonlinear planning (e.g. NOAH 

[Sacerdoti, 1977], NONLIN [Täte, 1977], SIPE [Wilkins, 
1984]) is the prominent method of abstraction and least 
commitment in domain independent planning, in this pa- 
per we will explore ways of extending it to handle the 
incrementality requirements of concurrent domains. In 
section 2, we will develop a precise characterization of 
the correctness of the plan in terms of a representation 
of its causal dependency structure called the validation 
structure and introduce a framework of incremental mod- 
ification based on it. In section 3, we will present tech- 
niques to accommodate the external constraints which 
compute the ramifications of those constraints on the 
validation structure of the plan, and repair the plan to 
regain correctness. 

This is in contrast to approaches such as [Hayes, 1987], 
that allow externally imposed constraints to enter the plan, 
but do not reason about the effect of those constraints on the 
correctness of the plan. 

3It should be emphasized here that we are not concerned 
with the absolute correctness of the plan, but rather its cor- 
rectness with respect to the planner's own model of the do- 
main (see [Kambhampati, 1990a]). 

Enabling the planner to reason about the rationale 
behind the constraints imposed by the SDMS poses spe- 
cial problems because of the heterogeneous nature of the 
modules in a concurrent environment. Previous research 
in distributed planning (e.g. [Durfee and Lesser, 1988, 
Corkill, 1979]), black board systems (e.g. [Hayes-Roth, 
1987]), embedded systems (e.g. [Georgeff, 1990]) and 
multi-agent planning architectures (e.g. [Lansky, 1988]), 
mostly addressed the issues of coordinating the actions of 
homogeneous planners working on different aspects of a 
single problem where each planner can understand and 
reason about the rationale behind the constraints im- 
posed by other planners. Thus they are not well-suited to 
real world concurrent domains with heterogeneous mod- 
ules. In section 4, we propose a methodology of inter- 
facing the planner and the SDMS that relaxes the strong 
assumptions made by these approaches. Our approach 
is to enable the planner to understand the rationale at 
some appropriate level of abstraction. Accordingly, the 
external constraints will be accompanied by explanations 
that constitute "sufficient" (rather than necessary and 
sufficient) conditions under which the constraint can be 
guaranteed to be required by the SDM imposing it. We 
will discuss the issues involved in generating and coordi- 
nating with such window of applicability explanations. 

2    Incrementality 

In this section we discuss the issues involved in making 
planning "incremental". We will start with a characteri- 
zation of correctness of plans in the hierarchical planning 
paradigm in terms of the plan validation structure. This 
characterization is used to develop a methodology for 
modifying a plan to regain correctness. The resultant 
incremental modification framework forms the basis for 
accommodating various externally imposed constraints 
into an existing plan (see next section). 

2.1     Validation Structure and Plan Correctness 

Hierarchical planning can be seen as a process of re- 
duction of abstract tasks into more concrete subtasks 
with the help of domain specific task reduction schemata, 
and resolving any harmful interactions by introduc- 
tion of additional partial ordering relations among tasks 
or backtracking over previous decisions [Täte, 1977, 
Sacerdoti, 1977]. Given a planning problem [X,Q] where 
J is the specification of the initial state and Q is the 
specification of the desired goal state (given as conjunc- 
tion of literals to be satisfied), we use a structure called 
hierarchical task network (HTN ) to represent the status 
of the plan at any moment. A HTN is a 3-tuple 

( V:(T,0,V) ,T*  ,D } 

where V is a partially ordered plan such that 

• T is the set of tasks of the plan (with two distin- 
guished tasks tj and tg to denote the input and 
goal state specifications respectively) 

• O defines a partial ordering over T (with elements of 
the form %• —► tj", signifying that tt is a predecessor 
of tj) 
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• V is a set of conditions with specification about the 
ranges where those conditions should be held true, 
and the applicability conditions of tasks of V, or 
goals of the overall plan those conditions are sup- 
porting. Individual elements of V are called val- 
idations. They are represented by 4-tuples v : 
(E,ts,C,td), with the semantics that the condition 
E, which is an effect of ts, should be held true from 
task ts to ti to support the applicability condition 
C of task tj. 

• T* is the union of tasks in T and their ancestors 

• D defines a set of parent, child relations among the 
tasks of T* (iff is the parent of a task t, then t was 
introduced into the HTN because of the reduction of 

tp) 
We define the correctness of the plan V in terms of its 

set of validations in the following way: 
A partially ordered plan V is considered a correct plan 
for a problem [I, Q\ iff 

• For each goal g £ Q of the plan, and each appli- 
cability condition of a task t £ T, there exists a 
validation »£V supporting that goal or condition. 
If this condition is not satisfied, the plan is said to 
contain "missing validations." 

• None of the plan validations are violated. That is, 
\/v : (E,ti,C,tj) G V, (i) E e effects(U) and (ii) 
fiteT s.t. 0(ti -< t -< tj) A effects(a) h ->C (where, 
the relation "-<" is the transitive closure of the re- 
lation "—►"). If this constraint is not satisfied, then 
the plan is said to contain "failing validations." 

In addition, we introduce a condition of non- 
redundancy as follows 

• For each validation v : (E,ts,C,td) € V, there exists 
a chain of validations the first of which is supported 
by the effects of id and the last of which supports 
a goal of the plan.4 If this constraint is not satis- 
fied, then the plan is said to contain "unnecessary 
validations." 

A plan that is correct by this definition is said to have 
consistent validation structure. The missing, failing and 
unnecessary validations defined above are collectively re- 
ferred to as inconsistencies in the plan validation struc- 
ture. 

Notice that this definition of correctness is concerned 
exclusively about the validations that the planner has 
established. The plan may be correct by this definition 
and still be inapplicable from the point of view of some 
SDM . This is in consonance with the philosophy that 
the planner in a concurrent environment should primar- 
ily be concerned about keeping the plan correct from 
its perspective.   When changes are necessitated by the 

4More formally, Vu : (E,ts,C,td) G V there exists a se- 
quence [v1, v2 ... vk] of validations belonging to V, such that 
(i) vk : (Ek,tk,Ck,tg) supports a goal of the plan (i.e, 
Ck G Q) (ii) v1*-1 : (Ek-\tk-1,Ck-\tk) supports an appli- 
cability condition of tk, vk~2 supports an applicability con- 
dition of i*_1 and so on, with vk_1 supported by an effect of 
td. 

externally imposed constraints, the planner should pre- 
serve correctness with respect to its validation structure 
while accommodating those changes. 

2.2     Annotating Validation Structure 

To facilitate efficient reasoning about the correctness of 
the plan, and to guide incremental modification, we rep- 
resent the plan validation structure as annotations on 
the individual tasks constituting the HTN [Kambham- 
pati, 1990c]. In particular, for each task 1 6 T*, we 
define the notions of e-conditions , e-preconditions and 
p-conditions as follows: The e-conditions of a task rep- 
resent the set of validations that it or its descendents in 
the HTN provide to the rest of the plan. If R(t) repre- 
sents the set of tasks consisting of t and its descendents 
in the HTN (also called sub-reduction)5, e—conditions(i) 
is given by the set 

{v\v:{E,ts,C,td)eV Ai,€Ä(<) A td <£ R(t)} 

The e-preconditions represent the set of validations 
that the task or its descendents consume from the rest 
of the plan, e—preconditions(i) is given by the set: 

{v\v :{E,ts,C,td) eV At, <£R(t) A td € R(t)} 

Finally, the p-conditions represent the validations that 
should necessarily be preserved by the effects of the task 
and its descendents to guarantee the correctness of the 
plan, p—conditions(tf) is given by the set 

v : {E,ts,C,td)eV A 
3U G T s.t. U E R(t)  A 

ts,td£R(t) A 
0(ts -< U < td) 

The e-conditions , p-conditions and e-preconditions 
(referred to collectively as task annotations) encapsulate 
the role played by each task in the HTN of the plan in 
ensuring the correctness of the plan. 

2.3     The PRIAR Modification Framework 

Based on the notion of validation structure, we have de- 
veloped a framework for flexible modification of plans 
in hierarchical planning called PRIAR [Kambhampati, 
1990c, Kambhampati, 1989]. In PRIAR framework, a 
plan is modified in response to inconsistencies in its vali- 
dation structure. The repair actions depend on the type 
of inconsistency, and the type of validation involved in 
that inconsistency. They involve removal of redundant 
parts of the plan, exploitation of any serendipitous ef- 
fects of the changed situation to shorten the plan, and 
addition of high level (refit) tasks to re-establish any 
failing validations. For example, if the inconsistency 
is a failing validation v : (E,ts,C,td), then depending 
upon whether or not C can be achieved by the plan- 
ner, PRIAR either adds a task tr to the HTN re-establish 
the failing validation, or replaces the reductions that 
are dependent on C. The annotations on the individ- 
ual tasks of the HTN (defined in section 2.2) provide 
a systematic framework for locating the parts of the 
plan that need to be removed or replaced.  Finally, any 

5note that R(t) = {t} if t € T 
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refit-tasks introduced during the repair process are re- 
duced by the hierarchical planner, which employs var- 
ious validation structure based control strategies to lo- 
calize this reduction [Kambhampati and Hendler, 1989, 
Kambhampati, 1990b]. 

3     Accommodating External Constraints 

In this section, we discuss how the planner accommo- 
dates various types of changes necessitated by by exter- 
nally imposed constraints. Without loss of generality we 
will assume that the planner has an initially correct plan 
which it wants to modify to accommodate the changes 
and while preserving the correctness of the plan. We 
will also assume at this point that the changes imposed 
by the external constraints are non-negotiable, in that 
they would have to be necessarily accommodated by the 
planner. In the previous section, we have shown that the 
planners notion of correctness of its plan is intimately 
tied to the consistency of the plan validation structure. 
Thus, the general strategy followed for accommodating 
changes necessitated by externally imposed constraints 
is to compute the inconsistencies in the validation struc- 
ture that result from those changes and use the PRIAR 
framework to modify the plan to remove the detected 
inconsistencies. In the following sections we discuss how 
changes in the specification the problem, and ordering 
relations among the plan steps are handled through this 
strategy. 

3.1 Changes in Input and Goal Specifications 

Often during planning the specifications of the planing 
problem are modified to reflect the changes in the state 
of the world and the overall goals of the system. From 
the definition of correctness of the plan in section 2.1, 
it should be clear that the changes in problem specifi- 
cations may give rise to missing, failing or unnecessary 
validations in the plan validation structure. For exam- 
ple if some of the goals of the plan become unnecessary 
as a result of changes in the specifications, the valida- 
tions supporting those goals become unnecessary; if the 
changes necessitate new goals for the plan, that would 
lead to a missing validation and finally if the changes 
delete some assertions of the initial state then the val- 
idations supported by the effects of t% will fail. These 
inconsistencies in the validation structure can be located 
by simply examining the validations supported by the as- 
sertions in the initial state, and goal state. Any detected 
inconsistencies are then repaired with the help of PRIAR 
modification operations. 

3.2 Changes in ordering relations 

Often external constraints translate into addition or 
deletion of ordering relations among the steps of the 
plan. Such changes may be a result of feasibility consid- 
erations (for example, in process planning, the geometric 
modeler might rule out some infeasible feature orderings 
[Hayes, 1987]), or of optimality considerations (eg. SDMS 
may group several steps of the plan together for efficient 
execution etc., and such groupings may be inconsistent 
with the existing ordering relations [Kambhampati and 
Philpot, 1990]). In the we provide methods for efficiently 

analyzing the ramifications of addition and deletion of 
ordering relations on the correctness of the plan. 

3.2.1 Deletion of Ordering Relations 

Suppose an ordering relation Od ■ ta —> tf, is to be 
deleted as a consequence of some externally imposed con- 
straint. This leads to a change in the partial ordering 
of the plan and some of the tasks which were previously 
ordered with respect to each other will now become un- 
ordered (parallel). 

From the definition of correctness in section 2.1, it 
should be clear that failing validations are the only type 
of inconsistencies that can result from the deletion of an 
ordering relation.6 Since checking each validation «GV 
for failure is expensive, we use the following method to 
check only those validations which can fail because of 
the deletion of o^. 

First Od is removed from O and the "-<" relation on 
the tasks of the plan is recomputed. The predecessor- 
successor fields of the tasks of V before and after the 
deletion are compared. For each task t( £ T of V, we 
collect the tasks of the plan that become unordered with 
respect to it. Suppose t{ becomes unordered with respect 
to tasks {t{1,ti2 ■ ■ -tim}- From the definitions of section 
2.2, we can show that when previously ordered tasks 
become parallel to t(, the annotations of those tasks will 
also become p-conditions of 2;.7 In other words, the new 
p-conditions of ti are given by 

p—conditions"   (t,) U I J annotations(i,^) 

3 

By definition p —conditions^;) comprises the valida- 
tions of the plan that must be preserved by the effects 
of ti, Thus, to locate the validations that are violated 
by the effects of ti it is sufficient to check the anno- 
tations of the tasks {t{1,ti2 .. -tim}- If any validations 
are actually found to be violated, the PRIAR modifica- 
tion methodology is again used to suggest repair actions. 
Similar analysis is done for each task in the plan that be- 
comes unordered with respect to other tasks because of 
the deletion of o<f. 

3.2.2 Addition of Ordering Relations 
Suppose the externally imposed constraint leads to the 

addition of a new ordering relation on : ta —+ tf,. We have 

Deletion of ordering relations increases the parallelism in 
the plan and this may lead to violation of some established 
validations of the plan. 

7If a validation v : (E,ts, C, tci) £ V belongs to the anno- 
tations of a task t3 g T, then, given that Vi G T R(t}) = {tj}, 
we have (see section 2.2) 

0(ts -< tj ■< td) V (t3 = tj) V (td = tj) 

Now suppose tj became unordered with respect to U 6 T. 
We have 

0(tj -<ti) A 0(ti <tj) 

From the two relations above, we can see that if v : 
(E, ts, C, td) belongs to the annotations of t3 then it will also 
satisfy the relation 

0(ts -<ti ■< tj) 

which in turn means that v is a p-condition of tj. 
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two possibilities in this situation: 
Case 1. The added ordering is consistent with the cur- 
rent orderings. As long as U ^ ta in the current plan, 
we can add ta —* tt without causing any inconsistencies. 
From the definition of the correctness V, we can see that 
a consistent new ordering will not affect the correctness 
of the existing plan. Thus nothing need be done in this 
case. 
Case 2. The added ordering is not consistent with the 
current ordering. That is U -< ta in the current plan. In 
this case, there are some "cycles" in the ordering O on 
V. Let 

tb      ► t{1 . . . Iim      *■ ta      ► Ij 

be a cycle 8. Since o„ has to be necessarily accommo- 
dated, the only way of regaining correctness is to break 
such cycles by removing some other previously held or- 
dering relations in this cycle. Removal of an ordering re- 
lation may cause inconsistencies in the validation struc- 
ture and those need to be located and repaired as dis- 
cussed in section 3.2.1. The analysis of section 3.2.1 can 
also be used to decide which ordering relation will ne- 
cessitate least amount of repair work upon deletion, and 
choose to delete that ordering relation. 

4    Coordination through reasoning 
about the rationale behind externally 
imposed constraints 

The techniques discussed in the previous two sections 
enable the planner to play a passive role of efficiently ac- 
commodating changes necessitated by any externally im- 
posed constraints on its plan. As the specifications and 
the plan evolve, the external constraints also evolve and 
it might be possible to relax some of them under the new 
situation. Rather than waiting for SDMS to take the ini- 
tiative, the planner should play an active role in guiding 
the global problem-solving activity anticipating external 
interactions and coordinating its actions with the SDMS . 
The simplest approach for this would require the planner 
to request all the modules about all the constraints im- 
posed by them, when ever anything changes. However, 
this could be quite inefficient especially since the anal- 
yses performed by some SDMs may be computationally 
expensive. In addition, this approach also seriously un- 
dermines the autonomy of the planner as it cannot take 
any decisions without having them approved by all the 
modules. 

To take an active role in the global problem-solving ac- 
tivity, the planner needs to understand and reason about 
the rationale behind the externally imposed constraints. 
This requirement is symmetric: when the planner makes 
any decisions that affect the outside modules, it should 
be able to associate a rationale for that decision. In other 
words, a major requirement for a module to work in a 
concurrent environment is to be able to provide ratio- 
nale for the decisions that can be understood by other 
modules in the environment, and to be able to reason 
with the rationales provided by the outside modules. 

8cycles can be found by scanning the "- 
tions of the tasks of the plan 

and "-<" rela- 

Though the issue of coordination have been addressed 
previously in distributed planning and blackboard based 
approaches to planning, they generally assume that the 
individual planners are all identical and share a com- 
mon representation (e.g. [Durfee and Lesser, 1988]) and 
that there is a single central knowledge base shared 
among all modules and planners [Hayes-Roth, 1987, 
Durfee and Lesser, 1988]. Because of these assumptions, 
coordination is accomplished in those architectures by 
allowing each planner to directly reason about the con- 
straints imposed by other modules. This is controlled 
either through a central black-board mechanism [Hayes- 
Roth, 1987], a hierarchical organization of planners or 
through the use of localized representations that explic- 
itly circumscribe the effects of the agent's actions [Lan- 
sky, 1988]. 

In concurrent domains, the assumption of homoge- 
neous modules holds only in situations whose where the 
modules of a concurrent environment constitute a "ver- 
tical" decomposition of the domain, where each module 
takes all the specialized considerations independently. 
However, in concurrent domains, the environment typi- 
cally consists of heterogeneous modules which specialize 
in various sub-tasks of the overall task. For example, in 
a domain like process planning where there are several 
specialized considerations (such as geometric, fixturing 
etc.) that need to be taken into account, if the planner 
itself were to take them all into account during plan- 
ning, plan construction could become prohibitively ex- 
pensive [Simmons and Davis, 1987]. Further more such 
an architecture will often be inconsistent with the natu- 
ral structure of the domain. In process planning, even if 
the planner is designed to take into account all the ge- 
ometric considerations during planning, duplicating all 
the geometric knowledge and inference formalisms into 
the planner would be very wasteful. 

Because of this heterogeneity among the modules , it 
is not feasible to have each module understand the ratio- 
nale behind the decisions of the other modules, even if it 
were provided to them. For example in process planning, 
it is infeasible for the planner producing machining se- 
quence to understand all the details of constraints posted 
by modules specializing in fixturing and geometric rea- 
soning etc. 

Suppose an external constraint ce (say an ordering re- 
lation) is imposed on the plan by the geometric modeler 
to ensure that there will be a clear access path to make 
a feature feature1. There is no straightforward way for 
the geometric modeler to communicate to the planner 
that the the constraint ce is imposed to ensure clear ac- 
cess path to feature-^ since the planner's domain model 
may not give it the ability to reason about the notion 
of "clear access path." In the absence of any rationale 
accompanying ce, the planner would have to rely on the 
geometric modeler to correctly update the constraints 
in the event that constraint is no longer needed. This 
approach, in as much as it requires frequent geometric 
checks, is inefficient. 

Thus, for computational tractability and functional 
autonomy of individual modules, planner in a concurrent 
environment should be able to understand the rationale 
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behind external constraints at some appropriate level of 
detail. 

4.1      Window of Applicability (WOA ) 
Explanation 

Since the individual modules cannot reason about the 
rationale behind the externally imposed constraints di- 
rectly, we propose that the rationale be presented as a set 
of sufficiency conditions called "WOA (Window of appli- 
cability)" explanation for the external constraint. These 
sufficiency conditions do not constitute the complete set 
of conditions leading to the imposition of the external 
constraint, but rather only an abstraction of those con- 
ditions that the planner can reason about. 

Thus, each externally imposed constraint will be asso- 
ciated with a 3-tuple 

(c ,sdmCe) 

where ce is the constraint (changed specification or or- 
dering relation) that the planner needs to accommodate 
into its plan, sdmCe is the SDM that is imposing that 
constraint, and woaCe is the WOA explanation associated 
with ce. The semantics are that 

• WOA consists only of predicates that the planner can 
reason about 9 

• As long as woaCe is holding, ce should necessarily be 
accommodated into its plan 

• If the planner finds at any point of time that woaCe 

is not holding, then it is possible that ce is no longer 
required. The planner can then request the sdmCc 

to check if the constraint is still required. 10 (If 
the sdmCe were to retract the constraint ce, then 
the planner can use the methodology developed in 
sections 2 and 3 to appropriately modify the plan 
to accommodate the change.) 

Note that this allows the planner to essentially ignore 
outside modules unless the WOA of the constraint posted 
by them are affected. This provides functional autonomy 
to the planner, by obviating the need to poll each and 
every SDM for every change in the environment. 

A proposition / is considered reachable ii the planner can 
reason about the ramifications of its actions on the truth of 
the proposition. The WOA should only consist of reachable 
propositions. In TWEAK representation, which does not allow 
any domain axioms, a proposition is reachable iff / codesig- 
nates with some proposition in the add or delete lists of some 
operator template of the planner. 

The external constraints may have been voluntarily im- 
posed by the external modules or may have been posted to 
satisfy some request by the planner. In the process plan- 
ning example, either the geometric modeler may have im- 
posed ce because it wanted to ensure clear access path, or 
alternatively the planner requested it to ensure clear access 
path. In the latter case, the planner may model clear access 
path as precondition Clear Access (feature) of some task of 
V whose truth needs to be computed by an outside module 
(cf. "compute-conditions" of nonlin [Täte, 1977] ). When 
asked to make such a condition true, the geometric modeler 
may then impose some constraints (such as ce) on the cur- 
rent plan. For the purposes of our current discussion, this 
distinction is immaterial. 

In the process planning example discussed above, the 
planner might be given the WOA explanation 

a < length(featurei) < b 

for the constraint ce, with the semantics that as long as 
the length of the feature feature{ is in the range [ab], 
the constraint ce would be required by the geometric 
modeler. When the WOA is violated, it does not mean 
that the ce is automatically retracted. Instead, the cor- 
responding SDM (in this case geometric modeler) will be 
requested to repeat the computation to see if ce is still 
required in the current situation. 

4.2     Classes of WOA Explanations 

A critical issue about the WOA explanation concerns 
their level of detail: as mentioned above, they should 
be at such a level as to allow the planner to reason with 
the explanation, and they should constitute sufficient 
conditions for assuming that ce is still needed. There 
may be a spectrum of such conservative sufficiency con- 
ditions for any given external constraint, with tradeoffs 
between the informedness of the WOA and the ability of 
the outside modules to reason with it. 

For instance, in the process planing example above, 
the geometric modeler could return as the WOA of the 
ordering constraint a representation of the configuration 
space in which the ClearAccess(hi) predicate will re- 
main. However, that WOA is likely to be at too low a 
level of detail to be directly useful to the planner. On the 
other hand it could return as the WOA a list of quantities 
whose values it used in arriving at ce as the constraint 
to be imposed. In this case, the planner would have to 
reinvoke the geometric modeler any time any of those 
quantities change. 

While the former WOA is expressive but difficult to 
reason with, the latter is easy to reason with, but very 
conservative. The correct level of abstraction of WOA 
depends ultimately on the degree of similarity between 
the domain models and the inference strategies of the 
planner and the SDMS . For example, if all the modules 
are identical, as in distributed planning, the WOA can 
include both the necessary and sufficient conditions for 
ce. While in complex environments with heterogeneous 
modules, even a WOA that specifies the quantities on 
whose values ce depends, would be of utility. 

A promising strategy is to provide WOA explanations 
that are at multiple levels of abstraction. This will allow 
the planner to choose the abstraction that it can handle, 
while still allowing some other SDM to reason with the 
WOA at a deeper level of detail. 

Careful investigation will be needed to find classes of 
explanations that satisfy the conservative (sufficiency) 
property of the window of applicability explanations, 
while at the same time allowing reasoning at a level suit- 
able for other modules. 

5     Summary 

Planning in many real world situations requires concur- 
rent operation between the planners and other modules 
of the environment. This poses several requirements that 
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are not supported by the existing approaches to auto- 
mated planning. In particular, we identified the abil- 
ity to incrementally accommodate changes necessitated 
by the externally imposed constraints into the existing 
plans, and the ability to understand and reason about 
the rationale behind externally imposed constraints at an 
appropriate level of detail as two crucial requirements for 
planning in such environments. We have then explored 
ways of extending the hierarchical planning framework 
to handle these requirements. In particular, we discussed 
the techniques for making the planning incremental and 
for accommodating the externally imposed constraints 
by reasoning about their effect on the correctness of the 
plan. Next we proposed a methodology for coordination 
between planners and external modules that depends on 
attaching a set of sufficiency conditions rather than nec- 
essary and sufficient conditions as justifications to vari- 
ous externally imposed constraints. We have discussed 
the issues of generating and reasoning with such condi- 
tions. 
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Abstract 

We have undertaken a project in combining declar- 
ative and procedural forms of real-time planning 
for novel deadline situations. In deadline situations 
the time taken in reasoning toward a plan brings 
the deadline closer. Thus the planning mechanism 
should take account of the passage of time dur- 
ing that same reasoning. This general considera- 
tion is also the subject of other work. However, 
we are attempting to treat all facets of planning 
as deadline-coupled; the problem then is how to 
take proper account of the approaching deadline 
when any such accounting itself simply takes more 
time and seemingly gets in the way of its own ac- 
curacy. We employ the mechanism of step-logics 
toward solving this problem. 

1    Introduction 

We have undertaken a project in combining declarative 
and procedural forms of real-time planning for novel 
deadline situations. In deadline J situations the time 
taken in reasoning toward a plan brings the deadline 
closer. Thus the planning mechanism should take ac- 
count of the passage of time during that same reasoning. 
This general consideration is also the subject of other 
work. 

However, we are attempting to treat all facets of plan- 
ning as deadline-coupled; the problem then is how to 
take proper account of the approaching deadline when 
any such accounting itself simply takes more time and 
seemingly gets in the way of its own accuracy. We em- 
ploy the mechanism of step-logics toward solving this 
problem. 

"This is an extended version of our paper [Kraus et ed., 
1990]. This research was supported in part by NSF grant IRI- 
8907122, and in part by the U.S. Army Research Olficefgrant 
DAAL03-88-K0087). 

We do not agree with the claim in [Russell and Wefald, 
1989] (page 401) that "the 'deadline' model of time pressures 
is overly restrictive, since in reality there is almost always a 
continuous increase in the cost of time." We think that many 
situations do involve relatively hard deadlines; e.g. getting to 
the airport in time, not to mention the more dramatic Nell 
and Dudley case below. 

Meta-planning is the usual proposal for reasoning 
about the reasoning process. But that takes time too! 
Maybe the time taken by meta-planning can be kept very 
short. But what of highly novel settings in which one 
cannot a priori assign expected utilities to various con- 
ceivable options or refinements? Then the planner may 
have to decide on utilities and other factors in real time. 
In these cases it seems unlikely that such meta-planning 
will always have a modest time cost. In what follows,we 
present an illustrative example; sketch the structure of 
our program and show a few important steps of the out- 
put. 

1.1     An Illustration 

To elaborate, we present an illustrative domain, which 
we call the Nell and Dudley Scenario: 2 Nell is tied to 
the railroad tracks as a train approaches. Dudley must 
formulate a plan to save her and carry it out before the 
train reaches her. If we suppose Dudley has never res- 
cued anyone before, then he cannot rely on having any 
very useful assessment in advance, as to what is worth 
trying. He must deliberate (plan) in order to decide 
this, yet as he does so the train draws nearer to Nell. 
Thus he must also assess and adjust (meta-plan) his on- 
going deliberations vis-a-vis the passage of time. Since 
the setting is novel Dudley does not have a "canned" 
procedure rescueJieroine(H) which he can just invoke 
with H = Nell. However, Dudley has acquired some 
"shelf" procedures for solving simpler subproblems that 
are encountered in more routine situations. For exam- 
ple, we do not expect Dudley to deliberate on how to 
run, he knows that he must take a number of paces de- 
pending upon the distance. He also knows that running 
is a means of transporting oneself from one place to an- 
other. Similarly, axioms come to his aid regarding which 
subtasks he must perform to complete the operation of 
untying Nell once he reaches the rail track. His total 
effort (plan, meta-plan and action) must stay within the 
deadline. He must in short, reason in time about his own 
reasoning in time. 

This problem was first mentioned in the context of time- 
dependent reasoning by McDermott [McDermott, 1978]. 
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1.2     Related Work 

Drew McDermott [McDermott, 1982] and Andrew Haas 
[Haas, 1985] have discussed the Nell and Dudley prob- 
lem in terms of a surprising difficulty: if Dudley does 
not properly distinguish his planned actions from actual 
events then he may formulate a plan to save Nell and 
then conclude that his plan will save her, hence she is 
not in danger, hence he does not need the plan after 
all! This bizarre possibility can indeed arise in a highly 
limited representational setting, in which plans are not 
distinguished from actions. 

However, although this is treated in our project, it is 
only a small part of the main thrust of our concern, which 
is to find effective representational and inferential tools 
by which a reasoner can keep track of the passing of time 
as he makes (and enacts) his plan, thereby allowing him 
to adjust the plan so that neither the plan-formation 
that is in progress, nor its simultaneous or subsequent 
execution, will take him past the deadline. In terms 
of our toy scenario, we want to prevent Dudley from 
spending so much time seeking a theoretically optimal 
plan to save Nell, that in the meantime the train has 
run Nell down. Moreover, we want Dudley to do this 
without much help in the form of expected utilities or 
other prior computation. 

In [Horvitz, 1988], [Horvitz et al, 1989], and [Rus- 
sell and Wefald, 1989], decision-theoretic approaches are 
used to optimize the value of computation under uncer- 
tain and varying resource limitations. In both works, 
deadlines and the passage of time while reasoning are 
taken into consideration in computing the expected com- 
putational utility. However, these works do not account 
for the time taken for meta-planning. Indeed, this is 
stated in [Russell and Wefald, 1989] (page 402): "Here 
we will not worry about the cost of meta-reasoning it- 
self; in practice, we have been able to reduce it to an 
insignificant level". 

Dean [Dean, 1984] proposed a computational ap- 
proach to reasoning about events and their effects oc- 
curring over time. Dean, Firby and Miller [Dean et al., 
1988] subsequently designed FORBIN, a planning ar- 
chitecture that supports hierarchical planning involving 
reasoning about deadlines, travel time, and resources. 
Dean and Boddy [Dean and Boddy, 1988b] formulated 
an algorithmic approach to solution of time-dependent 
planning problems by introducing "anytime algorithms" 
which capture the notion that utility is a monotonic 
function of deliberation time. Here also, the time for 
computation is not accounted for : "The time required 
for deliberation scheduling will not be factored into the 
overall time allowed for deliberation. For the techniques 
we are concerned with, we will demonstrate that de- 
liberation scheduling is simple, and, hence, if the num- 
ber of predicted events is relatively small, the time re- 
quired for deliberation can be considered negligible." 
[Dean and Boddy, 1988b] (page 50). [Boddy and Dean, 
1989] demonstrated deliberation scheduling for a time- 
dependent planning problem involving tour and path 
planning for a mobile robot. 

We refer the reader to [Hendler et al., 1990] for a gen- 
eral survey of related work on planning. Some particular 

results on temporal planning follow. [Allen and Koomen, 
1983] formulated a world model based on temporal logic 
which allows the problem solver to gather constraints on 
the ordering of actions without having to commit to it 
when a conflict is detected. [Dean, 1987] discusses how 
a planner can reason about the difficulty of its tasks, 
and depending on available time, produce reasonable 
if not optimal solutions. [Lansky, 1986] and [Lansky, 
1988] use a first-order temporal logic model to describe 
complex synchronization properties of parallel multia- 
gent domains. In [Dean and McDermott, 1987] a com- 
putational approach to temporal reasoning is presented 
in which a problem solver is forced to make predictions 
and projections about the future and plan in the face 
of uncertainty and incomplete knowledge. Time-maps 
are introduced here. [Dean and Boddy, 1988a] examine 
the complexity of temporal reasoning problems involving 
events whose order is not completely known. 

Our approach has many similarities with the research 
cited above; the main difference is that we are attempt- 
ing to account for all the time taken for planning and 
acting. 

2     The Status of the Project thus Far 

2.1     Using Step-logics 

Our current project employs the formalism of "step- 
logics" introduced by Elgot-Drapkin, Miller, and Perlis 
([Drapkin et al., 1987]^ [Elgot-Drapkin and Perlis, 
1990], [Elgot-Drapkin, 1988]) where inferences are 
parametrized by the time taken for their inference, and 
in which these time parameters themselves can play a 
role in the specification of the inference rules and ax- 
ioms. Step-logics offer a natural representation of the 
evolving process of reasoning itself. A step is a funda- 
mental unit roughly characterized by the time it takes 
Dudley to draw a single inference. Observations, which 
are inputs from the external world, may arise at the be- 
ginning of a discrete time-step. When an observation 
appears, it is considered a belief in the same time-step. 
Apart from his observations at the beginning of step i, 
the only information available to Dudley is a snap-shot 
of his deduction process completed up to and including 
step i — 1. During step i Dudley applies all available in- 
ference rules in parallel, but only to beliefs at step i— 1; 
new beliefs thus generated through applications of infer- 
ence rules are not available for use in further inference 
until step i+l. For example, consider the following rea- 
soning (shown is an application of modus ponens — Rule 
8, Appendix B) from step 8 to step 9. 

8: Now(8); Run(\7 : 30, dudley, here : there); 

Run(\l : 30, dudley, here : there) —+ 
^(30, dudley, there); 

9:    Now(9); Run(17 : 30, dudley, here : there) 

Run{\l : 30, dudley, here : there) 
At(30, dudley, there); 
At(30, dudley, there). 
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Although this illustrates the use of modus ponens, in 
fact, when Dudley goes to save Nell, he will never have 
a belief such as Run(17 : 3Q,dudley,here : there), at 
any step prior to 17, since this is a future prediction and 
therefore treated as a projection within a plan, rather 
than as a fact. Notice that Dudley knows what time it 
is, and therefore that knowledge changes at every step. 
In effect, step-logics are first-order logics suitably modi- 
fied to include a Now(i) predicate, where the value of i 
changes at the end of a time-step. 

2.2 Structure and Representation of a Partial 
Plan 

We have created a suitable representational language 
for a simple (e.g., we are not yet addressing interact- 
ing plans) version of the Nell and Dudley representative 
deadline problem.3 The set of axioms and inference rules 
can be found in the appendix. ^From an initial unsolved 
goal Dudley formulates the first partial plan, and gives 
it a name (Rule 2, Appendix B). 4 This name appears as 
a parameter in all his reasoning concerning the particu- 
lar partial plan, until the goal is achieved or the plan is 
aborted as unfeasible. Dudley maintains a set of Facts 
which consists of beliefs obtained through direct obser- 
vations, and the largest subset of Projection set which 
is consistent with the observations and whose time in- 
tervals have been passed by step i. At all times Dudley 
remembers the hard deadline which he must meet. The 
partial plan is a temporally ordered list of action triplets. 
Each ordered triplet consists of an action, preceded and 
followed, respectively, by its associated condition and a 
result. A triplet is written within square brackets [. . .] 
and an ordered list of triplets is enclosed within curly 
brackets {...} in our notation. An action may be com- 
plex or primitive (atomic). A primitive action takes one 
step to perform. A complex action must be further re- 
fined to the level of primitive actions using axioms. The 
condition is a set of wffs that must be true during the 
course of the action being performed. The result is a set 
of wffs which are expected to be true at the completion 
of the action. 

2.3 Working Estimate of Time 

As Dudley develops a partial plan to save Nell, he con- 
tinuously refines his estimate of the time to carry the 
plan to completion, making sure it will not overshoot 
the deadline. This we call the working estimate of time 
(WET for short) 5. The WET is Dudley's calculation 
of how long his partial plan (formed as of the previous 
step) will take to execute. This he adds to the current 
time and compares the result to the deadline to make 
sure the plan is not hopeless (Rules 5 k 6, Appendix 
B). As long as it is not he declares it Feasible, and con- 

tinues refining and/or putting it into execution. Dudley 
updates the WET when an action with a fixed non-zero 
interval between its start and finish times is made part 
of the plan 6. As the plan reaches completion the WET 
reaches a realistic estimate for the time necessary for the 
execution of the residual partial plan, and thereby helps 
Dudley keep track of the time available for deliberation 
as well as acting. 

2.4 Projection in the Context of a Plan 

The set of Facts, along with the actions and the results 
contained in the current partial plan together form what 
we call the context set of the partial plan. The mecha- 
nism by which each predicate from the context set (based 
on information from the earlier step) is projected 7 into 
the future is as follows (Rule 10, Appendix B). Some 
wffs are related to events that have fixed start and fin- 
ish times and are not expected to persist beyond their 
finish time. An example is Run(T\ : T-2,Y,L\ : L-i). Be- 
yond time To we do not expect Run to continue to hold. 
There are other wffs which can be projected by default 
infinitely into the future. However, the projected time 
range of a predicate is trimmed to exclude the time- 
overlap with other predicates that can not co-exist in 
its presence. For example, looking at Nell as she is tied 
to the railroad tracks, Dudley initially projects that she 
will remain tied there until infinity, and in particular, at 
the instant of the projected arrival of the train. This 
causes him to initiate the formulation of the plan. How- 
ever, in the context of his partial plan, when the plan 
is refined to include Release, the range of persistence of 
Tied must be trimmed due to the appearance of result 
Not-tied, since the two are mutually exclusive. Dud- 
ley maintains the clear distinction that NotJied is true 
only in the context of the plan, and still maintains the be- 
lief Unsolved(Goal(out-of-danger(Ddl, n, /2))) until the 
plan is completed executed. This provides an easy solu- 
tion to McDermott's difficulty mentioned earlier, namely 
the inability to distinguish between plans and actual 
events. Thus, via his projection mechanism Dudley de- 
duces supposed changes in the world, thereby revising 
some beliefs and retaining others: the familiar issues of 
the frame problem. Dudley uses his projection both in 
planning and acting. 

2.5 Use of Projections in Planning 

If a condition CA for a particular action A can be found 
in the projection (in the context of the partial plan de- 
veloped thus far), Dudley does not attempt to find an 
axiom for achieving CA- He marks CA as satisfied 
(Rule  11,  Appendix B). If CA is not expected to be 

3This version has been implemented in PROLOG. 
4We will also find the name of the plan useful in later 

versions which will consider multiple plans. 
5The WET is one of our concessions to procedural meth- 

ods: we do not require Dudley to figure out how to do arith- 
metic but rather allow that, he already knows. But we do 
require him to note the passage of time during the execution 
of the procedure. 

6Currently, Dudley does not have a procedure to estimate 
the duration of tasks with unspecified time intervals.If we 
incorporate such a procedure, the time taken to execute it 
will also he our concern. 

7 Projections (and persistences) have been studied by nu- 
merous authors; see eg. [McDermott, 1987], [McDermott, 
1982] , [Wilensky, 1983], [Charniak and McDermott, 1985], 
[Kautz, 1986] and [Kanazawa and Dean, 1989]. Our treat- 
ment is along the lines of time-maps of [Dean and McDer- 
mott, 1987], [Dean, 1987], 
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true in the projection, he finds an axiom of the form 
B\,.. .,Bk —► CA, the triplets corresponding to fi's are 
chained to the triplet for A, and CA is marked satisfied 
(Rule 12, Appendix B). A flexible time margin is avail- 
able between Rßk (the result of Bt) and CA- At every 
step, all conditions marked satisfied are re-examined to 
see if a changed projection set has rendered them unsat- 
isfied again. An action A whose condition CA is satisfied 
using either of the two methods is further decomposed 
if it is not primitive, by using an axiom of the form 
Di A ... A Dk —► A (Rule 14, Appendix B). A chain of 
triplets each corresponding to Di is added in place of the 
triplet for A. In the current implementation, we regard 
the D\ A ... A Dk as a shelf plan for doing A, and hence 
do not allow flexible time margins between the end of 
Dj and start of -Dj+i, 1 < j < k. 

2.6     Use of Projections and Observations in 
Acting 

Dudley may start to act on the partially developed plan 
as soon as it is possible to perform a primitive action, not 
waiting for the plan to reach completion. At the same 
time he continues planning [McDermott, 1978],[Georgeff 
and Lansky, 1988J. His predicted projections and obser- 
vations are compared; conflicts resolved in favor of the 
latter (Rule 13, Appendix B). Projections can suffice to 
satisfy the condition for a primitive action, when the con- 
dition is not directly observed, provided the projections 
do not contradict any other observations. For example, 
as Dudley takes one pace after another, he does not nec- 
essarily observe that he is Ai(L\ + v), At(L\ + 2v) ...; 
he can act on the basis of his projections unless he gets 
an observation input during the course of his pacing, in- 
forming him that a certain pace was faulty and landed 
him At(Ls) instead of the desired destination. He can 
not proceed with the next pace and must revise his plan 
and WET in such a situation. When A is acted upon, 
The start_time of the condition CA for A is bound to 
Now and other time variables which have a fixed dis- 
tance from the start_time are also bound appropriately. 

We are currently extending our implementation in var- 
ious ways, to involve perceptual reasoning,8 explicit rep- 
resentations for extended actions, revising plans when 
they are seen to be inadequate, and choosing between 
multiple plans. 

3     Some Illustrative Steps 

To illustrate our efforts in a bit more detail, we present 
below portions of the output from our PROLOG pro- 
gram that implements the ideas we have been discussing. 
Here Nell is a distance of 35 'paces' from Dudley when 
he first realizes (step 0) that the train will reach her in 
50 time units. He begins to form a plan, seen below in 
step 1 as Bpl ('partial plan'), and refines the plan in 
subsequent steps.   Ddl is the deadline time (50 in the 

example) given to Dudley, d is Dudley, and n is Nell. 
The subscript obs indicates that the wff it is attached 
to is the result of an observation. Subscripted /'s indi- 
cate locations and subscripted t's indicate times (step 
numbers). A colon between times (as in At(0 : oo,rf,/i)) 
represents a time interval during which the predicate is 
asserted to be true (in this case, that Dudley will be at 
location /i from 0 to infinity. 

Proj gives Dudley's projections as to what will be true 
in the future, based on his partial plan and whatever 
Facts he has to work with. The word save that appears 
as argument to Ppl, Proj and Feasible in step 1, is 
simply a label naming the plan he is forming. 

0:   F*cts({At(0, d, h)obs,Tied(0, n, l2)0bs}), 
Deadline(50), Goal(out-of-danger(Ddl, n, l2)) 

1:   Facts({.42(0, d, h),Tied(0, n, l2)}), Deadline(50), 
Unsolved(Goa/(ou<_o/_dan<7er(50, n, I2))), 
Ppl(save, 1, {out..of -danger(50, n, h)))}), 
Proj(save, {At(0 : 00, d, l\),Tied(0 : 00, n, l2)}), 
WET(save,0), Feasible(sawe, 0) 

In step 1 the Ppl simply records that Dudley plans 
to get Nell out of danger. In his Proj he still 
expects to remain where he is (/1 for the indefinite 
future ('00') since he has not yet realized in this 
first second that he must move to save Nell. Nor 
has he realized he must untie Nell, so he also 
projects that she will remain tied indefinitely. 

2:   Facts({^(0 : l,d,h),Tied(0 : l,n,/2)}), 
Deadline(50), 
Unso\ved(Goal(out-of-danger(bO, n, l2))), 

Ppl(save, 2, 
Not_tied(t\, n, I2) 

Pull(tx :t2,d,n,l2) 
Out-of' -danger{t2) n, l2) 

{t2 < 50,ii =t2- 1}) 
Pvoj(save, {At(0 : 00, d, li),Tied(0 : 00, n, /2)}), 
WET(save, 0), Feasible(save, 1) 

In step 2 Dudley has begun refining his plan, 
namely he determines that if Nell were untied then 
he could Pull her out of danger; this he infers from 
general world knowledge (axioms, not shown). The 
times t\ and t2 here are indefinite times that must 
satisfy only the conditions shown, so that the 
WET is not too long. The column matrix 
indicates an action (Pull) with its enabling 
condition (NotJ,ied) and result (Out-of-danger). 
We skip the next three steps for the sake of brevity. 

This ties back to spatial reasoning, and to aspects of 
a plan that involve getting more information; for instance 
Dudley may have to move in order to see whether Nell is 
tied. This in turn relates to existing work ([Kraus and Perlis, 
1989], [Davis, 1988]) on ignorance and perception. 

103 



5:   Facts({,4*(0 : 4, d, ll),Tied(Q : 4, n, /2)}), 
Deadline(50), 
Uiisolved(Goal(out-of„danger(50, n, l2))), 

At(t6,d,h) 
Run(te : t7,d,li : l2) 

At(t7,d,h) 

Tp\(save, 5, < 

^(<3,rf,/2) 
Untiex(tz : t9,d,n,l2) 

5«CC_«i(<9) 

At(<5, d, /2), 5wcc_tt2(i5) 
Untie3(t5 : t4,d, n,/2) 

5'wcc_W3(<4), NotJ,ied(t4, n, /2) 

NotJied(ti, n, /2) 
Pull(ti : t2,d,n,l2) 

Out.of^danger(t2, n, l2 

{<2 <50,<i = *2- 1,<4<*1, 
^5 = <4 — 1,<3 = t4 — 3, ^3 = <9 — 1, 

<7 <t3,tS = t7- l,t6 < tT}), 
Proj(save, {>li(0 : *8, ^, ^i), -4*(*7 : oo, c/, /2), 
Tied(0 : <5, n, /2), N otJied(t4 : oo, n, /2), 
Out.of-danger(t2 : oo, n, /2), Pull(ti :t2,d,n, l2), 
Release(t3 : t4, d, n, /2), Run(te : t7, d, L : /2)}), 
WET(save, 4), Feasible(sat;e, 4). 

In step 5, Dudley has been able to infer (from 
axioms not shown) that he can refine his plan by 
running to Nell from l\ (since he projects' from 
earlier steps that he will still be at l\ at step i6) to 
/2 and releasing her (which will take him three 
untying actions). The numerical subscripts 
attached to column matrices show the order in 
which they are to be read ; also the subscripts 
show some portions have been omitted for ease of 
presentation. Note that the result NotMed in the 
fourth matrix matches the enabling condition of 
the fifth matrix. Notice in Proj at last Dudley 
knows he must move to /2 (by some as yet 
indefinite time t7, where he then supposes he will 
remain. 

Facts({.4*(0 : 5, d, h),Tied(0 : 5, n, /2)}), 
Deadline(50), 
\Jnsolved(Goal(out-of-danger(5Q, n, /2))), 

At(t6,d,h) 
Pace(t§ : tio, d, l\ : l\ + v) 

At(t1Q,d,h + v) 

At(ta,d,li + Mv) 
Pace(t8 : t7,d,li + 34v : /2) 

At(t7,dJ2) 

Ppl(save, 6, < 

{t2 < 50,*! = h - l,t4 < h,h = U - 1, 
*3 = *4 — 3,<3 = *9 — 1,*7 < <3,*8 = *7 — 1, 
*6 = t7 — 35, IQ = iio — 1}), 
Proj(save, {At(Q : ts, d, lt), At{t7 : oo, d, /2), 
Tied(0 : t$, n, /2), NotJ,ied{i4 : oo, n, /2), 
Out-of'-danger{t2 : oo, n, /2), Pull{t\ : t2, d, n, /2), 
Release(t3 : t4, d, n, /2), Run{t§ : t7, d, l\ : /2), 

Succ.ui(ts : oo), 5wcc_u2(<5 : oo), 
Succ.u3{t4 : oo), Untiei(t3 : ts, d, n, /2), 
Untie2(t9 :ts,d,n,l2),Untie3(h '■ *4, d, n, /2)}), 
WET(save, 39), Feasible(save, 5) 

In step 6 Dudley has planned his run (35 paces) 
and is ready to start enacting his plan. This is seen 
by comparing step 6 and step 7; in the latter he no 
longer has the plan to do the first pace (from l\ to 
/i + v since he has moved this to his 'do' list of 
actions (not shown) since (in this case) the Facts 
list does not contradict his projected position of l\. 
Here v is his velocity (i.e., one pace per second). 

Facts({/tt(0 : 6, d, h), Tied(0 : 6, n, /2)}), 
Deadline(50), 
XJnso\ved(Goal(out„of„danger(50, n, /2))), 

At(8,d,h + v) 
Pace(8 : 9,d,h + v : h + 2v) 

At(9,d,h + 2v) 

Pp\(save, 7, 

At(41,d,h + 34v) 
Pace(4l :42,d,/! + 34t; : l2) 

At(42,d,l2) 

At(t3,d,l2) 
Untiei(tz : t9,d,n,l2) 

SuCC-Uiitg) 

34 

J 35. 

NotJied(ti, n, /2) 
Pull(t\ : t2,d,n,l2) 

Out-of-danger(t2, n, l2) 
38 

{t2 < 50, fj =t2- l,t4 <tu 

<5 = <4 — 1, *3 = t\ — 3, *3 = *9 — 1, 
t6=J,tl0 = 8,...,t7 = 42,t7<t3}), 
Proj(sat;e, {At(0 : te,d, /i), At(tio, d, li + v), 
..., At(t7 : oo, d, /2), Tied(0 : t^,n, l2), 
NotJied(t4 : oo, n,l2), 
Out-of-danger(t2 : oo, n,l2), 
Pull{ti : t2,d, n, l2), Release(t3 : t^, d, n, l2), 
Run(t6 '■ t7, d, l\ : /2), Succ-U\(tQ : oo), 
Succ-U2{tz ■ oo), Succ-u3(t4 : oo), 
Untiei(t3 : t9, d, n, /2), Untie2{t9 : t5,d,n,l2), 
Untie3(tz : t4,d,n,l2), Pace(t6 : tio,d,lltli + v), 
Pace(tio : ts, d, l\ + v,h + 2v), 
Pace(t8:t7,d,l1+2v,l2),}) 
WET(save, 38), Feasible(save, 6) 

We see in step 7 above that now Dudley believes 
he will be at /i + v by time 8, having taken the 
first pace toward Nell during the one second 

)        between times 7 and 8. His actions continue, until 
by step 47 he has saved Nell. 

4     Conclusion and Future Work 

Our efforts thus far are preliminary evidence that a logic- 
based real-time planner is feasible. Much more needs to 
be done, especially regarding multiple/competing plans 
and interacting subplans. Our next effort involves al- 
lowing Dudley two possible means of saving Nell, and 
he must find them and choose between them while also 
taking this time spent into consideration. 
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A    AXIOMS 

To facilitate reasoning with triplets, some axioms are 
given in two forms. 

Axioms related to moving: 

1. Run(T : T + (L2 - Lx)/Vy ,Y, Lx : L2) -+ 

At(T + (L2-Lx)/Vy,Y,L2). 

2. condition(Run(Tx :T2,Y,LX : L2), At{Tx, Y, Lx)). 

3. result(Run(Tx :T2,Y,LX : L2),At(T2,Y, L2)). 

4. Pace(T : T + 1, Y, Lx : Lx + Vy) A 

Pace(T+l :T+2,Y,Li + VY :L1+2Vy) A... 

APace(T + k- 1 :T+ k,Y, 

Lx + (k-l)VY -.Li+kVy) 

-+ Run(T:T + k,Y,Lx : Lx + kVy). 

5. condition(Pace(T : T + 1, Y, L : L + Vy), 

At(T,Y,L)). 

6. result(Pace(T :T+l,Y,L: L+Vy), 

At(T+l,Y,L + VY)). 

7. At(Tx :T2,Y,Lx)^-iAt(Tx :T2,Y,L2). 

7. Untiei(T:T+l,Y,X,L) 

AUntie2(T+l :T + 2,Y,X,L) 

AUntie3(T + 2 : T + 3, Y, X, L) 

^Release(T :T + Z,Y,X,L). 

8. condition(Untiex(T : T + 1, Y, X, L),At(T, Y, L)). 

9. result(Untiex(T : T + 1, Y, X, L), Succ.ux{T + 1)). 

10. condition(Untie2(T : T + 1, Y, X, L), 

At(T,Y,L)ASucc.ui(T)). 

11. result(Untie2(T :T+ 1, Y,X, L), Succ.u2{T + 1)). 

12. condition{U ntie3{T : T+ 1,Y,X,L), 

At(T,Y,L)ASucc.u2(T)). 

13. result(Untie3(T : T + l,Y,X,L), 

Succ-u3(T + 1) A Not.tied(T +1,X, L)). 

14. Tied(Tx :T2,X,L)-+ -^NotJied(Tx :T2,X, L). 

Axioms related to untying and releasing: 

1. Pull(T   :   T + l,X,L)   —   Out-ofjdanger(T + 

l,X,L). 

2. condition(Pull{T :T+1,X,L), NotJied(T, X, L)). 

3. result{Pull(T :T+1,X,L), 

Out-of-danger(T + 1, X, L)). 

4. Release{T : T+3, Y, X, L) -* NotJied(T+3, X, L). 

5. condition(Release(T : T + 3,Y,X, L),At(T,Y, L)). 

6. result(Release(T   :  T + 3,Y,X, L), Notlied(T + 

S,X,L)). 
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B    INFERENCE RULES 

1. Agent looks at the clock 

! + 1 : ..., Now(i + 1) 

2. Forms the first partial plan 

i : Goal(G) 
i + 1 : Ppl(p, i + 1, {G}), feasible(p, i) 

3. Finds a triplet whose result matches the goal 

i : Ppl(p, i, {G}), result(>l, G), condition(yl, CA) 

i+1 :Ppl(p,i+ 1, 

4. Finds a triplet whose action matches the goal 

CA 
A 
G 

i : Ppl(p, i, {G}), result(G, RG), condition(G, CG) 

1 :Ppl(p,i+l, 
CG 
G 

RG 
•) 

5. Computes WET and checks if feasible 

i : Ppl(p, i,{...}), Deadline(Dd/), WET(i) + i < Ddl 

'■■ + 1 : Feasible(p, i) 

6. Computes WET and checks if unfeasible 

Ppl(p, i, {...}), Deadline(Dd/), WET(i) + i > Ddl 
i + 1 : -iFeasible(p, i) 

7. Observations become instant beliefs 

8. Modus Ponens 

9. Inheritance 

if a is not Now(i). 

i + 1 : Facts(..., a); a G OBS(i + 1) 

i : . . ., a, a —> ß 

z : . . ., a 
i + 1 : . . ., a 
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10. Projection 

i : Context_set(i),Proj(f) 

i + 1 : Proj(f + 1) = {X(S : R,...) | X(S : F,...) € Context.set(i), 
F < R, Contextset(i) \f -<X(S : R,...); S : R is the maximum such interval.} 

11. Satisfy a condition for an action by looking at projection 

i : Ppl(p, «',<... 
CA 
A 

RA 

...»,CUeProj(i) 

12. Satisfy condition using an axiom 

i : Ppl(p, i, 
CA(T:...) 

A 
RA 

i + 1 : satisfied(CA) 

...\),CA<t Proj(i), ßi,..., Bk(T' : T* ...) - CA(T* : .. .);T* < T 

i+1 :Ppl(p,z'+l, 

13. Perform a primitive action 

CBX 

Bl 

.   RBX 

cBk r CA I 
Bk A 

RBk   J . RA . 
>), satisfied(C^) 

i : Ppl(p, i, 
CA 
A 

RA 

. }),primitive(A),CA G OBS(i); or CA € Proj(i) and Facts(i) \f ^CA 

i+1 :Ppl(p,J+l, {...}) 

14. Refine a non-primitive action when its condition is satisfied 

i : Ppl(p, i, 
CA 
A 

RA 

>), satisfied(CU), Qi A ... A Qk — A 

i + 1 :Ppl(p,i+l, 

15. A formula from the projection becomes a fact 

CQl 
QI 

RQ> 

CQk 

Qk 
RQ* 

...  ) 

i : Facts(i), Proj(i) 
i+1: Facts(i + 1) = Facts(i) U X(Ti : T2,...), 

if X e Proj(t), T2 < i, and Facts(i) \f -<X(Ti : T2,...) 
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Abstract 

In this paper we outline an experimental 
method for the study of planning. We argue 
that experimentation should occupy a central 
role in planning research, identify some depen- 
dent measures of planning behavior, and note 
some independent variables that can influence 
this behavior. We also discuss some issues of 
experimental design and different stages that 
may occur in the development of an experi- 
mental science of planning. 

1. Experimentation in Planning Research 

Many sciences, such as physics and chemistry, at- 
tempt to integrate theory and experiment. For instance, 
theoretical physicists make predictions that are tested 
by experimental physicists, and when prediction and 
observation differ, the theory must be revised. Such 
cooperation between theoretician and experimentalist is 
a sign of a field's maturity, and it should be encouraged 
whenever possible. 

At first glance, AI work on planning may appear in- 
herently different from the natural sciences. Because 
researchers study artifacts over which they have com- 
plete control, one might think there is no need for ex- 
perimentation and that formal analysis should suffice. 
But this view ignores the fact that all theories rely 
on assumptions that may or may not hold when ap- 
plied to actual algorithms or real-world domains. Test- 
ing theoretical predictions through experiments lets one 
gather evidence in favor of correct assumptions, and it 
can point toward modifications when assumptions prove 
faulty. Long-term progress in planning will depend on 
such interaction between the theoretical and experimen- 
tal paradigms. 

Also, the complexity of most planning methods makes 
it difficult to move beyond worst-case analyses, suggest- 
ing experimentation as the only practical approach to 
obtaining average-case results. Thus, the field promises 

*Also affiliated with Sterling Federal Systems. 

to have a significant empirical component for the foresee- 
able future. And unlike some empirical sciences, such as 
astronomy and sociology, planning is fortunate enough 
to have control over a wide range of factors, making 
experimentation easy and profitable. 

In any science, the goal of experimentation is to bet- 
ter understand a class of behaviors and the conditions 
under which they occur. Ideally, this will lead to empir- 
ical laws that can aid the process of theory formation. 
In our field, the central behavior is planning, and the 
conditions involve the algorithm employed and the en- 
vironment in which planning occurs. An implemented 
planning algorithm is necessary but not sufficient; one 
should also attempt to specify both when it operates 
well and the reasons for its behavior. Experimentation 
can provide evidence on both these issues. 

As normally defined, an experiment is a study in which 
one systematically varies one or more independent vari- 
ables and examines their effect on some dependent vari- 
ables. Thus, a planning experiment involves more than 
running a planning algorithm on a single problem; it 
involves a number of runs carried out under different 
conditions. In each case, one must measure some aspect 
of planning behavior for comparison across the differ- 
ent conditions. Below we consider some dependent and 
independent variables that are relevant to planning re- 
search. We then turn to broader issues in designing 
experiments and in developing an experimental science 
of planning.1 

2. Dependent Measures of Behavior 

To evaluate any planning system, one needs some 
measures of its behavior. In most experiments, these are 
the dependent variables that one would like to predict. 
There are two obvious classes of metrics for planning 
algorithms - the quality of the generated plans and the 
effort required to generate them. 

There exist many variations on the notion of plan 
quality.   In a classical planning framework, one might 

For other discussions of experimentation in AI, see Ki- 
bler and Langley (1988) and Cohen and Howe (1988). 
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simply measure the length of the solution path or the 
total number of actions. More sophisticated dependent 
variables involve the time taken to execute a plan, the 
energy required, or the use of other resources. Alter- 
natively, one can examine the robustness of a plan, as 
would be characterized by its ability to respond well un- 
der changing or uncertain conditions. 

However, in many domains, finding any plan at all 
requires significant search, making it important to mea- 
sure the time or effort spent in generating a plan. Mea- 
sures of this sort have predominated in recent exper- 
imental studies of learning in planning domains (e.g., 
Minton, 1990; Iba, 1989). The simplest measure in- 
volves the total CPU time, but this metric can depend 
on both machines and implementations. More appropri- 
ate measures include the number of nodes considered in 
a search tree (Minton, 1990; Mooney, 1989), the number 
of unifications required (Allen & Langley, 1990), and the 
number of subgoals generated during the planning pro- 
cess (Jones, 1989). Of course, such internal measures 
are less interesting for intelligent agents that interact 
with an external environment; in such cases, measures 
of overall external time for planning and execution be- 
come relevant, despite possible differences in hardware. 

Most measures of plan quality and planning effort im- 
plicitly assume that the planner will find a solution to 
every problem, but this is unrealistic in resource-limited 
situations. In such cases, the agent may be unable to 
solve certain problems, and it is important to take this 
into account when reporting experimental results. One 
response involves explicitly incorporating this result into 
the quality measure by giving unsuccessful attempts a 
very low score. Incorporating these cases into measures 
of effort is more difficult. As Segre, Elkan, and Rus- 
sell (1990) have noted, averaging failed problems into 
effort scores can bias results in favor of one system over 
another. Alternatively, one can simply report the per- 
centage of solved problems, treating this as a separate 
dependent measure. 

3. Comparative Studies of Planning 

Informal comparisons among planning algorithms 
abound in the AI literature, but there are relatively 
few systematic experiments that examine the behavior 
of different algorithms on the same problems. However, 
such comparative studies have an important role to play 
in developing a well-founded discipline. 

3.1 GROSS COMPARISONS OF PLANNING METHODS 

The simplest form of planning experiment involves 
comparing the behavior of entirely different algorithms 
on the same problem or problems. In this case, the 
independent variable is the particular planning system 
being used and the dependent variable is one or more of 
the measures described above. For instance, Sacerdoti 
compared the behavior of a simple means-ends planner 

to that of a planner incorporating means-ends analysis 
and abstraction. More recently, Ruby and Datta (1990) 
have reported more extensive experiments, comparing 
these two approaches in terms of nodes searched and 
length of solution path. One can also imagine exper- 
imental comparisons between preplanning and reactive 
systems, between search-based and case-based methods, 
and between specific algorithms within the same basic 
paradigm. 

In such comparative studies, it is important to place 
the systems' behavior in context. To this end, one can 
usually compare their performance to that of a 'straw 
man' that uses a simple-minded strategy (e.g., a tradi- 
tional nonlinear planner) on the same set of problems. 
If one of the 'advanced' algorithms actually carries out 
more search or generates lower-quality solutions than 
this naive approach, this is a cause for concern. Lower 
bounds of this sort help calibrate the quality of system 
behavior. 

3.2 PARAMETRIC STUDIES OF PLANNING 

Gross comparisons between different planning meth- 
ods have the aura of a competition, in which one method 
wins and the others lose. However, a science of planning 
should aim not for simple-minded conclusions but for in- 
creased understanding. To this end, researchers should 
attempt to identify the reasons for success or failure on 
a problem or class of problems, attempting to generalize 
beyond a specific system and experiment. 

This goal requires finer-grained studies of planning 
algorithms and their behavior. For instance, many sys- 
tems contain a set of user-specified parameters, and in 
such cases one can experimentally determine the effect 
of the parameter settings on system behavior. A number 
of parameters suggest themselves: 

• in preplanning systems, the maximum amount of 
resources devoted to generating a plan (e.g., limits 
on time, memory, or search); 

• in reactive systems, the frequency at which the 
agent samples its environment; 

• in combined systems, the ratio of deliberation to 
execution (Maes, in press; Sutton, 1990); and 

• in knowledge-intensive systems, the bias toward 
modifying stored plans versus dynamically con- 
structing new plans. 

Ideally, behavior will be 'acceptable' within a wide range 
of parameter values, with the system's behavior varying 
slowly «is a function of the settings. Hopefully, the same 
range of values will work across a variety of domains. 

A related issue concerns the evaluation function or 
control scheme that a planning system uses to direct 
search. If the function contains parameters, then one 
can examine their relative importance through simple 
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parametric studies. However, one can also replace the 
entire control scheme with different ones in an attempt 
to find improved search methods. For instance, in a 
case-based system one might compare an existing sim- 
ilarity criterion for indexing knowledge with other ap- 
proaches, such as Bayesian methods. 

3.3 LESION STUDIES OF PLANNING COMPONENTS 

Some planning systems contain a number of indepen- 
dent components, and one can study the usefulness of 
each by removing it from the system. In such a 'lesion' 
experiment,2 one runs the system with and without a 
given component, measuring the difference in perfor- 
mance. If a component does not aid the overall plan- 
ning process, then it can be removed without undesir- 
able consequences. Some obvious candidates for lesion- 
ing include: 

• mechanisms for abstraction planning; 

• methods for hierarchical planning; 

• heuristics for identifying when to replan; and 

• techniques for handling special forms of goals. 

The above components focus on processes, but one can 
also imagine lesioning knowledge from a system. For ex- 
ample, some planning systems (Wilkins, 1988) incorpo- 
rate constraints that may narrow the search or improve 
solution quality, but the influence of these constraints on 
behavior is an empirical question. Similarly, case-based 
planning systems draw upon a library of plans (Ham- 
mond, 1989) or plan components (Jones, 1989) in the 
construction of new plans, and one can determine the 
change in behavior as one adds or removes cases from 
memory. 

One special case of lesion studies focuses on learning, 
and much of the recent experimental work on planning 
falls into this area. In this paradigm, one runs a plan- 
ning system with and without a learning component, 
then examines differences in performance between the 
two variants. Allen and Langley (1990), Iba (1989), 
Minton (1990), Ruby and Kibler (1989), and Shavlik 
(1990) report evidence that a variety of learning com- 
ponents can improve the behavior of planning systems 
after sufficient experience in a given domain. 

In some cases, researchers have also found negative 
results; both Iba (1989) and Minton (1990) have shown 
that naive learning methods can actually degrade plan- 
ning performance in terms of search required to find 
solutions. However, rather than abandoning the use of 
learning methods, both used their results to identify the 
source of degradation and went on to develop learning 
methods that improve performance. This work provides 

This approach is common in neuroscience, where re- 
searchers excise a specific region of the brain to determine 
its effect on behavior. 

an excellent role model for those interested in the exper- 
imental study of planning. Kibler and Langley (1988) 
discuss additional issues that arise in experiments with 
learning planners, as do Segre et al. (1990). 

4. Varying the Planning Domain 

Seldom will one system always appear superior to an- 
other, and this leads naturally to the idea of identify- 
ing the conditions under which one approach has better 
performance than another. To study the effect of the 
environment on a planning system, one must vary the 
domain in which it operates. Natural domains, such as 
path planning for an autonomous vehicle or manipula- 
tor planning for an industrial robot arm, are the most 
obvious because they show real-world relevance. Also, 
successful runs on a number of different natural domains 
provide evidence of generality. 

The simplest approach to this issue involves designing 
a set of 'benchmark problems'. To be scientifically use- 
ful, each benchmark problem should highlight certain 
problem attributes to help isolate planners' particular 
abilities. In addition, a realistic set of benchmark prob- 
lems can help the scientific community explain its results 
in terms that can make a difference to those concerned 
with practical applications. These two goals - foster- 
ing scientific comparison and engineering development 
- place rather different constraints on a set of bench- 
mark problems. 

For the purposes of scientific comparison, one must be 
able to independently vary different task attributes. To 
achieve this, some benchmark problems should involve 
artificial domains. For situations that involve planning 
and execution, relevant attributes relate to the initial 
state specification, the goals, and the domain dynamics. 
For instance, one might consider the following sorts of 
task attributes: 

• the length of the 'optimal' solution path (e.g., the 
number of actions in a block-stacking task); 

• the effective branching factor (e.g., the number of 
actions considered for each plan step); 

• the complexity of the environment (e.g., the number 
of obstacles in a navigation task); 

• the amount of goal interaction in a planning task; 

• the reliability of the domain (e.g., the probability 
that effectors will have the desired effect); and 

• the rate of environmental change not due to the 
agent's actions. 

However the list of task attributes is constructed, the 
set of representative problems should provide a complete 
coverage of the task attribute space. Complete coverage 
will let researchers choose problems from the set that 
highlight the system capabilities they seek to measure. 
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The set of task attributes and benchmark tasks should 
evolve concurrently. 

Artificial domains are gaining acceptance with the 
planning community (e.g., Pollack & Ringuette, in 
press), since they let researchers systematically study 
planning behavior across a wide range of situations.3 

Another advantage of artificial domains is that they 
specify a variety of domain characteristics. In many 
cases, this lets one determine plans having optimal qual- 
ity, thus establishing upper bounds on a planner's out- 
put. One can then compare the plans generated by ac- 
tual algorithms against these upper bounds. If plan 
quality approaches this bound, one can also decide 
whether additional components or extra computation 
are worth minor improvements in this regard. 

For engineering development and technology transfer 
purposes, tasks that include 'practical' difficulties will 
be more useful. Domains involving physical output de- 
vices such as robot arms and physical input devices such 
as limit switches will prove more useful in terms of val- 
idating particular systems. It is important to include 
problems in the evolving set of benchmarks that sup- 
port such engineering evaluation, but discussion of such 
issues is beyond the scope of this paper. 

5. Issues in Experimental Design 

Basic experimental method suggests that researchers 
vary one independent term at a time while holding oth- 
ers constant. However, one can repeat this technique 
many times to achieve 'factorial' designs that measure 
dependent variables under all combinations of indepen- 
dent values. Full factorial designs are impractical when 
many independent variables are involved, but reduced 
experimental designs are also possible. 

The advantage of combinatorial designs is that they 
let one go beyond the effects of isolated factors and de- 
tect interactions between independent variables. For in- 
stance, one might find that planning method A behaves 
better than method B in environment X, whereas B 
fares better than A in environment Y. Alternatively, one 
might find that two components of a planning method 
lead to synergy, or that the joint presence of two do- 
main characteristics make planning especially difficult. 
We anticipate that many of the most interesting results 
in planning will have this form. The detection of such 
interactions does more than establish the conditions un- 
der which alternative methods should be used; it can 
also suggest hybrid algorithms. 

Another issue in experimental design involves the use 
of sampling and statistical tests. In the natural sciences, 
one can never control all possible variables. As a result, 

3One can also view resource limitations (e.g., time or en- 
ergy) as independent variables that affect task difficulty. Ex- 
perimental studies of 'anytime' algorithms (Dean fc Boddy, 
1988) might examine the effect of planning time on quality 
of the resulting plans. 

researchers must collect multiple observations for each 
cell in their experimental design, average the resulting 
values, and use statistical techniques to ensure that con- 
clusions about differences between cells are justified by 
the data. Although in principle one can control all the 
factors that influence a planning system, for practical 
reasons this will seldom be possible, and planning re- 
searchers should consider using them as well. 

For instance, seldom can one test a planning system 
on all possible problems from a given domain. Thus, it 
makes sense to select a random sample, run the system 
on all problems in this set, and report the mean and 
variance on dependent measures of interest. In some 
situations, the effects of the independent variables will 
be large enough that formal significance tests are not 
necessary. In other cases, the variances may be suf- 
ficiently high that statistics should be invoked. And 
though exploratory studies are useful, researchers often 
design experiments with some hypotheses in mind, and 
whenever possible they should explicitly state and test 
these hypotheses. In all cases, the experimenter should 
use caution and common sense in designing his or her 
experiments and in interpreting the results. 

6. An Imaginary Experimental Study 

An imaginary example may clarify the nature of plan- 
ning experiments. Suppose Dr. Calvin has developed 
a new planning algorithm, OUTSTRIPS, in response to 
limitations of earlier systems, say an inability to scale 
to complex problems. In this case, the hypothesis is 
that the new method will 'outstrip' other systems as 
task complexity increases. This suggests two indepen- 
dent variables - the algorithm employed and the prob- 
lem difficulty. 

At this point, Dr. Calvin must settle on some mea- 
sures of difficulty. Rather than using the number of 
actions in optimal solutions, she favors a more so- 
phisticated metric that incorporates the idea of goal 
interaction.4 She also decides to study the systems' be- 
haviors in multiple domains, say an idealized manipula- 
tion task like the blocks world and an idealized naviga- 
tion task. Similar results in multiple domains will lend 
credence to her findings, so she includes this as a third 
independent variable. 

Calvin must also identify the dependent measures she 
plans to use, and the explicit hypotheses she hopes to 
test. Naturally, she is interested in solution quality, 
which she will measure as the number of actions in the 
final plan, but she is even more interested in planning 
effort. Calvin has implemented OUTSTRIPS on her new 
positronic hardware, but she must run the comparison 
algorithms (including a straw man) on archaic silicon 
machines. Since all the systems involved in the study de- 
fine their search spaces in a similar manner, she decides 

4 Jones (1989) provides an initial approach to measuring 
goal interaction for means-ends systems. 
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to use the number of expanded nodes as her measure of 
effort. 

In carrying out her experiment, the researcher must 
randomly select from problems at each level of difficulty, 
since the number of possible problems increases rapidly 
with difficulty. However, Calvin is careful to use the 
same test problems for each system. For each problem, 
she measures the various systems' search and plan qual- 
ity, recording the mean and variance for each system- 
difficulty combination. She follows this procedure in 
each of the planning domains selected for study. 

In this case, let us suppose that, for each domain, 
OUTSTRIPS requires more search than its competitors 
on simple tasks, but that it expands considerably fewer 
nodes on difficult problems, with the gap widening as the 
difficulty increases. These results constitute evidence in 
favor of the original hypothesis that OUTSTRIPS scales 
better than other methods. However, Calvin also notes 
that her system's plan quality is slightly worse than that 
for the more expensive algorithms. As expected, she also 
notes that all systems perform better than the straw 
man, except on the simplest problems. 

In response to these findings, Calvin designs a le- 
sion study in an attempt to identify the particular con- 
straints used by OUTSTRIPS that lead to its superiority. 
To this end, she repeats the above experiment with le- 
sioned versions of her algorithm, finding that some con- 
straints greatly reduce planning effort, but that one of 
them is partly responsible for decrements in plan qual- 
ity. As a result, Calvin has not only arrived at a deeper 
understanding of her system's success (and how its con- 
straints might be transferred to other systems); she has 
also determined that deletion of one component actually 
produces a superior system with respect to plan qual- 
ity. Of course, this is not the end of the story, for ad- 
ditional experiments by other researchers may identify 
conditions under which OUTSTRIPS fares poorly, sug- 
gesting ideas for even better algorithms. 

7. Toward an Experimental Science 

Different goals are appropriate for different stages of 
a developing experimental science. Although planning 
work remains in the early steps of this evolution, it is 
worthwhile considering the states that may arise on the 
path toward a mature scientific discipline. 

In the initial stages, researchers should be satisfied 
with qualitative regularities that show one method as 
better than another under certain conditions, or that 
show one environmental factor as more devastating to 
a certain algorithm than another. Experimental eval- 
uations should become the norm for published papers, 
with researchers comparing new algorithms against well- 
tested systems that act as 'straw men'. Parametric and 

lesion studies should examine the contributions of spe- 
cific components, leading to improved algorithms that 
build on limitations identified earlier. Comparative 
studies that examine different algorithms on the same 
domains should proliferate, not to show one method su- 
perior to another, but to suggest directions for improve- 
ment. Online libraries of representative domains should 
encourage such comparisons. 

Later stages of planning research should move beyond 
qualitative conclusions, using experimental studies to di- 
rect the search for quantitative laws that can actually 
predict performance on unobserved situations. In the 
longer term, results of this sort should lead to theoreti- 
cal analyses that explain such effects at a deeper level, 
using average-case methods rather than worst-case as- 
sumptions. For instance, Segre et al. (1990) outline a 
simple mathematical model of search in planning, which 
they propose to use in analyzing experimental results. 
Other researchers should follow this lead, aiming for ro- 
bust theories of planning algorithms that predict behav- 
ior in novel experimental situations. Failed predictions 
should lead in turn to revised theories, in the same fash- 
ion that experiment and prediction interact in the nat- 
ural sciences. 

In summary, the planning field has already started its 
development toward an experimental science, and future 
advances should produce improved dependent measures, 
better independent variables, more useful experimental 
designs, and ultimately an integration of theory and ex- 
periment. However, even the earliest qualitative stages 
of an empirical science can strongly influence the di- 
rection of research, identifying promising methods and 
revealing important roadblocks. Research on planning 
is just entering this first stage, but we believe the field 
will progress rapidly once it has started along the path 
of careful experimental evaluation. 

Of course, the potential benefits of experimentation 
do not mean that empiricists should report gratuitous 
experiments any more than theoreticians should pub- 
lish vacuous proofs. Whether they lead to positive or 
negative results, experiments are worthwhile only to the 
extent that they illuminate the nature of planning mech- 
anisms and the reasons for their success or failure. Al- 
though experimental studies are not the only path to 
understanding, we feel they constitute one of planning's 
brightest hopes for rapid scientific progress. 
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Abstract 
This paper describes the localized search mechanism 
of the GEMPLAN multiagent planner. Both a formal 
complexity analysis and empirical results are provided, 
demonstrating the benefits of localized search. Localized 
search utilizes an explicit domain decomposition to in- 
fer constraint localization semantics and, as a result, to 
enable the decomposition of the planning search space 
into a set of spaces, one for each domain region. Each 
search tree is concerned with the construction of a re- 
gion plan that satisfies regional constraints. Shifts be- 
tween search trees are guided by potential regional in- 
teractions as defined by the domain's structure. The 
search algorithm must also ensure that all search trees 
are consistent, which is especially difficult in the case 
of regional overlap. Benefits of localization include a 
smaller and cheaper overall search space and heuristic 
guidance in controlling seaxch. Such benefits are criti- 
cal if current planning technologies are to be scaled up 
to large, complex domains. Indeed, the use of domain 
localization and localized search are broadly applicable 
techniques that can be used by many kinds of domain 
reasoning systems, not just planners. 

1    Introduction 
By now, the algorithmic complexity of domain- 
independent planning has become well known [2]. Many 
planning researchers have given up completely on pre- 
planning frameworks for more reactive action genera- 
tion strategies. Yet, there are many domains for which 
purely reactive approaches are inadequate. Imagine, for 
example, a factory shop floor in which people coordi- 
nate their activities simply by dynamically "reacting" 
to one another. The shop floor would soon become a 
mess. Some amount of preplanning is necessary for do- 
mains that require complex coordination of activities, 

especially when adherence to coordination constraints is 
critical. Such domains are numerous and include NASA 
mission planning1, building-construction planning, fac- 
tory planning, and planning of defense-related activi- 
ties. Given the inescapable need for reasoning about 
large complex plans, the planning community faces two 
related obstacles: (1) the inherent costliness of plan con- 
struction algorithms and (2) the problem of scaling plan- 
ning systems up to large domains. Indeed, these obsta- 
cles pose problems for any form of planning, whether it 
is performed before or during execution. 

The focus of_this paper is the use of locality — the 
inherent structural properties of a domain — to control 
the explosive cost of planning and other forms of reason- 
ing. The use of localized reasoning, while quite intuitive 
and natural, has not been a fundamental aspect of most 
AI systems. A localized domain description is one that is 
explicitly decomposed into a set of regions. Each region 
may be viewed as a subset of domain activity with an as- 
sociated set of "constraints" (properties, goads, or other 
requirements that the planner must fulfill) that are appli- 
cable only to the activities within the region. We refer to 
this delineation of constraint applicability as constraint 
localization. Localized planning consists of searching a set 
of smaller, regional planning search spaces rather than a 
large, "global" space. A GEMPLAN search space may 
be visualized as a plan-construction search tree, where 
each tree node is associated with a plan and each arc is 
associated with a constraint algorithm that transforms 
the preceding plan into a new plan (with new actions, 
relationships, etc.) that satisfies the constraint. 

The GEMPLAN domain representation allows for the 
specification of any kind of domain decomposition, in- 
cluding the use of regions that overlap, are disjoint, 
are organized hierarchically, or form any combination 
thereof. Criteria for decomposition are usually suggested 

0 This research has been made possible in part by the National 
Science Foundation, under Grant IRI-8715972. 

'Throughout the rest of this paper, the term "planning" will 
be used rather than "planning and scheduling." However, most of 
the discussion is equally applicable to the more specialized area of 
scheduling. 
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by the innate characteristics of a domain, such as its 
physical structure, its behavioral entities (agents), and 
its functional elements. Indeed, it is often useful to uti- 
lize a decomposition that reflects several criteria simulta- 
neously. Consider, for example, a building-construction 
domain. Viewed globally, the domain may be described 
by a set of constraints, some of which describe the ac- 
tual structure and requirements for a specific building, 
some of which encode the requirements and capabilities 
of contractors and physical resources, and some which 
describe the inherent limitations imposed by domain 
physics. Clearly, many of these constraints apply only 
to a subset of the full set of construction activities to be 
planned. One way to naturally decompose the domain 
is according to the physical structure of the building - 
e.g., to utilize separate regions to model each floor or 
room and its associated constraints. Other regions could 
model the individual contractors and their constraints. 
Figure 1 depicts a possible decomposition for a small 
construction domain. 

The primary goal of domain localization is to cluster 
activities into regions so that constraints are applied as 
narrowly as possible. The actual decomposition chosen 
will be used to infer the exact scope of applicability of 
domain constraints - i.e., each region's constraints ap- 
ply only to the activities within that region. As we will 
demonstrate, different localization decompositions will 
incur different planning costs. While most of our em- 
pirical tests to date have utilized user-provided decom- 
positions, we are currently developing an algorithm for 
automatically learning a good decomposition for a par- 
ticular domain as well as more general decomposition 
strategies. 

The use of localized reasoning has several benefits. 
From a representational point of view, locality provides 
a solution to some aspects of the frame problem; con- 
straint localization may be viewed as a frame rule which 
limits the effect of actions and properties upon one an- 
other [3,5,6]. Most important, however, locality pro- 
vides a rationale for partitioning a potentially explosive 
global planning space into a set of smaller, localized plan- 
ning spaces. This has three interrelated benefits: (1) 
both the size and cost of the union of a set of local- 
ized planning spaces is usually smaller than that of a 
global, non-localized space; (2) expensive planning algo- 
rithms need be applied to much smaller regional plans; 
and (3) since a localized domain description provides in- 
formation about how constraints and activities interact, 
it serves as a heuristic for constraint application. In par- 
ticular, only relevant (regional) constraints are applied 
to regional plans and movement between regional search 
trees occurs only when regions interact. All of these fac- 

tors clearly facilitate scaling up to large domains. Other 
planning researchers have also looked at related meth- 
ods of problem decomposition in order to reduce search 
complexity [1,4], but these have focussed primarily on 
goal reduction and operator reformulation rather than 
search space decomposition. 

It should be pointed out that domain localization is 
applicable to any kind of domain reasoning that can be 
effectively partitioned. Nearly all domains have some in- 
herent structure that can be exploited. For example, lo- 
calized reasoning could be used by single-agent planners, 
reactive systems, schedulers, truth maintenance systems, 
learning systems, image understanding systems2 — in- 
deed, many reasoning algorithms already utilize heuris- 
tics that are provided by domain structure. Our local- 
ized search algorithm can thus be applied to many kinds 
of reasoning systems. However, we do stress multiagent 
domains here for two reasons: (1) the complexity of co- 
ordinating multiagent domains makes localization even 
more necessary; (2) multiagent domains are typically 
easy to decompose. 

Of course, the benefits of localized search do have a 
price. From a practical point of view, domains can al- 
most never be partitioned into simple hierarchies or dis- 
joint regions. Pomains of any complexity will have re- 
gions that "overlap" - that is, some subregions will be 
shared by more than one encompassing region. For ex- 
ample, in Figure 1, regions wallA, e-control, and p-control 
each belong to more than one region. This complicates 
the localized search algorithm because changes within a 
shared region must be reflected within the search trees 
of all its ancestors. That is, localized search must pay 
attention to the problem of interaction and consistency 
among search trees. 

In addition, constraint localization will yield large 
gains only if a domain can be effectively decomposed. 
If many constraints naturally belong to a region that 
includes a great deal of domain activity, search will re- 
main quite expensive. To gain real efficiency benefits, 
regions which may seem intuitively "global" should be 
composed to include only a minimal amount of activ- 
ity. For example, in Figure 1, the general contractor's 
constraints apply only to his/her own activities in gc- 
control, those in e-control (electrician control activities), 
and those in p-control (plumber control activities), not 
to all activities in electrician and plumber. Experience 
thus far with GEMPLAN (and commonsense intuition 
about the structure and function of large organizations) 
indicates that effective localization is natural to obtain. 

2 A Paris-based firm, Framentec, is building a localized image- 
understanding/plan-recognition system based on the GEMPLAN 
formalism. 
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Figure 1: A Localized Construction Domain Description 

2    GEMPLAN Overview 

GEMPLAN is a planner designed explicitly for multia- 
gent domains that require complex coordination. The 
current GEMPLAN system is implemented in Prolog 
on a Sun workstation and has been applied to several 
test domains: multiagent blocks-world problems, the 
Tower of Hanoi, and a construction domain. The sys- 
tem includes an execution facility, and has the abil- 
ity to apply constraints before or during execution. It 
may thus be viewed as a combined pre-planner/dynamic- 
planner. While the existing system is primarily de- 
signed for pre-planning, we will soon begin implementa- 
tion of a next-generation GEMPLAN system that spans 
the pre-planning/dynamic-planning spectrum in a seam- 
less fashion. Our current target applications include 
large construction domains and data-analysis planning 
for NASA's Earth Observing System (EOS). GEMPLAN 
differs from standard hierarchical planners [11,12] in sev- 
ered ways: 

> GEMPLAN has the ability to satisfy a broad range 
of domain "constraint forms," not simply the attain- 
ment and maintenance of state conditions (the tradi- 
tional notion of "planning"). The system includes a set 
of general-purpose constraint satisfaction algorithms 
for partially-ordered plans, which may be further aug- 
mented by user-supplied constraint-satisfaction meth- 
ods. The default constraint algorithms are fully general 
- they allow for the addition of and reasoning about 
any possible temporal relationship between actions, in- 
cluding simultaneity. The current constraint repertoire 
includes: 

• condition attainment and maintenance (based on 
the modal truth criterion [2]) - i.e., the traditional 
"planning algorithm." Actions may be defined 
to have conditional effects. The algorithm also 
includes full protection capabilities. 

• action decomposition (i.e., action hierarchies). 
GEMPLAN allows for reasoning about actions at 
mixed levels of detail, rather than confining itself 
to reasoning "one level at a time," as do some hier- 
archical planners [12]. Indeed, rather than being 
inextricably bound to the planner's search struc- 
ture (hiearchical or otherwise), action decompo- 
sition is just another kind of "constraint" to be 
satisfied by the system, and may be applied at 
any appropriate time, including at run-time. 

• a variety of temporal and causal constraints, in- 
cluding run-time priority constraints. 

• attainment of desired patterns of behavior ex- 
pressed as regular expressions. 

It is these constraint satisfaction algorithms that per- 
form the task of plan construction and coordination, 
by introducing actions, action interrelationships, and 
variable bindings. 

> GEMPLAN partitions the global search space into lo- 
calized search spaces. 

> GEMPLAN has a highly flexible, tailorable search 
mechanism. In particular, constraint satisfaction can 
be guided by user-supplied heuristics and by the chang- 
ing planning and/or execution context, as it develops. 

More details on GEMPLAN appear elsewhere [5,6,7,8,9]. 
The rest of this paper will focus on GEMPLAN's local- 
ized search mechanism. Specific instances of plan con- 
struction via constraint satisfaction will be demonstrated 
in Section 3. 

2.1     Search Space Decomposition 

As described earlier, a GEMPLAN domain specification 
is decomposed with the goal of localizing the applicabil- 
ity of constraints as much as possible. For example, the 
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construction domain depicted in Figure 1 has been par- 
titioned into regions corresponding to the activities of 
the electrician, plumber, and general contractor. These 
regions have been further decomposed to include subre- 
gions that contain the activities of the electrician and 
plumber at various walls as well as contractor "control" 
activities (these might include communication actions or 
high-level actions that have not yet been expanded into 
activities at particular walls). Each wall region would 
be associated with constraints and definitions that are 
relevant to the actions taking place at that wall. For ex- 
ample, in the case of wall A, these may include constraints 
relating to coordination of plumber and electrician activ- 
ities. Each control region might be associated with per- 
sonal communication and planning constraints for that 
contractor. The electrician, plumber, and gc region con- 
straints, which apply to all their subregions, might de- 
scribe more global requirements pertinent to their re- 
spective activities. For example, note how the gc con- 
straints apply to all the control regions. These might 
describe how the general contractor's requests influence 
the control activities of each subcontractor. 

Rather than searching a single global search space, 
GEMPLAN creates a regional search space for each re- 
gion. Each search space is concerned with building a plan 
for its region that satisfies all regional constraints. The 
planner may thus be viewed as a set of "mini-planners," 
tied together as dictated by the structural relationships 
between regions. 

2.2 Regions 

Let us assume that a domain is specified as a set of 
regions RI,..., Rn. Each region R is defined by a region 
description: 

< actions(R), subregions(R), constraints(R),tree(R) > 

The set actions(R) consists of the types of actions that 
may occur directly within R (but not within a subregion 
of R). The set subregions(R) consists of subregions be- 
longing to R. For each such subregion Ri, we use the 
notation Ri C R. The set constraints(R) includes con- 
straints that pertain to activities within R and its sub- 
regions. Finally, each region is associated with a plan- 
construction search tree tree(R). 

2.3 Region Search Trees 

Figure 2 depicts portions of GEMPLAN planning search 
trees for the electrician and wallB regions. Each tree 
reflects search through a space of "plan modification" 
operations - i.e., it is a plan-construction search space 
(rather than a domain-state search space).   Each tree 

node is associated with the region plan constructed up 
to that point in the search, and each tree arc is associ- 
ated with a plan modification or "fix" that transforms 
a region plan into a new region plan. Upon reaching a 
node during planning search, the planner must choose 
a particular regional constraint to check next. (Thus, 
an implicit branching factor in the tree is the set of all 
relevant constraints at each node.) If the chosen con- 
straint is not satisfied by the plan associated with that 
node, constraint satisfaction algorithms or "fixes" must 
be applied (there may be several fix algorithms for each 
constraint, as well as many possible solutions or "fixes" 
per fix algorithm), resulting in a set of new region plans 
at the next level down in the tree. A GEMPLAN fix typ- 
ically adds new actions, relations, and variable bindings 
to a region plan, and may also generate new subregions. 
Note that fixes may add actions and relations anywhere 
within the plan it is working on - the precise temporal 
position is determined by the nature of the constraint 
and fix.3 

GEMPLAN uses, by default, a depth-first search strat- 
egy for searching its trees, trying constraints and fixes 
in the order supplied in the domain specification. How- 
ever, since search should optimally be driven by domain- 
dependent information and the structure of the plan it- 
self, GEMPLAN allows for flexible user-tuning of tree 
search. The order in which constraints and fixes are ap- 
plied can be made context dependent. GEMPLAN also 
includes a facility that can determine precisely which ac- 
tions affect which constraints within a region. This facil- 
ity enables only relevant constraints to be applied at each 
step, thereby exceeding the kind of "frame" informa- 
tion already provided by constraint-localization seman- 
tics. This coupling of localized search, where only rele- 
vant constraints are checked, with further user-tailoring 
of the search, forms an extremely flexible mechanism of 
"relevancy-driven-search" - namely, search driven by the 
most relevant constraints at any particular time in the 
reasoning process. 

2.4    Plan Representation 

As stated above, each search tree node is associated with 
a region plan. Each region plan consists of a local region 
plan and a set of subplans (the region plans of its subre- 
gions). For example, if RI C R and R2 C R, the region 
plan for R will include a local region plan for R and 
region plans for RI and R2. GEMPLAN associates all 
plan information with the smallest region that encom- 

3For example, unlike some planners (typically, those those per- 
form state-space search), actions need not be added to the plan in 
an order that is in any way related to the order in which the actions 
are executed. The fix algorithms may thus be viewed generically 
as plan modifiers that grow and refine plans in flexible ways. 
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Figure 2: GEMPLAN Search Trees 

passes that information. The region plans of Rl and R2 
will thus include all actions, temporal and causal rela- 
tions, variable bindings, and other plan information that 
deal exclusively with Rl and £2, respectively. The local 
region plan of R will then include plan information that 
deals specifically with activities in R or that pertains 
to relationships among R, Rl, and R2 (and therefore 
cannot be associated strictly with Rl or R2). 

2.5 Guiding 
Trees 

Search    Among    Regional 

Search within tree(R) is concerned with (1) assuring that 
all of Ä's constraints are satisfied by Ä's region plan and 
(2) making sure that Ä's subregions' trees are searched 
to find a satisfactory plan for their region plans. Refer- 
ring back to Figure 1, it is the role of tfree(electrician) to 
make sure that electrician's constraints are satisfied and 
that iree(wallB), iree(wallA), and iree(e-control) are all 
visited when their constraints may be affected. 

How does control transfer among regional trees? This 
is done in response to information transmitted to the 
search mechanism by a fix. Suppose we are in tree(R). 
After applying a fix for one of Ä's constraints to Ä's re- 
gion plan, the fix must return a subset of iJ's subregions, 
Ä1,..., Rrn, that may have been affected by the fix. The 
GEMPLAN search algorithm will then inhibit further 
search within tree(R) until tree(Rl)...tree(Rm) are all 
satisfactorily searched. As depicted in Figure 2, if electri- 
cian affects the subplan for region wallB via the introduc- 
tion of new actions there, search within <ree(electrician) 
cannot safely proceed until wallB's tree is searched and 
its constraints are rechecked and satisfied. Notice how 
shifts between parent and child regions induce a parti- 
tioning on the child's search tree. We call these search 
fragments incarnations - search within the child is "rein- 
carnated" each time its constraints are potentially vio- 
lated due to a fix in its parent's search tree. Each in- 
carnation is thus a subtree initiated by a parent region. 

In our example, free(wallB) may be reincarnated sev- 
eral times due to fixes for electrician constraints. Each 
time iree(wallB) is revisited, wallB's constraints must be 
rechecked and satisfied. One restriction on GEMPLAN's 
search control mechanism is that sill search strategies 
(e.g., breadth-first, dependency-directed, etc.) must be 
applied within the confines of an individual incarnation. 
This greatly simplifies the problem of search consistency. 

As the reader may have noticed, not all regions are 
subregions of some enclosing region. In the domain of 
Figure 1, this is true of gc, electrician, and plumber. To 
simplify search,'GEMPLAN requires that all tree search 
ultimately flows from some designated "global" regional 
tree.4 Although gc, electrician, and plumber do not log- 
ically belong to another region as far as constraint ap- 
plicability, we do need to make sure that some region 
at least takes "responsibility" for invoking their search 
trees. Thus, we include the additional relation Cr to 
denote this relationship, and require that each region 
except some designated "global" region have a "parent" 
that assumes search responsibility for it. In our example, 
we shall choose gc as the "global" region, with electri- 
cian Cr gc and plumber Cr gc. Although iree(gc) must 
make sure that iree(electrician) and free(plumber) are 
visited appropriately, gc's constraints apply only to its 
region plan, which includes only the subregion plans of 
gc-control, e-control, and p-control.5 

4
 This does not preclude the possibility of parallel search of in- 

dependent subtrees. Our research plans include experimentation 
with parallel search in GEMPLAN. 

5Readers of previous papers on GEMPLAN will recall that the 
GEMPLAN description language includes several types of regions 
and modes of access between regions (elements, groups, ports, 
etc.). For the purposes of this paper and for the sake of gener- 
ality, we simplified the GEMPLAN structural model to include 
only the relations C and Cr- The semantics of elements, groups, 
and ports can all be captured in terms of C and Cr- 
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2.6    Dealing With Regional Overlap 

One of the challenges of localized search is keeping all 
regional search trees consistent with each other. This 
would be fairly straightforward if domain structure were 
strictly hierarchical. However, since we allow for re- 
gional overlap, some effort is required to keep trees con- 
sistent. For example, if a fix in iree(electrician) affects 
region wallA's plan, it is not enough to simply recheck 
wallA's constraints and return to tfree(electrician). Re- 
gion plumber's representation of wallA's subplan must 
also be updated within iree(plumber), and search must 
also occur within iree(plumber) to recheck its con- 
straints. We call this process of maintaining consistency 
completion. Because GEMPLAN allows for quite com- 
plex localization structures, the search algorithm must 
be very careful to perform completion fully and cor- 
rectly. GEMPLAN must update all affected data struc- 
tures (in particular, parent tree data) each time it com- 
pletes searching an incarnation of a shared region. It 
must also make sure that all affected parent region trees 
are ultimately reincarnated and that region constraints 
are rechecked. 

3    Example 
More complete descriptions of GEMPLAN's search al- 
gorithms are provided elsewhere [9,10]. In this section, 
we attempt to clarify the preceding discussion with an 
example from the construction domain of Figure 1. Let 
us assume that the electrician, plumber, wallA, and wallB 
regions axe associated with the following (informally de- 
scribed) constraints:6 

ELECTRICIAN CONSTRAINTS: 

(1) action(install-socket(wallA.locAD) 
(2) action(install-socket(HallB,locBl)) 
(3) action(install-socket(wallB,locB2)) 
(4) decompose(install-socket(W,L), 

-CW.electprep(L) => W. insert socket (L)}) 

PLUMBER CONSTRAINTS: 

(1) action(install-pipe(wallA,locAD) 
(2) decompose(install-pipe(W,L), 

{W.plumbprep(L) => W.insertpipe(L)}) 

WALLA CONSTRAINTS: 

(1) (forall L) 

[(iorall prep:{electprep(L) ,plumbprep(L)}) 

pattern((prep)*=>)] 

(2) icfs([[electprep,insertsocket], 
[plumbprep,insertpipe]]) 

WALLB CONSTRAINTS: 

(1) all-matching-precede(electprep,insertsocket) 

6Tokens starting with a capital letter denote variables. 

The first three electrician constraints require that ac- 
tions exist in the final plan that install sockets in par- 
ticular walls and locations. Such action constraints 
simply result in the addition of actions to the plan. 
The fourth decompose constraint requires that each 
install-socket(W,L) action be decomposed into an 
electprep action followed by an insertsocket action 
at wall W, location L. Note that an action of form X. Y de- 
notes an action Y occurring at location X. The plumber 
constraints are similar. In this case, only one pipe is to 
be installed at wallA.7 

The two wallA constraints pertain to the coordination 
of the electrician and plumber actions at that wall. The 
first constraint states that, at wallA, all electprep and 
plumbprep actions at the same location follow a certain 
pattern - they must be totally ordered by the tempo- 
ral relation =>. The second constraint additionally re- 
quires that the electrician and plumber have access to 
wallA on a first-come-first-serve basis. The constraint 
description consists of a set of constraint pairs and has 
the following semantics: any required execution order- 
ing of the first actions in each pair (in this case, required 
orderings between "prep" actions) will determine the ul- 
timate ordering of the second actions in each pair (in this 
case, the ordering of insertsocket and insertpipe ac- 
tions). Since a total ordering is forced on all "prep" 
actions at the same location, this will force electricians 
and plumbers to insert their devices in common locations 
on a first-come-first-serve basis. Finally, wallB requires 
that all electprep actions precede all insertsocket ac- 
tions. This assures that all electrical wall-prep at wallB 
will be completed before any electrical components are 
inserted. At wallA, in contrast, prep and insertion ac- 
tions may be intermingled, as long as they conform to 
the two ordering constraints of wallA. 

Given these constraints, we will now run through a 
planning scenario. We will assume that all constraints 
are imposed strictly in advance of execution. Our dis- 
cussion will describe the train of reasoning GEMPLAN 
might go through to create the construction plan de- 
picted in Figure 3. 

Reasoning begins at the "global" region gc, which 
in this case has no constraints of its own, but is re- 
sponsible for invocation of the electrician and plumber 
search trees.   Let us assume that electrician is invoked 

Since this simple scenario does not contain constraints that 
force the electrician activities (nor plumber activities) to be totally 
ordered, let us assume, for the sake of realism, that electrician 
models a set of electricians (and similarly for plumber). In the 
GEMPLAN construction domain application discussed in Section 
5, multiple contractors were indeed used. The planner creates a 
suitable construction plan given any number of available contrac- 
tors, performing contractor allocation as planning proceeds. 
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install-socket(wallA,locAl)  •<  vallA.electprep(locAl)  ==>■  nallA.insertsocket(locAl) 

* It 
install-pipe(wallA,locAl) <C     wallA.plumbprep(locAl)      ==>•        wallA.insertpipe(locAl) 

install-socket(wallB,locBl)     <     wallB.olectprep(locBl) »alIB.insertsocket(locBl) 

install-socket(wallB,locB2)     <     wallB.electprep(locB2) 

Figure 3: A Construction Plan 

wallB.insertsocket(locB2) 

first. Constraints 1, 2, and 3, are satisfied by adding the 
specified install-socket actions to the electrician plan. 
Constraint 4 then decomposes these three actions into 
the appropriate electprep and insertsocket actions 
at wallA and wallB. This causes changes in the wallA 
and wallB subplans of electrician. Before search con- 
tinues within iree(electrician), search within tree(wallA) 
and iree(wallB) must occur. Let us assume that wall A 
is searched first. Both wallA constraints are checked, 
but both are satisfied. The newly completed incarnation 
of wall A therefore does not add any new information to 
the subplan for wallA associated with electrician, but the 
process of completion causes the new version of the wall A 
plan (that includes the changes made by electrician) to 
be inserted appropriately into <ree(plumber). 

Then iree(wallB) is searched. The wallB constraint 
causes the relations electprep(locBl) 
=> insertsocket(locB2) and electprep(locB2) => 
insertsocket (locBl) to be added. Search then returns 
to electrician, and the electrician's subplan for wallB is ap- 
propriately updated. Note that wallB is not a region of 
overlap, so no other completion operation need occur. 

At this point, all electrician constraints are satis- 
fied. Search then bounces back to gc, which in- 
vokes search in iree(plumber). The plumber constraints 
cause the addition of the inst all-pipe action and 
its decomposition into the appropriate subactions at 
wall A. After fixing the second plumber constraint, search 
must occur for the affected wallA region. This causes 
the actions electprep(locAl) and plumbprep(locAl) 
to be forced into some total order (in Figure 3, 
electprep(locAl) => plumbprep(locAl) was chosen) 
and then, as a result of the second wallA constraint, a 
similar ordering is imposed on insertsocket(locAl) 
and insertpipe(locAl). The now satisfied wallA plan 
is appropriately inserted into both iree(electrician) and 
tree(plumber) (due to the completion process). All 
plumber constraints are now satisfied and search bounces 
back to gc.   The constraints within electrician are then 

rechecked (due to the changes at wallA), but they are 
still satisfied. Search then terminates successfully. 

4     Complexity Analysis 

It is clear that no general definitive complexity result 
can be given for localized search - the size and complex- 
ity of the planning search trees for a particular problem 
will depend on the structure of the domain, the con- 
straints associated within each region, the complexity of 
their satisfaction algorithms, the domain search heuris- 
tics, and the peculiarities of the specific problem itself. 
In order to provide some theoretical estimate of the ben- 
efits of localized search, however, we provide an idealized 
analysis of search for a domain with a very simple local- 
ity structure. We provide best- and worst-case search 
costs, assuming that constraint algorithms are either all 
constant, linear, quadratic, or exponential in cost (obvi- 
ously, most domains will have a mixture of these). Al- 
though our analysis is quite idealized, it correlates with 
the empirical results of Section 5. The reader should 
also note that, for most of our empirical tests, search 
has been very close to best-case — i.e., our tests have 
exhibited very little backtracking. In general, average- 
case behavior can be expected to be close to best-case 
behavior if good domain search heuristics are employed. 

To formally and empirically assess the benefits of lo- 
calized search, we must compare it with completely non- 
localized search. For our formal complexity analysis, we 
utilize the non-localized and localized domain configura- 
tions depicted in Figure 4. For both domains we assume 
a total of ne constraints, that each constraint has nf 
possible fixes, and that the total number of actions in 
the final plan is s. The cost of checking any constraint 
on a plan of size j is c(j) and the cost of fixing a plan of 
size j is f(j). For the localized case, we assume that the 
domain has been localized to form a configuration of m 
subregions Ri...Rm and a region G. The actions in the 
final plan are divided equally among the R\ regions, so 
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Figure 4: Non-localized and Localized Domains 

that each builds a plan of size ^. Each region Ri also 
contains a subregion consisting of k actions that over- 
laps with region G. Thus, G's region plan consists of 
mk actions. The nc constraints of the original problem 
are evenly distributed among G, Ri, ...Rm so that each 
region is associated with ^f_ constraints. 

Let us now consider the cost of a generic region search 
tree. Let us assume that, for a region i, there are nCi 

constraints, that each constraint has nf fixes, and that 
the final size of the region plan is s,-. Because a con- 
straint fix may always, in principle, violate previous con- 
straints that may have been satisfied, constraints may 
need to be repeatedly checked and fixed. The search 
thus tends to take the form of a round-robin checking of 
constraints. We call the number of times the search must 
cycle through the constraints the search "repeat factor." 
Assuming that our sample region has a repeat factor of 
r,-, its tree depth is rinCi, with average depth to adding 
an action being r'n°'. (Thus, we assume that at most 
one action is added per fix. In most realistic domains, 
many actions are often added per fix.) 

To calculate search cost, we assume an implicit search 
space that alternately branches due to choice of a con- 
straint (the costs c(j) accumulated due to constraint 
testing) and choice of a fix (the costs f(j) accumulated 
due to constraint fixing). By "best-case search" we mean 
depth-first search without backtracking - i.e., the cost of 
one path from the root to the leaves of the search space. 

The cost of best-case search for region i is 

. £ ^Wi)+ /(;))• •*—' Si 
°<J<'i 

In contrast, worst-case search cost measures the cost of 
searching the entire space. For our sample region i this 
cost is 

£      niiny
lc((j-l) divr-^)+nirif((j-l) div T-^L). 

l<j<rinc. 
Si 

We shall now compare the complexity of these formu- 
lae for the non-localized and localized cases. For each 
case, we must assume a repeat factor for each region. In 
general, this will be a function of the size s,- of the re- 
gion plan and the number of constraints for that region 
nc;. For this analysis, we will set the repeat factor r,- to 
be ■£*— that is, we assume that exactly one action is 

added per fix, that the size of the plan is larger than the 
number of constraints, and that the depth of the tree is 
equal to the number of actions in the plan. In most of 
our test situations, however, the repeat factor tends to 
be less than this number, with more actions added per 
fix and, of course, some subset of actions being added 
by overlapping regions. Moreover, less rechecking needs 
to be done due to tuning of constraint application. On 
the other hand; some amount of additional rechecking 
tends to occur due to the completion process. Thus, our 
assumption of a repeat factor of £*- may be only slightly 

pessimistic. Given this formulation, the repeat factor for 
the completely non-localized case will be -^-. For the lo- 
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calized case, we have a repeat factor of -^- = m ^— 

for region G and a repeat factor of ±/^p[ = '^^ for 
each region i?j. 

The complexities of all cases are summarized in Table 
1. We provide best- and worst-case search results, as- 
suming that the complexity of c{i) and f(i) are both con- 
stant, linear, quadratic, or exponential. In some cases 
we supply only the leading term. For all of the localized 
search cases, we must add to the total cost of the search 
trees an additional completion cost C. For this idealized 
analysis, we assume that completion occurs each time an 
action is added within a region of overlap R. The cost 
of each completion operation will be a function of the 
number of additional regions that include R (this will 
not include the region actually adding the action to R) 
and the size of the plan data structure for each of those 
regions (since completion involves the replacement of cer- 
tain pieces of this data structure). In GEMPLAN, the 
size of this data structure is a function of the number of 
regions in the plan - in this case m+1. So for this prob- 
lem, we will assume a completion cost C = mk(m + 1) 
or 0(m2k). 

As can be seen in the table, localized search is, in gen- 
eral, always better than global search - in most cases 
significantly better. The only real exceptions are in the 
case of constant-complexity best-case search or when the 
cost of completion overshadows the cost of the search it- 
self. The amount by which localized search wins over 
global search is proportional to the amount by which s 
dominates both ^ (the size of each subregion Ri) and mk 
(the size of G). Thus, increased decomposition is always 
worthwhile, except for the cost of increased amounts of 
overlap (which is reflected in the size of mk and the cost 
of completion C). The overall gains of localized search 
increase as the complexity and size of the search space 
increases. As we will show in the next section, our em- 
pirical tests on a construction domain have shown uni- 
versal performance improvement with localized search, 
with speedups of greater than 50% using a good decom- 
position. 

5    Empirical Results 
All of our empirical experiences with GEMPLAN cer- 
tainly bear out the efficacy of localized search. Our 
largest application so far is for a building-construction 
domain. This domain includes multiple instances of each 
type of contractor as well as multiple walls and footings 
to which these contractors must be allocated. The prob- 
lem thus manifests both resource allocation and tempo- 
ral coordination of access to building components. The 
application was used to test a variety of localization con- 

figurations, including some that were fairly complex, in- 
volving both a great deal of hierarchy and overlap. 

Table 2 and Table 3 provide timing results for the 
construction domain (on a SPARC workstation). The 
"number of regions" column gives the total number of 
regions that have at least one constraint and one ac- 
tion in the final plan. The "overlap size" column gives 
a sum of size measures for each region of overlap. For 
each such region, its "size" is the number of actions in 
the region multiplied by the number of times it occurs 
within another region. For instance, in the domain of 
Figure 1, e-control, p-control, and wallA each occur twice 
within a parent region. If each region has a total of 2 
actions within its plan, the domain's total overlap size 
would be 12. The overlap size column gives a good 
idea of how expensive the completion process is. The 
"largest region" column gives a pair of numbers <number 
of constraints,number of actions> for the region with the 
largest number of constraints (which, in this case, is usu- 
ally also the region with the largest number of actions). 
This measure gives an idea of how big the largest search 
space in the domain is - i.e., the region space in which 
the most search will be conducted. 

The two tables provide results for the creation of of a 
49-action construction plan and a 97-action construction 
plan. Both used the same basic domain decomposition, 
with the 97-action plan simply having more walls, con- 
tractors, etc. Within each table, the first test case is for 
a non-localized version of the domain - all constraints 
are applied globally to the entire plan. The localized(l) 
test configuration is highly decomposed but also has sig- 
nificant amounts of overlap between regions. The local- 
ized^) case has less localization and much less overlap. 
Case localized(3) has an intermediate level of both lo- 
calization and overlap, and attains the best results in 
both cases. Interestingly, these results jibe with our for- 
mal analytical results; increased localization provides in- 
creased benefit, except for the added expense caused by 
with regional overlap. However, notice that, in the 97- 
action case, localized(l) is faster than localized(2). This 
shows how, as plan size increases, the cost of dealing 
with overlap is overshadowed by the shear size of the 
planning space itself. 
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Table 1: Non-Localized and Localized Search Complexity 

test case (49 actions) number of regions overlap size lavgest region CPU Seconds 
non-localized 1 0 <40,49> 113.81 
localized(l) 24 134 <4,16> 85.78 
localized(2) 16 32 <15,28> 79.23 
localized(3) 19 76 <8,17> 62.95 

Table 2: 49 Action Construction Plan 

test case (97 actions) 
non-localized 
localized(l) 
localized(2) 
local ized(3) 

number of regions 

37 
28 
31 

overlap size 
0 

236 
32 
102 

largest region 
<52,97> 
<7,34> 
<24,58> 
<8,24> 

CPU Seconds 
905.98 
524.97 
725.43 
442.43 

Table 3: 97 Action Construction Plan 
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6    Conclusion 

This paper has described a general-purpose technique 
for localized search, as well as complexity results and 
empirical test results that illustrate how localized rea- 
soning can provide substantial gains in performance. I 
strongly believe that the principal of domain localization 
can be used by a wide variety of reasoning mechanisms. 
The idea is quite intuitive and natural, but has, surpris- 
ingly, not been a fundamental aspect of most AI systems. 
Its application to planning is vital if such systems are to 
meet the requirements of large, complex domains. 
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ABSTRACT 

General-purpose planning techniques quickly become 
computationally intractable as one tries to increase the 
scale of the problem from simple examples to real, 
useful applications. Practical solutions lie not so much 
in enhancing general-purpose techniques but in finding 
ways to exploit the structure of specific problem spaces 
without compromising the goals of flexibility, 
extensibility, and generality that one is trying to 
achieve with planning technology. Transformational 
synthesis is a rule-base approach to constructive 
problem solving that combines the strengths of both 
planning and programming technology and supports the 
integration of multiple planning methods. Planning 
methods are represented as transformations that evolve a 
declarative representation of partially developed plans. 
Successful integration requires a common plan 
representation and shared approaches for plan evaluation 
and for searching among alternative plans. Recent 
applications have included a mission planner for 
multiple Autonomous Land Vehicles (ALV), daily 
scheduling of tactical air fighter resources, and 
interactive planning and control for submarines. These 
planners mix many of the classical planning 
techniques—using each where it is most appropriate, 
and different transformations range from generic to 
domain-specific. For example, the ALV mission 
planner has the domain knowledge and planning 
heuristics to plan multiple-vehicle reconnaissance 
missions at the three highest levels of abstraction. 
Most knowledge about the environment and all 
knowledge about the effects of the vehicles' operations 
is uncertain and is represented in terms of probability 
distributions. These planners exhibit much of the 
flexibility and extensibility of general-purpose planners; 
yet, they have the run-time performance of special- 
purpose planners. 

1. Introduction 

Recent research on planning technology has been searching 
for new paradigms that will enable the field to transcend the 
practical limitations of classical planning techniques. In the 
process, many of the assumptions involved in the classical 
planning methods of the 1970s are being questioned— 
indeed, the very meaning and utility of automated planning 
has been in question [Swartout 88]. 

The chief problem with classical planning techniques is 
that they quickly become computationally intractable when 
they are applied in applications that go beyond simple 
examples.' Furthermore, when planning is used in real- 
world applications, the planning must be done with very 
imperfect knowledge about world states, the planning needs 
to be interleaved with execution, and a rapid replanning 
capability is needed. While classical planning techniques 
can be extended to deal with uncertainty, with replanning, 
and with other real-world issues, such extensions only 
aggravate an already intractable problem with run-time 
performance. 

In our approach to planning, we accept the idea that 
planning involves the creation and maintenance of a 
declarative data structure called a plan. Other agents (either 
automated or human) interpret the plan and use it as a guide 
for execution and control. We do not assume that the plan 
is the only input to the agent executing the plan or that this 
agent is a slave to the plan; in fact, one aspect of our 
approach toward large-scale planning and control systems is 
to give as much autonomy as possible to the execution 
agents and defer making decisions that are more 
appropriately made by the agents that execute the plans. 

Past planning research has focused on generic, domain- 
independent planning techniques. While the motivation for 
this focus is clear, practical solutions to the computational 
intractability of planning are to be found by focusing on 
better ways of exploiting the structure of specific problem 

* This work was partially supported by the Defense Advanced 
Research Projects Agency (DARPA) and the U.S. Army Missile 
Command under contract DAAH01 -90-0080 and partially 
supported by IR&D funding from Advanced Decision Systems. 

Mt has long been clear that there are more than just engineering 
problems to be faced when we attempt to scale up planning 
algorithms to handle larger applications. See [Chapman 85] 
about the theoretical limits of planning algorithms such as 
those used in STRIPS and other planners. The Forbin project 
[Dean, Miller, & Firby 87] is a recent example confirming that 
in practice a general planner quickly encounters intractible run- 
time performance problems. 
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spaces without seriously compromising the flexibility, 
extensibility, and generality of the planning system. 

Exploiting Domain-specific Knowledge. Classical 
planning systems assumed that it is feasible to have a 
simple separation between general, domain-independent 
planning techniques and domain-specific knowledge. In fact, 
introspection on human planning does not show any clean 
separation into domain-independent planning techniques and 
domain-specific knowledge. Humans who are expert 
planners in one domain require a long time to become expert 
in another domain, and their learning in the new domain 
involves learning procedural as well as declarative knowledge 
about the domain. One of the contributions of the transfor- 
mational viewpoint is that it offers more options for com- 
bining general domain-independent knowledge with domain- 
specific knowledge. By encapsulating domain-specific 
procedural knowledge within transformation rules, we 
achieve the efficiency of domain-specific procedural shortcuts 
while preserving most of the modularity, generality, and 
extensibility that is desired in planning system. 

Planning vs. Programming. Classical planning 
technology does not take advantage of the structure of the 
specific problem in order to control the computational 
complexity of the problem. At the other extreme, if 
classical programming technology were applied to the same 
planning application, one would begin with a requirements 
definition that encourages the use of problem-specific 
information throughout the design of the application. This 
allows domain-specific details to permeate the entire 
application design with the result that the application's 
flexibility, extensibility, and generality are seriously 
compromised. 

The transformational viewpoint exploits the strengths 
of both planning and programming technology in order to 
achieve practical, high performance planning systems that 
still have most of the flexibility, extensibility, and 
generality that one is trying to achieve with a planning 
system. Many of the recent efforts to build high 
performance robotic control systems can be criticized as 
being simply control programs. But if the robot is to be 
"intelligent," then it should at least be 

1) very flexible in adapting to a wide variety of run time 
situations, 

2) extensible in the sense that it can be instructed to behave 
in   new   and   different   ways   without   major 
reprogramming,2 and 

3) general in the sense that some of its knowledge and 
behaviors are applicable to more than one application 
domain. 

Section 2 of this paper is an overview of 
transformational synthesis, and Section 3 describes how the 

2One would also like the robot to be able to learn from its own 
experiences; however, our current goal is limited to making the 
software be extensible in the sense that a programmer or a user 
can easily add to the functionality of the robot without having 
to understand details of its existing functionality 

idea has evolved out of work on reasoning about formal 
languages and is now being applied in a series of large 
planning applications at ADS. In Section 4 we discuss the 
contributions that this approach makes to planning 
technology. Section 5 describes how to use this approach 
when designing large planning applications. Sections 6 and 
7 summarize previously published results from the ALV 
mission planner which is the largest completed application 
of this approach to planning, and Section 8 contains 
conclusions about the flexibility, extensibility, and 
generality that can be achieved with this approach. 

2. Transformational Synthesis Overview 

Transformational synthesis is a paradigm for constructing 
programs, plans, or other complex conceptual objects by 
evolving them through small, independent changes until a 
desirable result is achieved. The flow of control for making 
these changes is largely data directed; i.e., each 
transformation may be invoked whenever a component of 
the evolving result matches the pattern specified in the 
transformation's preconditions. Transformational synthesis 
is a generalization of an approach to constructive problem 
solving developed during research on programming 
technology; and it has proven to be useful in developing 
other AI software that needs to be unusually flexible and 
extensible. 

When transformational synthesis is used to automate 
software development, a program is evolved from its 
specifications by a series of small, independent changes or 
transformations. When transformational synthesis is applied 
to planning, the goals and constraints are represented as an 
incomplete plan; then planning techniques—implemented as 
transformations—evolve the plan into a form that can be 
executed effectively. Many of the transformations package 
together the results of knowledge engineering and of domain 
specific reasoning that has been done at design time. This 
reasoning does not need to be derived again from more 
primitive reasoning steps while the planner is executing. 

As an approach for building practical, real-world 
planning applications, transformational synthesis is not in 
competition with specific planning paradigms like case- 
based planning or constraint-directed planning. Rather, 
transformational synthesis takes the view that plans are 
declarative objects that can be generated, refined, evaluated, 
and modified by many different planning methods. When 
following this approach, the two key steps are to design a 
knowledge base and transformations on that knowledge base 
such that: 

• There is a declarative representation of the plan 
maintained in a knowledge base that is capable of 
representing the intermediate planning states that occur 
as the plan is being developed. A critical problem is to 
find plan representations that are expressive enough to 
capture all of the information that needs to be shared 
among planning methods. In practice, this leads to plan 
representations that have multiple viewpoints and 
capture knowledge about the goal structures, 
abstractions, dependencies, resources, alternatives, 
partial decisions, and uncertainties that need to be 
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reasoned about at intermediate stages of a plan's 
evolution. 

• The transformations that evolve the plan may be 
entirely domain independent, they may exploit specific 
structures of the problem space, or they may be domain- 
specific and result from knowledge engineering activi- 
ties that capture the planning shortcuts used by human 
planning experts. Other transformations apply algor- 
ithms or generic planning techniques. Each transfor- 
mation has preconditions that limit its application to 
the planning subtasks for which it is effective. 

2.1. Comparison with the Blackboard Model 
When viewed in these general terms, transformational 
synthesis is quite similar to blackboard-based approaches to 
incremental planning where the declarative representations 
correspond to the blackboard and the transformations 
correspond to knowledge sources. Transformational 
synthesis shares with blackboards and rule-based approaches 
the ability to integrate multiple planning paradigms, to 
separate planning functionality from control and 
optimization decisions, and to enhance the modularity, 
generality, flexibility, and extensibility of the planning 
software. Historically, blackboard and transformational 
approaches have been applied to different classes of 
applications, and these applications have led the two research 
communities to focus on different aspects of a common 
problem. Unfortunately, the lessons learned from research 
in these two communities have often not been transferred 
effectively to the other community. 

2.2. Summary  of Transformational  Synthesis 
Contributions 

The transformational viewpoint, which is based on many 
years of research on software technology, brings with it 
many practical insights for integrating diverse planning 
techniques and scaling up to large applications. As detailed 
in the later section on Transformational Synthesis 
Contributions, these contributions can be grouped into four 
categories. 

1) Unifying      Formalism      for      Integration. 
Transformational synthesis has evolved out of research 
of software technology which provides a unifying 
formal theory that can support reasoning about the 
correctness and termination of transformational 
processes. This basis in software technology also 
includes a wide variety of optimization techniques 
which will all be needed as we try to scale up planning 
technology to handle large, real-world planning and 
scheduling problems. 

2) Plan Reuse, Replanning, and Contingency 
Planning. Alternative approaches to plan reuse, 
replanning, and analysis of contingency plans are 
supported within the transformational viewpoint 
including work on: a) automatic capture of plan 
dependencies from the instantiated preconditions of the 
transformations that are used to generate the plan and b) 
replanning by replay of transformational derivation 
histories. 

3) Integration around a Common Plan 
Representation. This supports the integration of 
multiple planning paradigms and the effective use of 
domain-specific planning knowledge. 

4) Interactive   Planning   by   Co-operating  Users. 
By using problem-specific abstractions in the 
representation of the plan and by developing planning 
processes that imitate the steps that human planners use 
in manual planning, the evolving plan can be 
intelligible to users who interactively assist in 
developing and checking the plan as it evolves. The 
abstract plan also becomes a context for communication 
among co-operating human planners. 

3. History of Planning by Transforma- 
tional  Synthesis 

The transformational approach has evolved out of research 
on reasoning about formal languages. It has been applied 
extensively in the form of transformational implementations 
that compile very high level programming languages 
[Partsch & Steinbruggen 83, Fickas 85, Balzer 85, Smith et 
al. 85, Rich & Walters 85, Agresti 86, Lowry & Duran 89] 
and in work on simplifying mathematical expressions 
[Silver 86]. Transformations appear as key concepts in 
recent commercial programming languages like REFINE and 
Mathematica. 

We use the term transformational synthesis when this 
basic transformational approach is applied in constructive 
problem solving. These constructive problem solving tasks 
extend the basic transformational paradigm in three ways: 

• The transformations implement a variety of different 
constructive problem solving steps. The 
transformations used in transformational compilers do 
mostly simplification, definition expansion, refinement, 
and optimization. When the transformations implement 
constructive problem solving steps, arguments about 
termination and convergence of the transformations 
become more complex. For example, in the ALV 
planning application discussed later in this paper, the 
transformations implement goal elaboration, goal 
regression, refinement of abstract operations, plan 
evaluation, and plan critics. The design of the 
application needs to support an argument that 
invocation of the transformations will terminate and 
that when no transformation is applicable to the plan 
state, a correct plan will have been derived (or an 
explicit failure will have occurred). 

• The data structures that are being transformed are not as 
simple as mathematical expressions and formally- 
defined programming languages. In general problem 
solving applications, the data structures being trans- 
formed involve quite complex representations of a 
problem space that may include all the structures of an 
object-oriented knowledge base including inheritance of 
properties and default values, relations treated as objects, 
and declaratively represented constraints. 
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• A planning system needs to explore plans that 
eventually prove to be unsuccessful or less successful 
than some alternative. Transformational compilers 
typically do not search among alternative possible 
transformational derivations; however, for most 
planning applications we apply transformational 
synthesis in the context of an overall search strategy 
that generates and evaluates alternative plans. 

Recent examples of the extended use of the transformational 
approach include the KIDS system for algorithm design 
[Smith 90], a project management assistant, and a VLSI 
circuit design system. Here we focus on our recent 
applications to planning and scheduling applications. 

Transformational synthesis was first applied to planning 
during ADS' work on DARPA's Autonomous Land 
Vehicle (ALV) program. Transformational synthesis was 
used to developed a real-world multi-vehicle mission planner 
designed to interface with the on-board vehicle control 
functionality of future ALVs [Linden & Owre 87, Linden 
89, Linden & Markosian 89, Linden 90]. The plan is 
synthesized by transforming the goals into plans where the 
goal structure, abstraction levels, plan alternatives, 
uncertainty representations, and probabilistic plan valuations 
are included in the evolving plan representation. 

In current work on RADC's Advanced Planning 
System (APS), ADS is using transformational synthesis 
to implement constraint-directed reasoning. APS is being 
implemented as an operational prototype that will partially 
automate the daily generation of Air Tasking Orders for 
Tactical Air Force Command Centers. The APS 
implementation includes extensive constraint propagation 
and meta-level reasoning that chooses which transformation 
is best applied next. Each scheduling decision (implemented 
as a transformation) includes substantial look-ahead to 
evaluate the probable effects that the decision would have on 
other scheduling decisions. This look-ahead is supported by 
the propagation of statistical measures to identify critical 
resources in a way that is parallel to recent work by Mark 
Fox and others at CMU [Fox et al 89, Fox & Sycara 89]. 
For this application we expect that, with a good ordering of 
the planning and scheduling decisions, it will be possible to 
generate good schedules without backtracking. 
(Backtracking is usually not acceptable when multiple users 
are co-operating to generate the plan interactively.) Plan 
critics will be able to undo specific previous decisions and 
are included in the system design. 

Another feature of APS is mixed-initiative planning 
where any planning step can be done either by a human 
directly or by the automated planner. This has led to a 
strong emphasis on abstraction in the representation of the 
intermediate states that occur as a planning session 
progresses. Since the human planners participate in the 
planning process, they have to be able to interact with the 
plan as it is evolving during a planning session. Mixed- 
initiative planning requires high level modeling of the 
concepts that the humans actually use while they do their 
planning. 

ADS is also using transformational synthesis on 
DARPA's Submarine Operational Automation 
System (SOAS) program. A key problem in this appli- 
cation is the integration of strategic and reactive planning. 
In the initial implementation, reactive plans are represented 
using Firby's Reactive Action Packages (RAPs) [Firby 89]. 
The first phase of this effort produced a reimplementation of 
RAPs and included transformations that generate a simple 
RAP at run time. A second phase is now underway to 
produce a more complete prototype planning system with 
transformations being used to generate reactive plans. 

In another application of transformational synthesis, we 
are designing a planning system for the domain of 
transportation planning. The focus of this research is on 
representing and reusing reactive plans and programs. It 
addresses two common problems in AI planning 
applications: the integration of look-ahead planning with 
reactive execution, and the reuse and extension of previously 
developed plans, planning methods, and programs. As we 
extend the prototype planner to integrate solutions for a 
series of increasingly realistic and challenging transportation 
planning problems, we will measure the degree to which our 
planner reuses previous plans and the degree of program 
extensibility that we achieve as we extend the planner to 
new problems and new domains. 

In all of these planning applications, the key to success 
is in the representation of the problem space and of the 
intermediate states of the plan together with the goal 
structure, abstractions, dependencies, resources, alternatives, 
partial decisions, and uncertainties that need to be reasoned 
about as the plan is evolved. Similar representation 
techniques were used in ADS' work on AirLand Battle 
Management (ALBM) program where ADS has recently 
completed a three year project to demonstrate that it is 
feasible to provide effective automated assistance to staff 
planners at the Army Corps level [Stachnick & Abram 88]. 
The planning process employed in ALBM closely parallels 
the manual Army planning process. 

Each of these applications is quite different in terms of 
the specific planning techniques that are most appropriate for 
the application. The ALV and ALBM applications involve 
plans with complex goals, multiple abstraction levels, and 
reasoning about sequences of actions to be performed by 
multiple agents. A simplifying feature of these applications 
is that control structures for the planning process can be 
decided at design time based on knowledge engineering that 
extracts the planning processes actually followed by expert 
human planners in that domain. The planning process 
control has to be highly conditional so that it can adapt to 
the particular planning situation; however, the adaptability 
that is appropriate does not require explicit meta-level 
reasoning at run time. 

In APS the structure of the plans being developed is 
much simpler (the complexity arises from resource 
allocation and scheduling constraints, not from variability in 
the structure of the plans), and much of the domain 
knowledge is naturally expressed as constraints. Manual 
planning processes in the APS domain do adapt to the 
constraints that are most critical; and, in automating these 
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processes, we have focused heavily on meta-level reasoning 
that decides on the order in which scheduling decisions can 
best be made. 

On the SOAS project, much of the focus is on the 
selection and execution of reaction plans. Much of the 
domain knowledge can naturally be expressed as reactive 
plans ("in this situation, a commander would do such and 
such"), so many of the reactive plans are naturally built in 
as part of the system's knowledge base. Some of the 
reactive plans need to be generated automatically as the 
system is executing. Route plans are the chief example 
because they are difficult to express as conjunctions of rules 
that associate actions with situations, and RAPs that express 
route plans for the submarine are best developed in the run 
time situation. 

The overall lesson from these applications is that the 
most effective way to express the available domain 
knowledge is different for different kinds of applications. 
Sometimes it is most effective to embed the domain 
knowledge directly in plan fragments, sometimes it is best 
to incorporate it in the processes that generate plans, and 
sometimes domain knowledge is best expressed as 
constraints that are used at a meta-level to control the 
planning processes. A given application may involve 
domain knowledge expressed in each of these ways, and the 
transformational viewpoint makes it easy to include domain 
knowledge in any or all of these forms. 

4. Transformational Synthesis 
Contributions 

In this section we summarize the advantages of adopting the 
transformational viewpoint. Many of these advantages can 
and have been pursued in other planning research; however, 
the transformational viewpoint gives a sound theoretical 
basis for developing verified plans while using computa- 
tionally tractable planning methods. The main idea is to 
develop and verify transformations that encapsulate large 
chunks of planning knowledge. From a formal viewpoint, 
verified transformations are like parameterized lemmas that 
can be applied at will in a powerful theorem proving 
system. They allow much of the reasoning required for plan 
generation and replanning to be done once and then reused as 
needed during planning processes. By embedding appropriate 
planning knowledge in the transformations, we expect that 
run time costs for plan generation and replanning will scale 
up to real-world planning and scheduling applications. By 
using transformations that can be verified to preserve 
correctness with respect to formal goals and constraints, 
correctness is preserved as an invariant property of plans as 
they are generated. 

4.1.  Unifying  Formalism  for  Integration. 
By drawing on a long history of research on formalizing 
programming processes, transformational synthesis is 
supported by a unifying formalism for reasoning about 
planning processes and for exploring the tradeoffs between 
efficiency and generality. 

Correctness,    Convergence,    and    Termination. 
Case-based approaches to planning use transformations that 
tweak or modify previous plans to fit the current situation. 
Success has been demonstrated on simple problems; but, as 
we scale up to modify plans for large, real-world 
applications, we will encounter replanning processes that do 
not terminate or that are unstable in that alternative 
execution sequences or minor changes in the situation cause 
the tweaking to converge to distinctly different plans. We 
need a sound theoretical basis for reasoning about 
incremental plan modifications, and I believe this can be 
achieved by taking the transformational viewpoint where 
there is already a rapidly developing theoretical foundation. 
In addition to other theoretical results about transformational 
approaches, by interpreting transformations as statements in 
the UNITY program specification language, the logic for 
reasoning about UNITY programs [Chandy & Misra 88] 
can be applied to reason about the correctness, convergence, 
and termination of planning processes. 

Integration of Procedural Knowledge. Since 
transformations are integrated as a construct within a 
programming language, it is relatively easy to make 
tradeoffs between procedural, transformational, and purely 
declarative representations of information. Transformations, 
which may encapsulate procedural information or may be 
purely declarative statements about preconditions and 
postconditions, have advantages that are intermediate 
between procedural and declarative representations. It is also 
possible to evolve an application toward a high-performance, 
large-scale system by designing it initially using mostly 
declarative representations and transformations, and then, as 
the appropriate problem solving strategies become better 
understood, migrating the implementation toward more 
efficient but less extensible procedural representations. 

Compile-time optimizations. Within the 
transformational approach there has been research on explicit 
meta-level reasoning to choose the most appropriate 
transformations (e.g., [Silver 86]); however, experience with 
transformational approaches indicates that it is better to bind 
many of these control decisions at design time or at 
compilation time because run-time reasoning about control 
can itself become a performance problem. Run-time meta- 
level reasoning about control is sometimes needed, and when 
it is needed it may improve performance dramatically; 
however it is only one of many important techniques that 
are needed for high performance, large-scale planning and 
scheduling systems. Others include compilation of abstract 
data structures and of control reasoning. 

Infusion of Software Technology. When 
transformational synthesis is used both to build plans and to 
compile the planning system software, the plans and 
programs are represented in the same knowledge base, and 
the tools applicable to compiling and optimizing programs 
are also available for compiling and optimizing the plans. 
Some transformations that are commonly used for software 
optimization transfer to the planning domain; for example, 
an analogue of a transformation that does loop jamming on 
a program appears to be useful in plan optimization.  By 
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building on the transformational technology, other results 
from software research will also transfer more easily into the 
planning community; for example, some research on case- 
based planning appears to be missing the lesson from 
programming research that when there are strong 
dependencies within a plan, modification of the plan may be 
more difficult and time consuming than regenerating the 
plan by replaying the relevant portions of its development 
history. 

4.2.  Plan  Reuse,  Replanning,  and  Contingency 
Planning. 

There are three alternative approaches to automated plan 
reuse, replanning, and contingency planning (in order of 
increasing flexibility): 

1) selection and instantiation of parameterized plans, 

2) incremental modification of previous plans using an 
explicit record of plan dependencies, and 

3) replanning by replay of previous transformational 
derivation histories. 

The first of these approaches is easily supported with any 
approach to planning, a transformational viewpoint is 
natural for the other two approaches.. 

Capturing Plan Dependencies. For incremental plan 
modification, transformations provide a systematic way of 
capturing the assumptions and dependencies behind 
components of the plan. These assumptions and 
dependencies, which are also the conditions that may need to 
be monitored during plan execution, appear in the 
instantiated preconditions of the transformations that 
generated the plan. When multiple planning paradigms are 
integrated in the context of a transformational approach, this 
gives a uniform and systematic way of capturing and 
recording the plan dependencies as the plan is constructed. 
Research on this topic will need to distinguish essential 
preconditions from others. It will be important to determine 
whether this way of capturing the assumptions and 
dependencies leads to representations that are manageable for 
real-world applications. There is an argument that for most 
resource allocation and scheduling problems, the external 
assumptions deal mostly with resource availability and the 
internal dependencies between different entities to be 
scheduled are not so complex that they will be 
unmanageable when captured and represented explicitly. 

Replanning    by    Replay    of   Previous    Planning 
Processes. Research on replanning in the planning 
community has focused on instantiating parameterized plans 
and then tweaking or modifying previous plans. Research 
on programming and design, however, has found that it is 
frequently better to reuse the program derivation history 
rather than to reuse a fully detailed program. Replay of 
transformational derivations is a topic of current research on 
problem solving [Carbonell 86], programming [Goldberg 
89], algorithm development [Smith, 90], and design 
[Mostow, 89]. We expect that for planning problems, the 
replay of transformational derivation histories will offer a 
more general alternative to replanning. In particular, when 

developing contingency plans for an alternative situation, 
the alternative situation is likely to cause changes that are 
quite pervasive through much of the plan. Rather than 
"tweaking" the plan from the mainline situation, we 
hypothesize that it will frequently be faster and more 
effective to replay the derivation history of that plan (or of 
some other plan). If users participated in developing the 
main line plan, they may only need to ratify that their 
planning decisions can be reused in the contingent situation. 
Experimental results are needed to evaluate this trade off 
between plan reuse and replan of the derivation history. 

4.3. Integration around a Declarative Plan 
Representation 

By capturing in a declarative representation the intermediate 
state information that is needed by different planning 
paradigms, one can integrate many separately written 
planning components. 

Integration    of Multiple    Planning    Paradigms. 
Different planning paradigms are appropriate for different 
subproblems within a complex planning application. 
Decision-theoretic planning is appropriate for reasoning 
about alternative courses of action when there are many 
uncertainties. Constraint-direct reasoning is often best for 
detailed resource allocation and scheduling subproblems. 
Case-based planning can avoid the regeneration of plans 
similar to previous plans. Situated planners adjust the 
planning process to real-world time and information 
constraints. Generative planning is needed to deal with 
unique and unexpected situations where other planning 
methods fail. Real-world planning systems need to use the 
appropriate planning methods for each subproblem. 
Attempts to stretch a planning paradigm to handle 
subproblems for which it is not the best paradigm leads to 
complex, inefficient planning systems. 

Effective use of domain-specific planning 
knowledge. By keeping the general-purpose and domain- 
specific knowledge in separate transformation rules, the 
domain-independent portions of a planning application can 
still be transferred between applications (assuming 
compatible representations for the evolving plans). Thus, 
within the transformational synthesis viewpoint it is 
practical to explore many uses of domain-specific 
information not only to represent facts about the problem 
domain but also in all of the following roles which are 
critical in reducing computational costs: 

1) Identifying useful abstractions. Effective abstractions 
can reduce an exponential search problem to one that 
can be solved in linear time [Korf 87] [Lowry & Duran 
89]. Some of these abstractions can be developed 
through knowledge engineering activities at design 
time, others need to be generated dynamically at run 
time [Lowry 90]. Abstractions appear in many different 
forms and lead to multiple hierarchical structures within 
an application. In addition to abstraction by ignoring 
preconditions, there is abstraction by aggregation of 
resources or other domain objects, there are "genus- 
species" and "part of hierarchies, and there are 
abstraction levels where terms for higher level goals and 
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operations are defined within their own semantic 
theories and have implementation relationships to lower 
level objects. 

2) Dividing the problem into independent subtasks. It is 
important to take advantage of domain-specific insights 
that allow the problem to be divided into subproblems 
that can be planned almost independently. 

3) Declarative representations of constraints and 
dependencies. Many development environments include 
trigger or demon mechanisms that can implement 
constraint checking and propagation; however, this is a 
procedural representation of the domain constraints and 
leads to very messy planning systems that are not 
general and extensible. Automatic compilation of 
demons from declarative constraints combines the 
advantages of declarative representations with the 
efficiency of a more procedural representation. 

4) Implementing large inferencing steps. Domain-specific 
information can be encapsulated in transformations and 
then reused to take large steps in reasoning during plan 
generation or replanning. The planner needs to execute 
these large inferences efficiently; it does not need to 
derive them from more general principles each time a 
plan is generated. These large inferences correspond to 
lemmas in an inferencing system.3 

5) Focusing the control flow within the inferencing. 
Experience from automatic theorem proving and from 
real-world AI applications shows that extensive domain- 
specific information is needed to focus and control the 
inferencing strategy.4 

4.4.  Interactive  Planning by  Co-operating 
Users. 

By emphasizing declarative representations for all of the 
information about the current state of the plan including its 
goal structure, abstractions, dependencies, alternatives, 
partial decisions, and uncertainties, the transformational 
viewpoint makes it easier to support user visibility into the 
current state of the plan and to allow users to interactively 
assist in the plan development. The plan representation 
also becomes a context for communication between multiple 
users who are working co-operatively and for 
communication between users at multiple sites and multiple 
levels of a hierarchical command structure. 

J Case-based reasoning is one way for a planner to make a very 
large step in inferring the right plan by using historical 
information from either the same domain or from analogous 
situations in other domains. In many cases, one can achieve 
even higher performance by incorporating in a transformation 
the generic lesson learned from previous cases. Then the run- 
time planning system does not have to repeat the reasoning that 
generalizes from cases to planning rules. 
4 For a discussion of why general purpose search guiding and 
pruning techniques have failed to have more than a minor effect 
on curbing the combinatorial explosion in theorem proving, 
see [Bundy 83], especially Chapter 7 "Criticisms of Uniform 
Proof Procedures," pp. 82-95. 

User    Visibility    into    the    Developing    Plan: 
Assuming that the plan representation includes the 
abstractions actually used by human planners in the domain, 
and assuming that it includes the goal structure, 
dependencies, alternatives, and other information that 
humans think about as they plan, it is possible to let users 
participate actively in the planning process. There is still a 
user interface problem to make the plan representation 
intelligible to users, but once the user can understand the 
intermediate states of the plan as it is being evolved, then 
users can make some of the planning decisions directly and 
can direct the transformational development process. The 
KIDS system [Smith, 90] is a large, working example 
where a user interactively directs a transformational 
development process. 

Context for Communication among Multiple 
Human Planners: Once users can understand the state of 
a fully represented plan as it is being developed or modified, 
then that plan representation provides an effective context for 
communication among the users. Users who have 
specialized areas of expertise can make planning decisions 
when the plan evolves to the point where the preconditions 
for that decision are valid and the decision becomes 
appropriate. These users may operate at different levels of 
abstraction or at different levels of a hierarchical command 
structure. 

A final advantage of the transformational viewpoint is that 
tools to support it are more mature and stable than current 
blackboard tool environments. REFINE has now been 
available as a supported commercial product for four years, 
and it is in its third release. It is being used in a wide 
variety of programming applications using both the 
transformational paradigm and other programming 
paradigms. The REFINE knowledge base is tuned for high 
performance, and in the KIDS system, it routinely manages 
knowledge bases with over 130,000 object instances. 

5. Integration of Domain-Specific 
Planning  Knowledge 

This section contains general advice about how to use 
transformational synthesis in a planning application. Since 
transformational synthesis is an approach to design and not a 
design, many details about how it is applied depend on the 
application. 

Integrating   Solutions   to   Independent   Subtasks. 
If a large scale planning application has a computationally 
tractable solution, then it is possible to break the problem 
into many almost independent subproblems. This 
decomposition of the problem into subproblems can take 
advantage of many different kinds of hierarchies: 

• Subtasking. Plan representations should support the 
decomposition of tasks into subtasks. 

• Abstraction Levels. The plan representation should take 
advantage of all of the abstractions that are applicable in 
the domain.    Abstract operations are especially 
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important, and many transformations are devoted to 
refining abstract operations to primitive operations. 

• Reflection. Systems that do planning and control have 
a natural hierarchical organization based on levels of 
reflection—with levels devoted to acting, planning, 
meta-planning, etc. This reflection hierarchy for 
planning systems is largely orthogonal to subtask 
hierarchies and abstraction hierarchies. 

One needs to integrate solutions to the different subproblems 
in a way that does not compromise the flexibility, 
extensibility, and generality of the system. Most 
approaches toward building integrated systems require that 
the interfaces between the different components of the 
system be designed early in the system's life cycle. 
Unfortunately, for planning systems it is almost impossible 
to identify all of the independent subproblems during the 
early stages of system design. If one is forced into early 
decisions about the planning system's components and the 
interfaces between them, the future flexibility and 
extensibility of the system is seriously compromised. 

When the software is designed as a set of 
transformations of a declarative representation, procedural 
knowledge can be encapsulated within the transformations. 
If the software designers adhere to the goal of keeping the 
transformations independent so they interact only through 
the declarative representations, then it is relatively easy to 
add new transformations and to modify existing ones. Thus, 
new additional planning methods and heuristics can be added 
throughout the development and operational use of the 
application. 

While transformational synthesis provides a framework 
for modularizing planning systems, there are still several 
elements of the system that need to be shared by all the 
transformations; and these elements need to be designed 
carefully. 

1) The knowledge base representation, especially the 
representation of the evolving plan. 

2) A way of testing and evaluating evolving plans. 

3) Search mechanisms. 

4) The control discipline that determines when 
transformations are invoked. 

Representing Evolving Plans. When using transfor- 
mational synthesis, much early design work is devoted to 
designing the knowledge base representations. It is 
important to take advantage of domain-specific abstractions 
in the choice of these representations. It is usually much 
harder to represent the partial and incomplete plans that 
occur at intermediate stages of planning than it is to 
represent the final plan.5 

A knowledge base representation for the partial plans can be 
quite complex. The plan representation for ALBM 
represents goals, subgoals, tasks, subtasks, resources, plan 
alternatives, and constraints—and relationships between all 
of these objects. 

Plan Evaluation. Testing and evaluation of plans is 
separable from the transformations that evolve the plan. 
Since projection of a plan's effect usually involves a lot of 
uncertainty, some form of reasoning with uncertainty is 
likely to be needed in the evaluation process. A specific 
approach that was used in the ALV mission planner is 
discussed in a later section. 

Search. In a planning application, one usually cannot 
design the transformations so they make linear progress 
toward a good plan. Thus there needs to be an overall search 
strategy within which the transformations operate. In our 
applications thus far, we have been able to use heuristics 
that keep the overall search space quite narrow—imitating 
the human planner's approach of only exploring the most 
promising alternatives.6 When the search can be kept 
narrow, it is possible to maintain the alternative plans 
within the knowledge base representation and the 
transformations can be used to evolve these alternative plans 
in parallel. Interim evaluations of the alternative plans are 
used to focus the transformations on the alternatives that are 
more likely to succeed. 

Control. Transformations, like any rule-based approach, 
allow control decisions to be separated from functionality. 
Ideally, one wants the functionality of the planner to be 
independent of the order in which the transformations are 
tested and applied; then the run-time performance of the 
system can be optimized by being smarter about the order in 
which preconditions are tested. The optimizations can be 
done by meta-level planning; however, it is often as 
effective if they are done late in the development cycle by 
the application's designers once the planning system is 
functioning and the appropriate problem solving strategies 
are understood. 

Once the semantics of the transformations have been 
used to optimize the control flow within the planning 
application, any extension of the planner's functionality may 
require that the optimization decisions be redone. 

6. The ALV Mission Planning Problem 

This section summarizes the scope of the planning problems 
that were handled in the ALV multi-vehicle mission planner. 
This ALV planner forms the largest completed application 
of transformation synthesis to a real-world planning 
application. Results from this work are documented in 
previous publications [Linden & Owre 87, Linden 89, 

-'Most programming languages are examples of representations 
that are good at expressing the final results of a development 
process but are seriously inadequate at expressing what has been 
decided at intermediate stages of the development leading up to 
that result. 

"When broader search algorithms are appropriate for specific 
subproblems, we have applied a search algorithm within the 
postconditions of a single transformation so that the 
transformation's effect contains the results of this search 
algorithm applied to a narrowly focused subproblem. 
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Linden & Markosian 89, Linden 90]. One of the problems 
with evaluating approaches to large planning applications is 
that it takes years to try out ideas on large applications. 
Implementation work APS and SOAS is still underway. 

The Multi-vehicle ALV Mission Planner generates 
plans for reconnaissance missions by a group of 
autonomous land vehicles. Army personnel defined the 
reconnaissance mission scenario as appropriate for future 
ALV demonstrations. Thus, transformational synthesis was 
applied to meet the needs of this given planning scenario; 
the planning scenario was not tailored to the capabilities of 
our approach. 

The problem is to generate plans for a set of 
autonomous vehicles that are to carry out reconnaissance 
missions in areas well in advance of friendly lines. The 
vehicles are to travel to appropriate observation points where 
they are to hide and observe designated reconnaissance areas. 

The current planner selects the observation points that 
are to be used, decides which vehicle will go to each 
observation point, and plans travel routes for each vehicle. 
All of these planning tasks are interdependent; for example, 
the choice of the preferred observation points depends on the 
vehicles' starting locations and their possible routes to the 
alternative observation points. The plan should minimize 
risk while traveling to and hiding at the observation points, 
and it needs to deal with constraints on fuel and time of 
arrival. In addition, the vehicle's knowledge of its own 
position degenerates as it travels, and it needs to re-establish 
its approximate position periodically by passing near known 
landmarks. The planner does have information about 
potential observation points and routes—derived from a 
digital map—but all of this information is uncertain. A plan 
to have a vehicle move to an observation point at a specified 
time must deal with this uncertainty. 

Abstraction Levels. Our initial planner has the domain 
knowledge and heuristics to develop plans for these missions 
at the top three levels of abstraction; namely, the levels 
dealing with: 

1) goals and evaluation criteria, 

2) abstract plans that include selection among available 
observation points and assignment of ALVs to observa- 
tion points, and 

3) route plans down to the level of intermediate waypoints. 

The planner is designed to be extended down to lower 
levels of abstraction and thus integrate with the lower-level 
planning and perception capabilities that were being 
developed on the ALV program. Research had already been 
done on many of these lower-level capabilities—especially 
road following, route planning [Linden et al. 86], and 
contingency planning [Linden and Glicksman 87]. 

The plans that are generated for these reconnaissance 
missions do not involve extensive interactions between the 
vehicles—this feature of the planning scenario is due to 
expected vehicle limitations and we believe it is not a 
limitation of the transformational synthesis approach. Our 
design for the APS system does plan for mutual support and 
other interactions between the different aircraft. 

Mission Planning Challenges. The ALV mission 
planning problem at the top three levels of abstraction is 
hard enough to seriously challenge past planning 
technology—especially since we were looking for a general 
solution that extends easily to other ALV applications and 
to the lower levels of abstraction. We were faced with the 
following challenges: 

• Continuous state variables. Most of the information 
about the state of each ALV changes continuously; e.g., 
fuel, position, and position error. 

• Uncertainty. Essentially all knowledge of the 
environment is uncertain. Projections of future 
positions, fuel usage, and arrival times are all uncertain. 
Planned routes and observation points may turn out to 
be unusable. 

• Time. It is easy to plan routes that minimize travel 
time, but that is not as relevant as trying to arrive at the 
observation point by some specified time—even when 
all the information about travel times is uncertain. 
Sometimes the departure time is so constrained that 
minimizing time is important, but often the planner 
must pick the best departure time. 

• Goals and evaluation criteria. The planner needs to 
understand how to make trade-offs between risk, 
mission accomplishment, arrival time, and other fac- 
tors. 

• Constraints. Reducing fuel usage, travel time, or 
position error is important only when there is danger 
that some threshold will be exceeded. 

Our planner deals with all of these challenges—except that 
in handling uncertainty it does not currently develop 
contingency plans that foresee the dangers that might arise 
from blocked routes or unusable observation points. 
Contingency planning to deal with blocked routes— 
including avoidance of routes that may require costly 
detours—was demonstrated in a previous project [Linden & 
Glicksman 87], but that capability has not yet been 
integrated with this mission planner. 

Additional complications that the planner handles are: 

• Night travel. Traveling at night involves less risk than 
daytime travel, so it may be advantageous for a vehicle 
to travel to a forward position at night and wait there 
until needed—although waiting behind enemy lines also 
involves risk. 

• Emergency mode. The vehicles have the option of 
traveling in an emergency mode that reduces travel time 
at the expense of additional risk. 

One important feature of this mission planning problem is 
that one cannot decide at system design time what factors are 
going to be most important when planning a given mission. 
Minimizing risk will frequently be important, but for some 
missions it will be more critical to reduce travel time, 
conserve fuel, plan routes that pass landmarks, or deal with a 
combination of these factors. Purely algorithmic solutions 
break down when there are many dimensions to be dealt with 
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(enough so straightforward optimization is intractable) and 
one cannot design the system to solve the problem in a few 
dimensions that are determined at system design time and 
then extend that solution into the other dimensions. A key 
aspect of our planner is that we delay until plan generation 
time the decisions about which dimensions are most 
important in solving today's particular mission planning 
problem. 

7. Operator Semantics, Uncertainty, and 
Plan Valuations 

In order to project the results of executing a plan, each 
operator needs a semantic definition that defines its effects. 
Since the effects of our operators are uncertain, we make 
extensive use of probability distributions in defining the 
semantics of the operators so that we can use well 
established probability theory to compose the effects of 
sequences of operations and do other internal computations. 
Of course, what is known about the operators is not a 
precise probability distribution about its effect but rather a 
vague statement like "a vehicle traveling from A to B will 
use about 10 gallons of fuel, give or take a gallon." After 
this is translated into a probability distribution, the results 
of the computations have to be interpreted based on the 
precision of the input data, but the idea of specifying the 
number of significant digits in a result is a very old and 
standard scientific method. 

A complete description of our probabilistic 
representations of the semantics of operators is beyond the 
scope of this paper. We have, however, found that it 
provides a uniform way of handling several important 
problems. It allows us to characterize uncertainty in both 
the domain knowledge and in the effects of the operators. 
Furthermore, abstract operators have more uncertainty than 
more primitive operators, in fact, the effects of an abstract 
operator should be more uncertain than the cumulative 
effects of a sequence of primitive operators that refine the 
abstract operator. Thus one of the effects of refining an 
abstract plan is that the variance in its effects is reduced. It 
is useful to be able to reason explicitly about this change in 
variance. Also, as the effects of a plan are projected further 
into the future, those effects become less predictable. This 
is modeled effectively by the increasing variance as 
probability distributions are composed. 

Once we have a representation for the semantics of our 
operators (both abstract and primitive), we can project the 
effects of executing a plan and then evaluate that plan in 
terms of the probability that the mission will be 
accomplished and that the vehicle will not be destroyed. In 
our current implementation, we do the projection backwards 
from the goal and then evaluate the plan by comparing its 
required preconditions with the available start conditions. 
This is a form of backwards symbolic execution and is 
equivalent to a forward projection of effects. Except for our 
use of probability distributions in the calculation, this has 
strong similarities with symbolic execution studied with 
respect to the formal semantics of programming languages. 

8. Conclusions about Flexibility, 
Extensibility, and Generality 

Transformational synthesis exploits the strengths of both 
planning and programming technology in order to achieve 
practical, high performance planning systems that still have 
most of the flexibility, extensibility, and generality that one 
is trying to achieve with a planning system. A goal of the 
transformational synthesis approach is to drive into 
declarative representations as much of knowledge about the 
problem space and problem solving methods as possible— 
while still being practical for large-scale applications. 

In contrast to many other planning paradigms, 
transformational synthesis emphasizes incrementally 
maintaining plan correctness at intermediate stages of plan 
development. Furthermore, much of the reasoning that is 
required to assure these properties of a plan can be done once 
at transformation design time and embedded in validated 
transformations. Since the validated transformations 
encapsulate much of the reasoning that would otherwise 
have to be done at plan generation time, we anticipate 
transformational planning will scale up to handle large, real- 
world planning and scheduling problems. 

One goal of our work is to demonstrate an extensible 
planner that can handle large-scale applications and grow 
with the application. It will take time to demonstrate 
extensibility for large applications, but we believe the ALV 
planner would easily extend to generate complete plans at 
lower levels of abstraction and for a much wider variety of 
missions. It is usually easy to extend the planner by adding 
transformations that handle additional subproblems and 
lower levels of abstraction. The limiting factor is the plan 
representation; extensions that require changes or major 
extensions in the underlying knowledge representation are 
difficult—which is why it remains important to design these 
representations carefully. 

A good planner should be general enough so that it can 
generate plans in situations that were not fully anticipated 
by the planning application designers. While the ALV 
planner has domain-specific methods for dealing with many 
planning problems, we expect that it will be able to handle 
combinations of problems where the particular combination 
had not been foreseen. It incorporates searching, subtasking, 
and abstraction levels as basic generic techniques. Further- 
more, when designing specific transformations, we have 
tried to use general techniques that will be applicable for 
more than just the current problem on which we were focus- 
ing. We believe that this generality will pay off as the 
planner is extended to cover other mission types. 

Additional flexibility and generality can be achieved by 
developing more flexible plan representations. Most of the 
kinds of relationships that are needed between plan nodes 
such as subtasking, abstraction levels, sequential ordering, 
temporal constraints, dependencies, and justifications appear 
to be independent of the particular application, and we 
believe that much leverage can be obtained by developing 
general plan representations applicable to a wide class of 
planning applications. 
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Abstract 

Recent proposals for reactive execution mod- 
ules provide difficulties for traditional strategic 
planners. We discuss a technique which uses 
statistics gathered from the execution of plans 
to guide the appropriate description of the plan. 
The plan is elaborated until the strategic plan- 
ner is sufficiently confident that this plan will 
indeed achieve its goals based on the previous 
behavior of the executor. This plan is then 
given to the execution module. 

1     Introduction 

Traditionally, planning has been defined as the process 
of generating a sequence of actions to be executed me- 
chanically. In this paradigm, an intelligent "planning 
module" generates a sequence of actions that are car- 
ried out by a simple "execution module." Such plan- 
ners, called "strategic planners," have been successful 
in limited domains. In more realistic domains strategic 
planners are less successful. The high cost of generating 
plans makes strategic planning problematic in highly dy- 
namic domains. 

Reactive systems have been proposed to overcome the 
difficulties inherent in strategic planners. Reactive sys- 
tems increase the power of the simple execution module 
in the hopes that it will allow a simplification of the 
planning module. The increased capabilities of the ex- 
ecution module improves the situation in routine cases. 
In commonly occurring cases the planner can rely on the 
execution module to perform correctly. The planner can 
generate a high-level description of the steps to be taken 
towards achieving a goal and assume that the execution 
module will fill in the required details. The generation 
of such high level plans should be less computationally 
complex than the generation of detailed plans. Increas- 
ing the power of the execution module allows it to deal 
with contingencies that are unknown or unknowable by 
the planning module. 

Unfortunately, generating plans for such a powerful 
system introduces new complications. Unless the plan- 
ner can decide what problems it needs to reason about 

"This work was partially supported by the Office of 
Naval Research under contract N00014-82-K-0193 and by 
ONR/DARPA contract N00014-80-C-D197. 

and what problems the reactive execution system can 
deal with, planning for the richer execution language 
may be no more tractable than the traditional approach. 

Moreover, if execution modules are sufficiently com- 
plex that they cannot guarantee the success of the activ- 
ities they undertake, the task of generating sequences of 
actions that have a desired result will be difficult. The 
strategic planner must now recognize that the actions it 
decides to execute may fail, and that it cannot rely on 
the results of those actions. 

We address both of these problems using a technique 
based on decomposition abstraction. This technique pro- 
vides a method of deciding what aspects for the planning 
problem the reactive execution module is capable of han- 
dling on its own based on the prior performance of that 
execution module. It uses statistics on the execution 
module's prior performance to constrain the probability 
that the execution module can accomplish a particular 
task. If it can, the planner need not reason about that 
task. If it cannot, the planner must discover the likely 
causes of failure and specify a plan that avoids them. 

2     The Two-Level Model 

We assume a model consisting of two semi-independent 
systems that operate in parallel and interact with each 
other through a limited communication channel. One of 
these systems can be thought of as a strategic planner 
similar to traditional planning systems such as NOAH 
[Sacerdoti, 1975], STRIPS [Fikes and Nilsson, 1971] and 
their descendants [Chapman, 1987, Wilkins, 1988]. It 
is not important for this paper, or the general frame- 
work, how the planner operates as long as it supports 
action decomposition as defined in hierarchical planning 
systems. The other system is the reactive control sys- 
tem. This system consists of a set of sensory/motor pro- 
cedures for executing various actions, and is similar to 
various reactive systems that have been proposed (e.g. 
[Brooks, 1985, Firby, 1987, Georgeff and Lansky, 1987, 
Kaelbling, 1988, Chapman, 1990]). At first glance, the 
two-level architecture is similar to that of the Shakey 
system [Nilsson, 1984], where the abstract plan reasoner 
is the STRIPS system, and the control system is the in- 
terpreter for the ILA and LLA procedures that actually 
controlled the robot. There are, however, two important 
differences. 

First, both systems in the two level model execute con- 
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currently. The control system always has a set of goals 
guiding the agent's activity in real time. Many of these 
goals will have been generated by the abstract plan rea- 
soner, but there may also be "built-in" goals, such as 
avoiding danger, that the reactive system always main- 
tains. The abstract planner rarely reasons about these 
goals, so the agent's actual behavior is only partially de- 
termined by the plans the strategic planner creates. 

The second and more important difference is there is 
no fixed level of action primitives. In the Shakey sys- 
tem, the ILAs were all fairly small scale motor actions. 
In our proposed system, the control level may be able 
to execute quite complex actions that have been learned 
through extensive experience. For example, most piano 
players can play a C scale without considering playing 
each note or the individual finger movements. Such a 
pianist could reason about the decomposition of this ac- 
tion, but, besides wasting computation time, the result- 
ing plan will probably execute less efficiently as it ignores 
the practiced motor routines for the complex action. As 
an even more extreme example, consider the skills re- 
quired for driving a car. Novice drivers spend consider- 
able time learning the motor skills necessary for driving, 
while more experienced drivers might not even know how 
to do all the individual actions in isolation. Yet clearly 
the novice is not the better driver. The challenge is to 
allow for such complex learned "reactive" behavior and 
yet still have the agent responsive to its planned abstract 
goals. 

As can be seen from the above discussion, the abstract 
plan reasoner must decide whether or not to decompose 
actions. Given a goal to play a C scale, should the plan 
reasoner execute the action PlayCScale as a unit (i.e. 
send the goal as is to the control component), or should 
it decompose this complex action into its individual sub- 
parts, Play(C), Play(D), and so on, and execute them? 
The answer depends on the plan reasoner's experience. 
A novice should decompose the action into its sub-parts 
because each sub-part is simpler to execute. The skilled 
pianist, however, is better off executing the motor rou- 
tine learned for playing scales. Note that at the abstract 
plan level, both the novice and the expert might have 
the same definitions of the action and its decomposition. 
The differences arise from their ability to execute these 
actions. 

The abstract plan reasoner maintains statistics on the 
reactive system's success as it attempts various actions, 
and computes estimates of success for similar actions 
from these statistics. The key point is that in decid- 
ing whether or not to decompose an action, the agent 
compares its estimate of success for executing the action 
with its estimate of success for executing the component 
sub-actions. The agent can then decide, based on its 
previous experience, whether to decompose the action 
or not. 

3    The Formalism 

We will develop only enough of the representation to 
make the points in this paper. We use a logic with rei- 
fied events based on interval temporal logic [Allen et al, 
To appear 1990, Allen, 1983]. The events of interest are 

those that consist of an agent attempting to perform an 
action. With respect to the two-level model, we say that 
an agent attempts an action if it instructs the reactive 
system to perform the action. The reactive system then 
executes a routine. For example, the predicate PlayC- 
Scale(a,e) is true when event e consists of the agent a 
instructing its reactive level to perform the PlayCScale 
action. The assertion that John attempted to play a C 
scale at time T\ would be written as: 

3(e)[PlayCScale (John,e) A Time(e) = Tx]. 

In other words, there is an event in which the action 
of John playing a C scale occurs, and the time of this 
event was the interval T. The occurrence of the action 
indicates nothing further. For example, John playing the 
C scale may not have resulted in any sound because his 
amplifier was turned off. 

We collect statistics about the effect of actions using 
a probability theory based on Kyburg [1974, 1983b] and 
similar to that used by Loui [1987], Bacchus [1988] and 
Weber [1989]. Suppose we have a set of events in which 
an action occurred, E&, and subset of these events in 
which that action had the desired result, ER. The suc- 
cess rate ofthat action would be the ratio of the number 
of times the action was attempted to the number of times 
the action had the desired result. This is written %{ER \ 
EA)- By associating the sets characterized by a pred- 
icate with that predicate %(CScalePlayed(Time(e)) | 
PlayCScale(John,e)) could be the proportion of times 
John successfully plays a C scale when he attempts it. 

As Kyburg [1983a] points out, access to these ratios 
is usually unavailable. At no particular time can one as- 
certain how often John will successfully play a C scale; 
the best one can do is calculate the constraints John's 
past performance places on all performances both past 
and future. Confidence intervals [Neyman, I960] are 
a well known technique for capturing such constraints. 
Our technique involves treating these confidence inter- 
vals as interval valued probabilities. For example, sup- 
pose Mary has been successful 960 of the 1000 times she 
has attempted a C scale. One can be 95% confidence 
that the probability she will successfully play a C scale 
on any particular trial lies in the interval [.95,.97]. We 
capture this information in two functions Experience() 

and Pro&950. Mary's experience playing C scales is ex- 
pressed as follows: 

.Krpenence(CScalePlayed (Time(e)), 

PlayCScale (Mary,e)) = (960,1000). 

Furthermore, the %95 confidence interval induced by this 
experience will be expressed: 

Pro6.95(CScalePlayed (Time(e)) \ 

PlayCScale (Mary,e)) = [0.95,0.97]. 

Hanks [1990] and Haddawy [1990] also develop sys- 
tems for reasoning about actions in time probabilisti- 
cally. Both Hanks and Haddawy use point valued prob- 
abilities. Hanks calculates point valued probabilities by 
choosing the maximum entropy distribution consistent 
with the observed data. Haddawy generates probabil- 
ities through a real valued measure function over the 
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possible worlds. Though point valued probabilities are 
well ordered, and therefore easy to compare, the partial 
order provided by intervals gives the system the ability 
to represent a kind of meta-knowledge. The width of the 
interval gives the system the ability to represent how ac- 
curate its knowledge is. Comparison is more complicated 
when using intervals, however, because they only induce 
a partial order. When comparing two interval probabil- 
ities, we say that [a,b] is greater than [c,d] if a is greater 
that d. If [a,b] and [c,d] overlap we will say they are 
incomparable. 

The effects of an action are those propositions for 
which statistics are collected when the action is at- 
tempted. Thus CScalePlayed(Time(e)) is a possible ef- 
fect of the PlayCScale action. Preconditions are similar; 
they are propositions for which conditional statistics are 
collected. Thus, in general, information about precondi- 
tions, P i(x).. .P n(x), and effects, E i(x).. .E m(x) of 
an action A are related by statements of the form: 

n m n 

P7^b.95(A /\ P i(x) f\ E ,•(*) I A /\ P i(x)) = [a, b] 
i = l » = 1 

For simplicity, we ignore preconditions here, but see 
Martin and Allen [1990]. 

A decomposition is an axiom stating that achieving 
a set of sub-goals under certain constraints leads to an 
effect of an action. These axioms can be used to reason 
that, in addition to executing the action, the effects of 
an action can be achieved by executing actions which 
achieve the sub-goals. The planner may reason about 
the probability of successfully executing the actions that 
achieve the sub-goals. 

For example, a decomposition of playing a C scale is 
playing each of the notes in quick succession. Follow- 
ing Kautz [1987], decomposition axioms consist of direct 
components (DC) and constraints («). The direct com- 
ponents are predicates that may be satisfied by execut- 
ing sub-actions, and the constraints describe the circum- 
stances under which these sub-actions will result in the 
action being accomplished. For example, a decomposi- 
tion axiom for the action, PlayCScale, might be: 

V(a,fi,<2,*3, • •-,^9) 

[     Played (a, C, h) A Played (a, D, t2) A ... A 

Meets (t\,t2) A Meets (^2,^3) • • • 
=>    CScalePlayed (0,^9) A 

Begins (ti, <9) A 

Ends (*8,*o)] 

This axiom says if the agent manages to produce all the 
notes in quick succession, then the agent has played a C 
scale, and temporal extent of this playing stretched from 
the beginning of the first note to the end of the last note. 
In this decomposition the Played(a, note, e,) predicates 
comprise DC; the temporal constraints comprise K. 

Throughout this paper, constraints are usually over 
simplified for clarity, and the axioms are summarized 
using a more conventional STRIPS-style operators. An 
operator has three parts, the preconditions, P, the ef- 
fects, E, and the body, B. The preconditions are con- 
straints on the applicability of the operator expressed 

as a formula; the effects are the results of applying the 
operator for which statistics are gathered; and the body 
is a set of decompositions. As an example, consider the 
operator, Act: 
Act(sc) 

P: P(x,h) 
E: E(x,t2) 
B: Bx(x),B2(x)...Bn(x). 

This operator is well founded if: 

3(c,x,<i,<2)    [P(2,*i)AAct(x,e) 
Meets (<i,<3), ATime(e) = t3] 

That is, the operator is well founded if there is an as- 
signment to the variables so that the preconditions held 
immediately before the actions and the action was at- 
tempted. The conditional probabilities associated with 
the operator require an event of the type described by 
the operator exists. If none exists, the probability is 
not defined because the denominator of the formula for 
calculating conditional probabilities will be zero. 

The body of an operator is a list of lists of predicates 
which are considered to be sub-goals for the planner to 
achieve. Each of these lists of sub-goals represents a 
decomposition of the action. For example, one of the 
of the lists of sub-goals of Act above, say Bi, might be 
(Qi(x,to)',Q2(x,ti). Such a list of subgoals in the body 
of operator represents the decomposition: 

V(to,ti,h,t3) 
[     P(x,t0)AQl(x,t1)AQ1(x,t1)A 

Meets (to,ti) A Before (<i, <2) 
=>    E(x,t2)A 

Begins (t1,t3) 
Ends (t2,t3)]. 

That is, the body of an action states that achieving the 
sub-goals in order achieves the effects of the operator. 

Consider again the example from the last section. Sup- 
pose Mary is a pianist while John has only played once 
or twice and that these facts are captured by following 
statistics: 

Experience(CScalePl&yed (Time(e)), 

PlayCScale (Mary,e)) = (960,1000) 
jE,xyenence(CScalePlayed (Time(e)), 

PlayCScale (John,e)) = (1,3). 

This experience will produce the following approximate 
probabilities: 

Profc. 95(CScalePlayed (Time(e)) | 
PlayCScale (Mary, e)) = [0.95, 0.97] 

Prob 95(CScalePlayed (Time(e)) \ 

PlayCScale (John,e)) = [0.06,0.79]. 

(i.e. Mary nearly always successfully plays a scale, 
whereas it is highly uncertain whether John can play 
a scale or not). 
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Suppose further that both John and Mary have the 
same competence in playing a single note, that 

fr~ob.95(P\a.yed (N,Time(e)) | Play (John,N,e)) 

CityB 

Pro6.95(Played (N,Tirne(e)) 

[.98, .99] 

Play (Mary, N, e)) 

The question of whether each agent should decompose 
the PlayCScale action now reduces to the question of 
whether the estimated success of executing PlayCScale 
directly is higher or lower than the estimated success of 
executing the eight individual notes. For Mary, the es- 
timate of successfully playing the scale directly is [0.95, 
0.98], whereas the estimate for successfully playing each 
of the eight individual notes would be the multiplication 
of the estimate for each individual note, namely [0.98, 
0.99], which produces the estimate [0.85, 0.92]. Clearly 
Mary should not decompose the action as the former 
estimate is invariably better that the latter. For John, 
however, decomposing is better as it produces the esti- 
mate of [0.85, 0.92], while directly executing the action 
is estimated as [0.06, 0.79]. 

We now describe the operation of a hierarchical strate- 
gic planner that works concurrently with a reactive sys- 
tem and that has no fixed set of primitive actions as 
described above. At each step, the planner looks at the 
set of operators that achieve its current goal. One of 
these operators is selected, and the planner decomposes 
the operator into a sequence of smaller steps by finding 
operators which achieve the direct components. Con- 
straints on the sub-goals insure these actions do not in- 
terfere with each other. For simplicity, we do not discuss 
selecting the appropriate operator. For details about this 
process see [Martin and Allen, 1990]. 

4    The TRAINS Domain 

To make the development more concrete, the second ex- 
ample is expressed in the TRAINS domain under devel- 
opment at Rochester. The TRAINS domain is a fairly 
complex simulated rail transport system. Rather than 
having a single control system, the planner interacts with 
multiple control systems, each one playing the role of a 
train engineer. For the purposes of this paper, however, 
we will use only a single train engineer. The train engi- 
neer's behavior is defined by a set of reactive procedures 
that execute to accomplish goals. When it is given a 
goal, it selects a procedure that accomplishes this goal 
according to some simple heuristic and executes the pro- 
cedure. 

The example shows how reactive and strategic systems 
can work together to solve problems; it is not a realistic 
problem in routing trains. Such an example would in- 
volve complex temporal reasoning about schedules and 
deadlines that would obscure the problem of interfacing 
the strategic and reactive parts of a planner. This ex- 
ample is helpful, however, because one can put oneself 
in the place of either the reactive system (i.e. the en- 
gineer) or the strategic planner. The same issues arise 
in robotics domains but intuitions are harder to develop 
because the reactive system must perform actions about 

Track 2 Track 3 

CityD 

Track 5 
Track 4 

CityC 

Figure 1: Layout for TRAINS example 

which people rarely introspect. As in robotics, the plan- 
ners only access to information about the TRAINS world 
comes from the engineer's reports. In a robotics domain, 
visual routines play the part the engineer's reports play 
in the TRAINS domain. 

The example situation is shown in figure 1. The plan- 
ner must direct an engine at CityA to the factory at 
CityD. Let us assume that the direct route between 
CityA and CityD is poor quality track, and, when the 
weather is bad, the train runs a serious risk of derailing 
on that route. Furthermore, switches in CityB are often 
broken, causing difficulties with this route. 

The engineer has access to the same map the plan- 
ner does, and, using that map, the engineer can choose 
routes given a destination. The sample statistics arise 
from the following scenario. Though neither the engi- 
neer nor the planner know the true probabilities, the 
route through CityB and the direct route leads to suc- 
cess half the time. The route through CityC is better 
with success 80% of the times it is tried. The route 
through CityC fails in inclement weather which the en- 
gineer can forecast, but which the planner cannot. The 
engineer chooses routes according to the following heuris- 
tic of which the planner is unaware. The engineer always 
chooses to go through CityB if that option is available, 
otherwise it will chose to go through CityC unless the 
weather is bad and it has a choice. If the weather is bad 
and it can choose it takes the direct route. 

The planner's decisions are based on it's experience 
with the engineer. If the engineer usually chooses a good 
route, the planner tries to leave as much leeway as pos- 
sible in the plans it specifies. If, on the other hand, the 
engineer is often mistaken, it will specify plans as rigidly 
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as possible. 

5    Planning in the TRAINS domain 
In the initial state for this example, Trainl is in CityA. 
The planner's goal is to make In( Trainl, CityD) true. 
Only the Move operator has the desired effect, so the 
planner instantiates it as shown below: 

Move(Trainl, CityA, CityD) 
P: In(Trainl, CityA,t0) 
E: In(Trainl, CityD, U) 
B: (At{CityD, <i)) 

(At(CityB, t2); At(CityD, h)) 
{At(CityC, t2); At(CityD, h)) 

There are three different decompositions of this operator, 
each one corresponding to a different route. 

The planner can fill out each decomposition by choos- 
ing operators representing actions that will achieve the 
sub-goal. It does this by looking through the available 
operators for the one with the highest probability of 
achieving that sub-goal. Once the planner has filled in 
the decomposition with operators, it must consider two 
issues: first, should it decompose the operator, and sec- 
ond, if it decomposes, which decomposition is best? It 
may send any one of the decompositions, or it may send 
a disjunction of decompositions. As we shall see below, 
sending a disjunction of decompositions allows the plan- 
ner to take advantage of the reactive system's decision 
making abilities. 

The other operator used in this example is: 

• Traverse(train, cityl, city2) 
P: Exiting(train, cityl, to) 
E: At(train, city2, t^) 
B:() 

This operator has no decompositions so the planner's 
only option is to specify execution of the Traverse ac- 
tion. 

Consider the system planning to get Trainl from 
CityA to CityD. The decompositions can all be accom- 
plished by using various instantiations of the Traverse 
operator for each subgoal. For brevity, we name the de- 
compositions in which the sub-goals have been replaced 
by actions: 

Plan-A     =    (Traverse( Trami, CityA, CityD)) 

Plan-B     =    (Traverse(Trainl, CityA, CityB); 

Traverse( Trainl, CityB, CityD)) 

Plan-C     =    (Traverse(Trami, CityA, CityC); 

Traverse( Trainl, CityC, CityD)) 

The planner's decision procedure is to decompose a 
plan only when it has negative experience with the com- 
pound operator. In particular, if the approximate prob- 
abilities are incomparable, it will not decompose. In- 
comparability indicates that the planner has insufficient 
information to make a choice so it defers the decision to 
the reactive system hoping that the reactive system will 
have better information.   Though the reactive system 

performs less complex reasoning than does the strategic 
planner, the reactive system may have better informa- 
tion as it has access to the real world. For example, 
the engineer is better able to determine if there is an 
obstruction in the tracks directly ahead of the train. 

Suppose we have the following experience based on the 
scenario described above: 

Experience (Plan-A ) 

Experience(Plan-B ) 

Experience(P\a.n-C ) 

Experience(M.ove) = 

= (100,200) 

= (100,200) 

= (160,200) 

(50,200) 

This would give rise to the following approximate 
probabilities: 

Pro&.95(Plan-A ) = [0.43,0.57] 

P^695(Plan-B ) = [0.43,0.57] 

Pr7b.95(Plan-C ) = [0.74,0.85] 

fr7b.95(Move) = [0.20,0.31] 

Using the decision procedure described earlier, the 
planner decides to decompose the Move into Plan-C and 
send that to the reactive system. 

But if the reactive system has its own decision making 
capabilities, the planner can do better. Because the re- 
active system can forecast the weather, it knows which 
of Plan-A and Plan-C has a better probability of suc- 
cess in any particular situation. Therefore, sending the 
reactive system the command to Plan-A V Plan-B pro- 
duces better results. We can capture this behavior by 
introducing the notion of complex plans. 

We call Plan-A, Plan-B, and Plan-C basic plans and 
disjunctions of basic plans complex plans. The planner 
may maintains information about all of the probabilities 
to model of the abilities of the engineer. 

The planner may combine probabilities. In deciding 
whether to decompose playing a C scale we used the 
laws of probabilities. To do so, we had to assume that 
the underlying probabilities were independent. There, 
such an assumption was not unreasonable, because the 
planner insures that the actions will not interfere with 
each other. Independence cannot be assumed in the new 
scenario, however, because the planner will never exe- 
cute more than one of the plans; it will always choose a 
particular one and execute that one. 

Another way of combining probabilities is to combine 
the actual experience and calculate a confidence inter- 
val for this combined experience. This way of updating 
probabilities is accurate only if the reactive system exe- 
cutes at random. This, however, is a bad assumption if 
the planner wants to make use of the reactive system's 
abilities. In particular, if the reactive system has some 
decision making ability, it will not be randomly select- 
ing a plan from the choices the planner sends it. If the 
reactive system makes good choices, it should be better 
than random selection and experience with complex plan 
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should be better than the simple combination of the ba- 
sic plans. Thus the planner must collect actual statistics 
for the complex plans as well as the basic ones. 

Suppose we have the following experience for the com- 
plex plans: 

£z:per;ence(Plan-A  V Plan-B ) = (48, 200) 

Experience(P\<m-A V Plan-C ) = (182,200) 

Experience(P\<m-B V Plan-C ) = (52,200) 

Experience(Pla,n-A V Plan-B V Plan-C )) 

= (50, 200) 

This experience arises due to the difference between the 
planner's and the engineer's knowledge. Whereas experi- 
ence with the basic plans reflects the planner knowledge, 
knowledge of the engineer's decision making abilities is 
reflected in experience with the complex plans. Expe- 
rience with the disjunction of all three of the possible 
decompositions, Plan-A V Plan-B V Plan-C , might be 
different from executing the action directly if the engi- 
neer had means of achieving the goals of the action of 
which the planner does not know. Here the engineer has 
no private techniques for achieving goals, so the proba- 
bilities are the same. 

The engineer does poorly whenever it is given the 
choice of going through CityB because its heuristic is to 
choose that route whenever it can, and that route is bad. 
On the other hand, it does significantly better than any 
of the basic plans when given the choice of going through 
CityC or taking the direct route. The improvement over 
random choice comes from the engineers ability to fore- 
cast the weather. When the weather is bad, it takes the 
direct route with a 50% chance of success rather than a 
100% change of failure. 

The planner should recognize that the engineer has 
special abilities and send it plans that allow it to exer- 
cise these abilities. Using the decision procedure out- 
lined above, this is indeed what happens. The planner's 
experience gives rise the the following approximate prob- 
abilities: 

PnT&.ss(Plan-A V Plan-B ) = [0.19,0.30] 

fr~ob.95(Plan-A V Plan-C ) = [0.86,0.94] 

Pro6.95(Plan-B V Plan-C ) = [0.20,0.32] 

Pro6.95(Plan-A V Plan-B  V Plan-C ) = [0.20,0.31] 

As can be seen, the plan Plan-B V Plan-C dominates 
the probabilities of both the complex and the basic plans. 
Thus, given this information, the planner decides to de- 
compose the Move action, and to give the engineer the 
choice between decompositions Plan-B and Plan-C. 

A difficulty with this scheme for maintaining infor- 
mation about the effects of its plans is the exponential 
number of complex plans. This is not a problem in the 
representation because there will be a small number of 
the possible complex plans for which data has been col- 
lected. One of the advantages of approximate probabil- 
ities is the ability to represent that no information is 

available. Those complex plans for which no informa- 
tion is available have an approximate probability of [0, 
1]. The exponential number of complex plans does pose 
a problem to the planner in gathering information, how- 
ever. If it spreads its trials evenly over all the possible 
complex plans, it will gain expertise only slowly. If, on 
the other hand, it concentrates on only a few, it risks 
missing the best plan. 

6     Conclusion 

We present a two level architecture in which a strate- 
gic planner sends commands to a reactive system. The 
strategic planner chooses an appropriate level of detail 
at which to communicate using statistics gathered from 
the reactive system's previous performance. From this 
previous performance probabilities are approximated by 
calculating a confidence interval for the true probability. 
This approximate probability is then used to guide the 
choice of an appropriate level of detail at which to com- 
municate with the reactive agent. The strategic planner 
chooses a level of detail that has been most successful in 
the past. 

Interval valued probabilities provide a useful tool in 
combining reactive execution modules with strategic 
planners. In addition to the strength of belief the po- 
sition of the interval gives, the width of the interval 
gives valuable information about the planners knowledge 
about the effects of its actions. Using this information, 
the strategic planner can give guidance to the reactive 
system only when it knows it has better information than 
the reactive system does and allow the reactive system 
leeway when it is uncertain. 

The system's weakness is its reliance on the its opera- 
tors and decompositions. In more realistic domains, the 
planner will need to deal with preconditions and reason 
about the probabilities of that are not composed of in- 
dependent actions. To do this the system will need to 
reason about preconditions, and the probability of these 
preconditions being violated. Such reasoning is likely 
to be quite complex, so search heuristics must be devel- 
oped. Initial work in this area is reported in [Martin 
and Allen, 1990]. Tyro, a planner that makes use of ap- 
proximate probabilities and decomposition abstraction 
is being developed at Rochester. 
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Cooperative Planning and Decentralized Negotiation in Multi-Fireboss Phoenix 
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Abstract 

Multi-fireboss Phoenix provides a real time envi- 
ronment to study cooperative planning and decen- 
tralized negotiation. Spatially distributed agents 
(firebosses), having only local views, negotiate 
to plan a globally acceptable resource configura- 
tion. Negotiation is viewed as a distributed search 
through plans requiring various resource alloca- 
tions, and hence, leading to different resource con- 
figurations. The goal of the distributed search is 
to find a resource configuration that minimizes the 
total loss. To realize the negotiation, a three phase 
framework has been created. We present an exam- 
ple scenario and initial implementation results to 
concretize the negotiation framework. 

1    Introduction 

In a centralized or hierarchical environment, problem solving 
decisions are typically made by a single agent. However, 
in truly distributed environments, the imposition of such 
centralized roles seems both inefficient and unnatural. Thus, 
it seems appropriate for agents to interact as peers. When 
problems arise in these distributed environments that affect 
more than one agent, all involved agents negotiate to reach 
a mutually acceptable solution. Negotiation is decentralized 
when there is no central mediator or global database and an 
agent must act knowing only its local state and information 
received from other agents. Our work entails studying 
decentralized negotiation in multi-fireboss Phoenix. 

Multi-fireboss Phoenix is an extension of the Phoenix 
fire fighting system. Problem solving in this domain refers 
to bringing about the actions needed to assess and contain 
simulated fires (see [Cohen et ah, 1989] for a detailed account 
of the environment). In Phoenix, a single centralized agent 
controls problem solving whereas in multi-fireboss Phoenix, 
problem solving is managed by several spatially distributed 
firebosses or intelligent agents. Section 2 introduces the fire 
fighting domain and discusses cooperative planning in the 
multi-fireboss version. 

"This work was partly supported by the Defense Advanced 
Research Projects Agency (DARPA), monitored by the Office of 
Naval Research undercontract N00014-89-J-1877 and by the Office 
of Naval Research under a University Research Initiative grant, 
number N00014-86-K-0764. 

Spatially distributed agents, having only local views, need 
some method of negotiation in order to plan a globally 
acceptable resource distribution. Each resource distribution 
has an associated cost and a globally acceptable distribution 
is one that minimizes cost. Hence, the purpose of negotiation 
is to construct and evaluate possible resource distributions 
in search of a low cost solution. In section 3, we discuss 
negotiation for resource allocation in multi-fireboss Phoenix. 

Negotiation is viewed as a distributed search through pos- 
sible resource configurations. The search is structured into 
three phases representing three problem solving steps. The 
agents need to 1) look for solutions within a given search 
cost level, 2) decide if they have exhausted the likely pos- 
sibilities of finding a solution in a search level, and 3) if 
necessary, determine how to change the current search level 
into a new, higher cost level. Section 4 outlines our approach 
to negotiation. In section 5, an example scenario from the 
Phoenix domain is presented. Section 6 discusses related 
work on negotiation. Finally, we conclude with preliminary 
implementation results and a plan of future work. 

2   Cooperative Planning in Phoenix 

Phoenix simulates forest fire fighting in Yellowstone National 
Park. It consists of a "real world" which simulates fires 
and environmental conditions, agents who control problem 
solving, and resources that agents use to assess and contain 
fires. The objective of problem solving in the system is to 
limit the amount of land burned and to protect high priority 
land from destruction. Phoenix is a real time environment 
where problem solving is ongoing (new fires can occur at any 
time). Hence, agents must be able to respond quickly and 
adaptively to changes in the environment. 

In multi-fireboss Phoenix, each agent is responsible for fires 
occurring in a predefined geographical area. An agent owns a 
certain number of watchtowers and bulldozers. Watchtowers 
are the "eyes" of an agent; they provide information on fires 
in their area of sight. Bulldozers are the primary fire fighting 
resource of an agent; they contain fires by building fireline 
around the perimeter of a fire. In response to a fire occurring in 
the "real world", an agent receives fire assessment information 
from its watchtowers, constructs a fire attack plan to contain 
the fire, and sends bulldozers to build the fireline specified in 
the attack plan. 

Figure 1 shows an example fire attack. The watchtower 
near the top of the figure has reported the fire (shown in 
the center of the figure) to its agent.   The dotted circular 

144 



region around the fire shows the attack plan constructed by 
the agent; it represents the fireline that will be built around 
the fire. A bulldozer, sent by the agent to implement the 
attack plan, is shown building fireline. When the bulldozer 
completes building the fireline, the fire will be contained 
because its fuel source will be cut off. In reality, fire can jump 
fireline, however, this aspect of fire growth has not yet been 
incorporated into Phoenix. 

Agents in multi-fireboss Phoenix must allocate bulldozers 
with concern for all fires occurring in the system (i.e. they 
cooperatively plan for the current fire situation). From only 
local views, the agents try to assign bulldozers to fires in such 
a way as to globally minimize the damage of the fires. A 
fire fighting effort involves creating a schedule of bulldozer 
allocations in connection with a fire attack plan. If an agent 
does not have enough available bulldozers to implement the 
plan, it negotiates with its neighboring agents to secure the 
needed bulldozers for the attack. 

Figure 2 shows a simple distributed resource allocation 
problem in the fire fighting domain. To fight the new fire, 
Fire-3, Agent-2 needs to secure two bulldozers immediately. 
Bulldozer B-4 is available and Agent-2 assigns B-4 to the 
attack on Fire-3. Agent-2 now needs to find one more 
bulldozer. The fire fighting attack on Fire-1 has just begun 
and Agent-2 can not release a bulldozer from that effort. If 
Agent-2 had a global view, it could determine that the attack 
on Fire-2 is almost complete and it could take a bulldozer 
from that attack. However, there is no global view and the 
agents must negotiate in order to find this solution. 

The example shown is very simple and it has an obvi- 
ous solution. More complex problems arise when there are 
more fires to fight then bulldozers available to immediately 
fight them. The agents must then create bulldozer allocation 
schedules for the fire attacks. Some fires attacks may be 
delayed and bulldozers can be assigned to them at a later 
time. Moreover, a fire fighting attack can be divided into 
stages where bulldozers may be added or removed from the 
attack at various times. Suggesting and evaluating alterna- 
tive bulldozer allocation schedules is the content of agent 
negotiation. 

3   Negotiation for Distributed Resource 
Allocation 

Phoenix provides a real time domain where problem solving 
is ongoing. The objective of negotiation is to find a fairly 
good solution relatively quickly. Even if an exhaustive search 
is feasible, in a real time domain, the cost of finding an 
optimal solution may outweigh the savings of an optimal 
solution over a fairly good one. Furthermore, the ongoing 
nature of problem solving is also a factor in our negotiation 
framework. In response to changes in the current situation, 
agents amend existing solutions rather than start from scratch 
every time the current situation changes. 

Agents are cooperative in distributed Phoenix - they work 
together to fulfill the global goal of minimizing total land 
loss. Hence, an agent is willing to incur more local loss than 
absolutely necessary in order to minimize the total loss of the 
system. Furthermore, negotiation is viewed as an incremental 
process. Agents seek solutions of minimal loss first. As the 
negotiation continues, the agents realize that in order to find 

a solution they must incur more and more loss. 

3.1 Defining the Problem 

We begin our study of decentralized negotiation with a two 
agent model. At any given time in the system, the two 
agents are faced with a configuration of burning fires. They 
must develop a resource distribution so that all fires can be 
contained. A fire is classified into a priority level, ranging 
from low to high, which estimates the amount of loss that the 
fire could cause. When a new fire occurs, an agent computes 
an initial fire projection which gives a standard base for 
negotiation; it indicates the lowest priority class in which a 
fire can be contained if the computed fireline segments are 
built by a certain time. 

Each agent maintains a list of goals where a goal corre- 
sponds to a fire for which the agent is responsible. Each 
fire has an associated fire fighting projection which specifies 
a bulldozer allocation schedule for realizing the plan of the 
attack projection. Figure 3 shows an example goal. This goal 
corresponds to Fire-10, a medium priority fire, being fought 
with the attack plan of Projection-15. Bulldozers Bl and B2 
are currently building fireline and B2 will leave the attack 
after 10 more fireline segments are built, estimated to be at 
time T2. After that time, Bl will complete the attack. 

In this domain, two degrees of overconstrained resource 
situations are distinguished. When the agents do not have 
enough bulldozers to immediately implement all fire fighting 
attacks, they are said to be in an ento-overconstrained resource 
situation. To resolve this situation they try to rearrange the 
bulldozer allocation schedules and fire attack plans without 
raising the priority level of any goal. If the agents must 
raise a goal's priority in order to find a resource distribution 
that qualifies as a solution, they are said to be involved in 
an extro-overconstrained resource situation. In this situation, 
the agents know that they must delay at least one goal in order 
to find a solution. 

So, what is the problem that the agents need to solve? At 
any given time, each agent has developed a resource allocation 
schedule for each fire occurring in its area of responsibility. 
Then a new fire occurs in one agent's area and there is not 
enough globally available bulldozers to immediately start 
fighting that new fire. An ento-overconstrained resource 
situation is recognized. The agents attempt to modify their 
resource allocation schedules so that the agent responsible for 
the new fire has a bulldozer allocation schedule for fighting 
that fire. If the agents can not find a bulldozer allocation 
that will successfully contain the new fire without raising the 
priority level of a goal, they are in an extro-overconstrained 
situation. The agents negotiate to determine which goals to 
delay to the next priority level. They then must develop 
delayed bulldozer allocation schedules for those goals. 

3.2 The Elements of Negotiation 

At a global level, the search space for a given situation consists 
of a particular set of fires (the fire situation). As shown in 
figure 4, alternative resource distributions occur under fire- 
priority configurations. Fire-priority configurations assign a 
priority to each fire and hence, approximate the total loss. The 
agents first search alternative distributions under the priority 
configuration representing the minimal loss. As negotiation 
continues, the agents realize that they must incur more loss 
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Figure 1: Fire Fighting in Phoenix 

to find a solution for the fire situation and thus, must search 
alternatives under higher loss priority configurations. 

Constraints in this domain are centered around four fac- 
tors: priority, start time, bulldozer number, and bulldozer 
assignment time. The agents attempt to contain fires within 
the lowest priority classes possible. In order to contain a fire 
within a priority class, the computed fireline segments must 
be built within a certain time. The initial projection computed 
on a new fire specifies the minimum number of bulldozers 
needed to contain the fire if the attack starts immediately and 
if the bulldozers are allocated for the complete attack time. 
Thus, it provides a starting point for negotiation. 

Negotiation involves relaxing constraints imposed by the 
projection on the new fire and the projections in use on goals. 
Agents first try to relax the constraints of start time, bulldozer 
number, and bulldozer assignment time. Relaxing these 
constraints provides a way to solve an ento-overconstrained 
resource situation. The following operators are used to find 
bulldozers for the new fire attack: 

• The start time of a fire fighting attack may be delayed. 
If enough resources can be brought to the fire within 
a certain time, perhaps more than the initial projection 
specified, the fire can be contained within its initial 
priority class. 

• An agent may be able to remove bulldozers on an already 
started fire fighting attack and still complete the attack 
specified in the projection. 

• An agent may start a fire attack with less (more) bull- 
dozers than the projection specified and add {release) 
bulldozers at later times.   If a bulldozer schedule can 

be created that meets the build time constraints of the 
projection, the fire can be contained in its priority class. 

The agents try to find a bulldozer allocation schedule 
that will successfully contain the new fire within its initial 
priority class. By using the above operators, the agents 
search to release bulldozers immediately, temporarily, or 
in the future thereby creating possible bulldozer allocation 
schedules for the new fire. If they can construct a bulldozer 
allocation schedule that achieves the build time constraints 
of the new fire's projection, they have solved the ento- 
overconstrained resource situation. If the agents can not 
create a suitable bulldozer schedule, an extro-overconstrained 
resource situation is recognized. In this situation, the agents 
have to agree on which goals to delay. These goals are 
allowed to reach a higher priority class. 

In attempting to minimize global loss, the agents try to 
delay the fewest fire attacks as well as the lowest priority 
goals. The current strategy for choosing goals to delay 
attempts to achieve a minimal loss solution based solely on 
priority class. More complex strategies can include other 
factors such as bulldozer locations relative to fire locations, 
different growth rates of fires (growth rates vary according to 
type of terrain), and utilization of land features (for example, 
a fire fighting attack may utilize a lake so that less fireline has 
to be built). 

Once the agents have decided which goals to delay, they 
then go back into negotiation to find bulldozer allocation 
schedules for the delayed goals. If the new fire is not delayed, 
the agents will have found a bulldozer allocation schedule for 
it when they chose the goals to delay. The search process to 
find a bulldozer allocation schedule for the delayed goals may 
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AGENT-1 

( Fire-3 j 

AGENT-2 

B-4 
B-6| 

B-5 Fire-1 

Agents negotiate in order to find the globally obvious resource distribution: 
Take a bulldozer off Fire-2 to join bulldozer B-4 on the fire attack for Fire-3. 

Figure 2: Distributed Resource Allocation 

GOAL-10: Fire, Priority: Fire-10, Medium 
Attack-Projection: Projection-15 
Fighting-Projection: Entry-1: Bulldozers: (B1,B2) 

Start Time, End Time: Tl, T2 
No-of-segments: 10 

Entry-2: Bulldozers: (Bl) 
Start Time, End Time: T2, T3 
No-of-segments: 10 

Figure 3: An Example Goal 
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Fire Situation: [Fire-1, Fire-2,..., Fire-n] 

OR 

Fire-Priority 

Configuration-1 

Alternative-1 
Bulldozer Distribution 

AND 

Fire-Priority 

Configuration-2 

Alternative-2 
Bulldozer Distribution 

Fire-Priority 

Configuration-q 

Alternative-m 
Bulldozer Distribution 

Fire-1       Fire-2 Fire-n 
Attack      Attack       Attack 

The goal is to find the alternative bulldozer allocation for the fire situation that: 
Qualifies as a solution and occurs under the lowest loss fire-priority configuration possible. 

Figure 4: The Global Search Space 

lead back into delaying more goals and hence, changing the 
priority configuration again. Thus, the negotiation process is 
incremental. 

The methods that our agents use to construct alternative 
bulldozer distributions are closely related to the negotiation 
operators used by Sathi and Fox ([Sathi and Fox, 1989]). 
Relaxation in our domain refers to allowing a fire to burn to 
a higher priority class than the minimum possible. Recon- 
figuration in our domain means reorganizing the bulldozer 
teams so that bulldozers can be released from their current 
assignments and hence, become available to fight a different 
fire. Finally, composition is similar to assigning bulldozers to 
a fire attack at different times and adjusting the fire fighting 
attack to incorporate the varying bulldozer allocations. 

4   Our Basic Approach 

Negotiation is structured into three phases corresponding 
to three main problem solving activities. The agents search 
within a priority configuration to find a solution for a particular 
fire using a specific base schedule (base schedules are created 
from the fire projections). If the search does not lead to a 
solution, the agents must decide whether to perform another 
search under the priority configuration with a base schedule 
that has not be previously used or to create a new priority 
configuration of higher loss. Hence, the three phases of 
negotiation are 1) searching to find a bulldozer allocation 
schedule, 2) deciding how to proceed in the search if an 
impasse was reached, and 3) creating a new search level of 
higher loss. 

4.1   Phase 1: Negotiation to Find Bulldozers 

During phase 1 of negotiation, agents search to find a bulldozer 
allocation schedule for a single fire. If that fire is a new fire, 
the agent responsible for it computes an initial projection 
which provides the ideal bulldozer allocation schedule: the 
minimum number of bulldozers needed to start immediately 

and stay for the complete attack time. Negotiation is entered 
when the agent does not have enough idle bulldozers to meet 
the ideal base schedule. The agent first tries to simply borrow 
the needed resources by issuing an initial request. 

An initial request specifies a start time, priority, and bull- 
dozer number. One agent is asking another: "can you give 
me n bulldozers by time t for a z priority fire?" The receiving 
agent replies positive, alternative suggestion, or negative as 
shown in figure 5. A positive reply indicates that a solution 
has been found. An alternative suggestion means that the 
agent can meet only part of the request or it can meet the 
whole request if the requesting agent agrees to a condition 
placed on the loan. A negative reply means that the agent did 
not find a solution or suitable alternative suggestion. 

An agent receiving a request tries to fulfill that request 
without raising the priority of any goal. If the agent can 
not meet the whole request (it does not have enough idle 
bulldozers), it begins an ordered search to find an alternative 
suggestion. First, the agent tries to relax the bulldozer 
number (it has some idle bulldozers but not enough) or start 
time (it tries to complete lower priority goals before loaning 
bulldozers) specified in the request. If the agent does not 
have any idle bulldozers or lower priority goals, it searches 
for an alternative suggestion by restricting the bulldozer loan 
time or by requiring the requesting agent to commit some of 
its resources at a later time. 

The requesting agent evaluates the alternative suggestion. 
As shown in figure 6, a solution is achieved if the alternative 
suggestion leads to a bulldozer allocation that achieves the 
build time constraints of the new fire and if conditions were 
specified on the loan, the requesting agent can meet those 
conditions. If alternative suggestion did not lead to a solution, 
the requesting agent uses the information in the alternative 
and its own goal situation to construct a base schedule. If the 
agent received a negative reply, it constructs a base schedule 
from its own goals alone. Note that a base schedule can be 
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Agent-1: Sends Initial Request - [Time, Bulldozers Needed, Fire Priority] 

I 
Agent-2: Receives Request - Possible Replies 

Positive 
Solution Found 

Alternative Suggestion 
Send to Agent-1 
for evaluation 

Negative 
Up to Agent-1 to 

suggest alternative 

Figure 5: The Beginnings of Negotiation 

created in the later phases of negotiation and lead back into 
phase 1 as shown in figure 6. 

The requesting agent then evaluates the constructed sched- 
ule using the current projection (either initial or delayed) on 
the fire. If the schedule is not a solution, the agent tries 
to determine what will make that schedule a solution. If it 
can pinpoint a modification, it sends a modified request to 
the other agent. If it can not find a suitable modification, it 
realizes that further search on that base schedule is futile. The 
negotiation continues with phase 2. 

Evaluating alternatives and pinpointing problems is specific 
to the domain. In the fire fighting domain, knowledge of fire 
behavior enables an agent to look for specific problems with 
a schedule. For instance, a fire grows exponentially in the 
direction of the wind. Thus, one function checks if the fire 
head is contained quickly enough. Another function checks 
if the problem is that a small amount of fireline is not built 
in time and computes when a bulldozer must be added to the 
attack in order to make the schedule a solution. 

When an agent finds a modification that will make the 
base schedule a solution, it sends a modified request to 
the other agent. A modified request specifies a start time, 
bulldozer number, and priority as in an initial request. In 
addition, a modified request can include a reservation field 
and a comment field. The reservation field is employed when 
the modified request uses all or part of a previously sent 
alternative suggestion. The comment field allows an agent 
to give the other agent information to limit its search. For 
instance, if the fire head needs to be contained, the replying 
agent will search for ways to loan a bulldozer immediately, 
expect the return ofthat bulldozer relatively quickly, and omit 
searching for ways to delay the start time. 

The agent receiving a modified request checks if it needs to 
reserve bulldozers or if it can decommit resources specified 
in a previous alternative suggestion. It then tries to fulfill 
the request as it does with an initial request though the 
search space may be smaller if bulldozers are reserved and a 
comment was included in the request. It then replies positive, 
alternative suggestion, or negative. 

Alternative suggestions and modified requests represent 
a distributed search to find a solution using a particular 
base schedule. Modified requests attempt to revise the base 
schedule or a schedule derived from it to find a solution. 
An alternative suggestion on a modified request can lead to 
searching in more depth on a derived schedule or it can lead to 
searching on a new derived schedule. The path taken depends 
on the evaluation of the alternative and the requesting agent's 

goal situation. If no solutions were found using the base 
schedule, the agents enter into phase 2. 

4.2 Phase 2: The Decision to Delay Goals 

Deciding to delay goals implies giving up significantly more 
loss than could be caused by the reconfiguration process of 
phase 1. Since more loss is contrary to the global objective, 
the agents first determine if there is another means to achieve a 
solution under the current fire-priority configuration. Hence, 
this phase decides whether to try more breadth on the search 
under a priority class level or to search under a new priority 
configuration. 

To determine if there is a possibility of constructing a 
base schedule that was not examined and is likely to lead a 
solution, the agents must characterize the search in phase 1. 
This process is the least understood of our framework. Two 
possible characterizations, based on the constraint relaxation 
of the ideal schedule, are 1) delaying the attack start time and 
2) starting the attack with fewer bulldozers than required. A 
check list is maintained based on these two characterizations. 
The agent responsible for the fire checks off characterizations 
during the search in phase 1. Based on the modifications 
made to the ideal schedule and base schedules, the agent can 
determine which characterizations were attempted. 

If a characterization has not been checked off, the agents 
search to create a base schedule using that characterization. 
If delayed start time was not used, the agents search for ways 
to utilize any idle resources so that more bulldozers will be 
released sooner then otherwise possible. If the attack was 
not started immediately, the agents search for ways to release 
bulldozers immediately (possibly requiring commitments). If 
they can create a new base schedule, the agents return to 
phase 1. 

If both characterizations have been used, the agents enter 
phase 3. At this point, they have exhausted their known 
possibilities of finding a solution for the particular fire given 
the constraints of the fire priority configuration. Other search 
characterizations can be used, however, care must be taken so 
that the agents do not perform a redundant search on variants 
of the same base schedule. 

4.3 Phase 3: Negotiation for Delaying Goals 
Phase 3 of negotiation is entered when the agents realize that 
in order to find a solution to the current fire situation, more 
land has to be sacrificed than the current minimal amount. 
Which fires are allowed to burn to the next priority is based 
on a strategy for achieving minimal loss. The current strategy 
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Agent-1: Receives Alternative 

and Evaluates it 
Agent-1: Receives Negative 

Reply 

Positive 
Alternative works 

Solution Found 

Negative 

Agent-1: Search own Goal Structure 

Create Base Schedule 

Evaluate Schedule 
Base Schedule 

Created in 
Phase 2 or 3 

Positive 
Solution Found 

Negative 
Try to Pinpoint Problem 

Send Modified 
Request to Agent-2 

Enter Phase 2 
of the Negotiation 

Figure 6: Search within a Priority Class Configuration 

tries to raise the fewest number of fire priorities as well as 
to delay the lower priority fires first. Figure 7 shows the 
decision process. 

Before negotiation can continue, agents must assess the 
situation. First, they find goals having a lower priority than 
the new fire. If the new fire is the lowest goal in the system, 
it will be delayed. A new projection is performed on that fire, 
letting it reach the next priority. The agent responsible for 
the fire constructs an initial schedule based on first available 
bulldozers and re-enters the negotiation process for a single 
fire using the constructed schedule as the base schedule, the 
new projection for evaluation of possible solutions, and the 
first bulldozer assignment time as the attack start time. 

If the lowest priority goal in the system is not the new fire, 
the agents must determine if delaying that goal or any lower 
priority goal will lead to a solution for the new fire. They 
construct a schedule for the new fire using the bulldozers 
from the lower goal to start immediately. If any single 
lower priority goal will lead to solution for the new fire, it is 
delayed and the solution to the new fire is implemented. A 
projection is performed on the delayed fire, letting it reach 
the next priority level. An initial schedule is created and the 
negotiation for a delayed bulldozer schedule begins. 

If no solution can be found for the new fire by delaying 
a single lower priority goal, a combination of goal delays 
is tried. However, there is a heavy bias toward delaying a 
single fire. Unless very low priority goals can be delayed, the 
new fire attack will be delayed. The bias is a way to avoid 
bulldozer thrashing (having bulldozers spend most of their 
time traveling to fires without accomplishing much useful 
work). If delaying several lower priority goals is chosen over 
delaying the new fire, it should be relatively easy to build a 

delayed resource schedule for those goals. 

4.4   Tying it all Together 

The unifying theme of the negotiation is examining resource 
configurations with continuing higher loss levels. The agents 
first seek bulldozer distributions under the minimal fire- 
priority configuration. If they can not find a bulldozer 
distribution under that configuration which qualifies as a 
solution, they must incur more loss. The agents must then 
delay goals to create a new priority configuration. They search 
alternative distributions under that configuration. They may 
find a solution or they may have to construct a new higher 
loss priority configuration. 

The three phases give structure to the distributed search. 
They represent three distinct problem solving activities and 
they provide a way to coordinate the distributed search. Using 
the negotiation framework, different heuristics may be used 
to construct alternative resource configurations, characterize 
the search process, and create a new search level. Thus, 
the framework provides a means to study various negotiation 
strategies. 

5   Example Scenario 

To begin the testing of our approach, initial scenarios were 
created. These scenarios facilitate understanding what infor- 
mation is needed to be exchanged during negotiation and how 
the distributed search is conducted. Since the purpose of the 
section is to illustrate the basic negotiation framework and 
reasoning process, the following scenario is abstracted from 
the implementation detail. 

Figure 8 shows the starting situation of the scenario. 
Agent-1 has two goals and no idle bulldozers.    Agent-2 
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Situation Assessment: Find set of goals 
that have a lower priority than the new fire. 

Is lowest goal the new fire? 

Delay new fire 
fighting attack 

Delay single 
lower goal 

Will delaying any single lower goal 
lead to a solution for the new fire? 

yes no 

Find delayed combination of lower 
goals that leads to a solution for new fire. 

Evaluate total loss: 

Delay new fire Delay several 

fighting attack lower goals 

Figure 7: Deciding which Fires to Delay 

also has two current goals and no idle bulldozers. Agent-2 
has spotted a new fire, fire-8, in its area of responsibility and 
does an initial projection on it. Fire-8 is a medium priority 
fire needing a minimum of 2 bulldozers to start immediately. 

As shown in figure 9, Agent-2 first tries a simple loan 
request since it does not have any idle bulldozers. Agent-1 
also has no idle bulldozers. However, it does have a lower 
goal. So, Agent-1 constructs an alternative suggestion where 
it delays the bulldozer start time so it can complete its lower 
goal first. It computes when it will have two bulldozers avail- 
able. Agent-2 receives the alternative from Agent-1. Agent-2 
evaluates the alternative and finds that it is not acceptable 
given the build time constraints of fire-8's projection. 

Agent-2 finds a base schedule using its own goals and 
the alternative suggestion. It can release one bulldozer 
in 30 minutes from fire-7 and one from fire-6 in 1 hour. 
Hence, a schedule of 1 bulldozer in 30 minutes and 2 follow- 
up bulldozers in 1 hour is constructed. This schedule is 
characterized as delaying the attack start time. The schedule 
is evaluated; it will not work. Agent-2 pinpoints the problem: 
in order to contain the fire head, 2 bulldozers need to start 
within 30 minutes. This modification is characterized as 
starting with fewer bulldozers since a search will now be 
conducted to release bulldozers as soon as possible. Agent-2 
sends a modified request to Agent-1. 

Agent-1 then receives the modified request asking for 1 
bulldozer within 30 minutes. It searches for a way to release 
a bulldozer in 30 minutes. For example, it evaluates taking 
a bulldozer off fire-3 in 30 minutes and then putting B-3 on 
fire-3 in 1 hour. If Agent-1 can free up a bulldozer within 30 
minutes, the agents have found a solution. However, suppose 
that Agent-1 can not free a bulldozer in 30 minutes. Agent-1 
then sends back a negative reply to Agent-2. 

Agent-2 then re-examines its own goals, searching to 
release a bulldozer within 30 minutes. B6 has already been 
reserved. Hence, the only goal to search is fire-6. It knows 

that the earliest time a bulldozer can be released from fire-6 
is 1 hour. So, Agent-2 checks if it can temporarily take 
a bulldozer off fire-6, possibly requiring Agent-1 to send 
a bulldozer at a later time. Agent-2 may send a modified 
request to Agent-1 for a bulldozer at a later time so that 
it could complete fire-6 according to its projection. If this 
option is not possible or if Agent-1 can not meet a modified 
request, the agents enter into phase 2 of negotiation. 

In phase 2, Agent-2 looks at its characterization check list. 
Both characterizations have been checked off. Phase 3 of 
negotiation is entered. At this point, the agents know a fire's 
priority must be raised. The agents find that fire-4 is the 
lowest priority class fire in the system as shown in figure 10. 
One bulldozer will be released from fire-4 and can be assigned 
to fire-8. Since Agent-2 can release B6 in 30 minutes, fire-8 
can be contained within a medium priority class. Thus, the 
agents decide to delay fighting fire-4 because it represents the 
lowest loss. 

Agent-1 is responsible for fire-4 and must plan a fire attack. 
Agent-1 computes a projection on fire-4, letting it reach the 
next priority, medium-low. Agent-1 must get a starting point 
to construct a base schedule. 1 bulldozer will be released 
in 1.5 hours from fire-3. It asks Agent-2 the earliest time it 
can loan a bulldozer. Agent-2 can release a bulldozer in 1 
hour from fire-6. Agent-1 then computes a base schedule of 
1 bulldozer in 1 hour and 1 bulldozer in 1.5 hours and enters 
back into phase 1. Note that the attack start time is considered 
to be 1 hour from the current time. Agent-1 evaluates the 
schedule. It is not a solution and Agent-1 pinpoints the 
problem: a small amount of fireline can not be built within 
the time constraints. It computes 1.5 hours as the latest time 
that a bulldozer must be brought to the fire. Agent-1 sends 
a modified request to Agent-2 asking for 1 bulldozer within 
1.5 hours. Agent-2 searches its current goals and finds it can 
give back B3 in 1.5 hours. Hence, it sends a positive reply. 
Figure 11 shows the final allocation schedules. 
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Agent-1: Current Goals: [Fire-3, medium, (Bl, B2) allocated for complete time] 
[Fire-4, low, (B3) allocated for complete time] 

Idle Bulldozers: 0 

Agent-2: Current Goals: [Fire-6, medium, (B4, B5) allocated for complete time] 
[Fire-7, medium-low, (B6) allocated for complete time] 

Idle Bulldozers: 0 
New Fire: Fire-8 

Agent-2's Projection on Fire-8: 
Medium priority; Requires 2 bulldozers to start immediately. 

Figure 8: Starting Situation of Scenario 

Agent-2: Sends Initial Request to Agent-1: (2 bulldozers, medium, now) 

Agent-1: Receives Request. 
No idle bulldozers but lower priority goal - determine when 2 bulldozers free: 

1 bulldozer in 1 hour from fire-4; 1 bulldozer in 1.5 hours from fire-3. 
REPLY: Alternative (trying to relax start time constraint): 

1 bulldozer in 1 hour, follow-up bulldozer in 1.5 hours. 

Agent-2: Receives Alternative Reply. (Ento-overconstrained situation exists) 
Evaluates alternative schedule (1 bulldozer in 1 hour, follow-up in 1.5 hours) 

Fire-8 will not be contained within medium priority. 
Examines own goals: B-6 will be free in 30 minutes from Fire-7. 

Can take a bulldozer off Fire-6 in 1 hour. 
Best schedule using alternative suggestion: 

1 bulldozer in 30 minutes and 2 follow-up bulldozers in 1 hour. 
Characterize schedule as delayed start time. 

Will schedule work? No - Pinpoint the Problem. 
Need 2 bulldozers to start within in 30 minutes in order to contain fire head. 
Characterize modification as starting with fewer bulldozers. 

REPLY: Modified Request: (1 bulldozer, medium, 30 minutes hence) 
Reservation: None; Comment: Trying to contain fire head. 

Figure 9: Initial Negotiation of Scenario - Phase 1 

Agent-2: Extro-overconstrained Resource Situation - Must delay fire: 
Lowest goal: medium-low; Release one bulldozer. 
Send information message: Must delay fire - 

My lowest loss - medium-low priority and 1 bulldozer released. 

Agent-1: Receives Message and examines its goals. 
Replies: My lowest loss - low priority and 1 bulldozer released. 

Agent-2: Receives Reply - Constructs schedule for Fire-8. 
1 bulldozer now with follow-up in 30 minutes (from Fire-7). 
Fire-8 can be contained within medium priority. 
Send message to Agent-1: Delay your low goal. 

Figure 10: The Decision to Delay a Fire - Phase 3 
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Fire-3: (Medium Priority) - Bl allocated for complete time; 
B2 is on attack and leaves in 1.5 hours to go to Fire-4. 

Fire-4: (Medium-low Priority) - B4 starts in 1 hour; B2 and B3 start in 1.5 hours. 

Fire-6: (Medium Priority) - B4 is on attack and leaves in 1 hour to go to Fire-4; 
B5 allocated complete time. 

Fire-7: (Medium-low Priority) - B6 completes attack in 30 minutes and then goes to Fire-8. 

Fire-8: (Medium Priority) - B3 is on attack and leaves in 1.5 hours to go to Fire-4; 
B6 will start in 30 minutes and complete attack. 

Figure 11: Conclusion of Scenario 

This scenario shows how the distributed search is conducted 
in a typical situation of the domain. Normally, if the first base 
schedule constructed on a fire was characterized as starting 
with fewer bulldozers than required, phase 2 would have led 
back into negotiation with a base schedule of delayed start 
time. The idle bulldozers that would have been put on the 
new fire could be added to other goals to release bulldozers 
on those goals sooner than would otherwise be possible. 
However, when the first base schedule delayed start time, the 
agents usually must enter phase 3 of the negotiation and delay 
a goal. It is typically difficult to release bulldozers temporarily 
from a fire fighting attack because there is an emphasis on 
fighting fires with a minimal number of bulldozers. 

6 Related Work 
Much of the work on negotiation uses a central mediator. 
For example, Sycara's work (tSycara, 1989]) on negotiation 
uses a central mediator to construct compromises for agents 
to evaluate. In our work, compromise construction is dis- 
tributed. Sathi and Fox ([Sathi and Fox, 1989]) also found it 
necessary to use mediated negotiation when there were more 
than two agents. However, it can not always be assumed that 
there is a central mediator or global database. There may 
be too much information to gather in one place. In addition, 
a central mediator creates a bottleneck and single point of 
failure in the system. 

Multistage negotiation is similar to our approach ([Conry 
etal., 1988] and [Kuwabara and Lesser, 1989]). In multistage 
negotiation there is no central mediator. Agents exchange 
information to detect conflicts and overconstrained resource 
situations. In multistage negotiation, agents only give a 
positive or negative reply to a request whereas we allow 
another agent to make an alternative suggestion. In addition, 
we have a strong sense of optimization that is not present in 
this approach. 

7 Conclusion 

The basic negotiation framework has arisen out of studies 
on the fire fighting domain. The framework is suited for 
real time domains where problem solving is ongoing and no 
global viewpoint exists. Recently, a simplified version of the 
framework has been implemented in multi-fireboss Phoenix. 
We conclude with initial results and a plan of future work. 

7.1   Preliminary Results 

To begin testing our ideas, we have implemented a complete, 
though simplified, version of the negotiation framework. In 
this version, the search in phase 1 is incomplete; not all of 
the operators are implemented. The implemented operators 
are releasing bulldozers from attacks (i.e. shortening the 
bulldozer assignment time), delaying the start time of fire 
attacks, and creating bulldozer schedules with varying time 
allocations. Currently, there is no search to temporarily 
remove bulldozers from attacks. In addition, no conditions 
are placed on bulldozer loans. In phase 3, only one fire attack 
can be delayed (i.e. there is no comparison between delaying 
several lower goals over the new fire attack). 

Phoenix simulates "real" time. Fires of medium-low to 
medium-high priority take about a day to fight. Furthermore, 
the negotiation during an overconstrained resource situation 
takes anywhere from 15 minutes to two hours depending on 
the level of activity in the system. Communication in the 
system is similar to sending telegrams rather than making 
telephone calls. Hence, there is a time lag between sending 
and receiving a message. 

The following examples show the negotiation dialogue 
between the two agents, disfireboss-1 and disfireboss-2. 
Disfireboss-1 owns bulldozer-1, bulldozer-2, and bulldozer-3. 
Disfireboss-2 owns bulldozer-4, bulldozer-5, and bulldozer-6. 
Each agent owns 2 watchtowers. When an agent specifies 
that a new fire has been spotted, one of its watchtowers 
has sent assessment information to the agent about that fire. 
In the traces, schedules are lists of elements of the form 
(bulldozer number, start time, end time). Evaluation of a 
schedule compares the amount of fireline that will be built by 
the schedule to the needed amount of fireline specified in the 
fire's projection. 

The first trace is an example of negotiation when a solution 
is reached in the first phase. Figure 12 shows the initial activity 
of the example. Disfireboss-1 spots a medium priority fire, 
actual-fire. 17 and assigns 2 of its bulldozers, bulldozer-3 and 
bulldozer-1, to the attack. Disfireboss-2 spots a medium- 
low fire, actual-fire. 16, and allocates bulldozer-5 to fight it. 
Disfireboss-2 then spots another fire, actual-fire. 18. This 
fire is of medium priority with bulldozer-4 and bulldozer-6 
allocated to fight it. Hence, Disfireboss-1 has 1 idle bulldozer 
(bulldozer-2) and Disfireboss-2 has no idle bulldozers. 

Figure   13   shows  the  continuation  of the  example. 

153 



TIME 
13:04 

13:06 

13:08 

13:09 

13:11 

16:40 

16:44 

16:46 

DISFIREBOSS-1 
New fire - actual-fire. 17 spotted 
Priority: medium 

Computing Projection for actual-fire. 17 
End time: 8/2 14:06 (93982) 
Needed Bulldozers: 2 
Can fight actual-fire. 17 with my resources 

Adding agent-goal.13 for actual-fire.17 
Bulldozers (bulldozer-3 bulldozer-1) 
Start time 4257; end-time 93982 

DISFTREBOSS-2 

New fire - actual-fire. 16 spotted 
Priority: medium-low 

Computing Projection for actual-fire. 16 
End time: 8/2 14:07 (94045) 
Needed Bulldozers: 1 
Can fight actual-fire.16 with my resources 
Adding agent-goal. 12 for actual-fire.16 
Bulldozers (bulldozer-5) 
Start time 4257; end-time 94045 
New fire - actual-fire. 18 spotted 
Priority: medium 
Computing Projection for actual-fire. 18 
End time: 8/2 17:41 (106913) 
Needed Bulldozers: 2 
Can fight actual-fire. 18 with my resources 
Adding agent-goal. 14 for actual-fire. 18 
Bulldozers (bulldozer-4 bulldozer-6) 
Start time 17175; end-time 106913 

Disfireboss-1: Current Goals: 
[Actual-fire.17, medium, (Bulldozer-3, Bulldozer-1) allocated for complete time] 
Idle Bulldozers: 1 

Disfireboss-2: Current Goals: 
[Actual-fire.16, medium-low, (Bulldozer-5) allocated for complete time] 
[Actual-fire. 18, medium, (Bulldozer-4, Bulldozer-6) allocated for complete time] 
Idle Bulldozers: 0 

Figure 12: Example Trace - Solution in Phase I - Starting Situation 
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TIME 
22:16 

22:22 

22:23 

22:29 

22:30 

22:31 
22:31 
22:31 

DISFTREBOSS-1 
New fire - actual-fire. 19 spotted 
Priority: medium-high 
Computing Projection for actual-fire. 19 
End time: 8/3 7:38(157121) 
Needed Bulldozers: 2 
Not enough resources for actual-fire. 19 
Trying resource loan 

Received Alternative from disfireboss-2 
Schedule will not work 
Getting earliest time bulldozers released 
Bulldozers (bulldozer-1 bulldozer-3) 
Time available 93982 
Evaluating Schedule 
((1 37343 124645) (1 94045 124645) 
(2 93982 157121)) 
Schedule works - SOLUTION 
Using the following of my resources ... 
bulldozer-1: start 93982; end 157121 
bulldozer-3: start 93982; end 157121 
bulldozer-2 allocated for complete time 

DISFIREBOSS-2 

Received Request for 
1 bulldozers; medium-high priority 
Alternative - lower priority goal 
Delay Start time to 94045 

Received Alternative Accepted Message 
The loan... 
bulldozer-5: start 94045; end 124645 

Figure 13: Example Trace - Solution in Phase I - continued 

Disfireboss-1 spots a medium-high priority fire, actual-fire.19. 
This fire needs 2 bulldozers to start immediately. However, 
Disfireboss-1 has only 1 idle bulldozer. So, it sends an initial 
request to Disfireboss-2 for 1 bulldozer. Disfireboss-2 does 
not have any idle bulldozers, however, it has a lower priority 
goal. So, it tries to delay the start time of the bulldozer 
loan. Disfireboss-1 receives the alternative and creates a 
schedule of one bulldozer (the idle one) allocated for the 
completed time and another bulldozer starting at time 94045. 
The schedule is evaluated and found to be inadequate. So, 
Disfireboss-1 searches its own goals to find when it will have 
bulldozers available. Its only goal, agent-goal.13 for actual- 
fire.17, is searched. The two bulldozers from agent-goal.13 
will complete the fire attack on actual-fire.17 at time 93982. 
The current schedule for the new fire is amended to include 
the allocation of the two bulldozers from agent-goal.13 at 
time 93982. This new schedule is found to be acceptable and 
hence, a solution for the new fire attack has been found. 

The example shows a typical scenario when a solution is 
found in phase 1. 4 out of 6 bulldozers are allocated at 
some time to the new fire, actual-fire.19. Usually when a 
solution is found in phase 1, several extra bulldozers need to 
be allocated to the attack in order to make up for delaying the 
attack start time or starting the attack with fewer bulldozers. 
In trying to minimize loss, the evaluation only takes into 
account whether the needed fireline will be built. However, a 
more sophisticated evaluation would include a risk factor for 
the future. This type of evaluation may find that having so 
many bulldozers in one area is too risky and thus, may find 

the solution of the example too costly to implement. 

The second trace shows the negotiation when the agents 
must delay a fire to find a solution. Figure 14 shows the 
starting situation. Disfireboss-1 spots a medium priority fire, 
actual-fire.5 and allocates 2 of its bulldozers (bulldozer-2 and 
bulldozer-1) to the fire attack. Disfireboss-2 spots a medium 
priority fire, actual-fire.6 and allocates 2 of its bulldozers 
(bulldozer-5 and bulldozer-4) to the attack. Then Disfireboss- 
1 spots another fire. This fire, actual-fire.7, is of medium-low 
priority and needs 2 bulldozers for the attack plan. Since 
Disfireboss-1 has only 1 idle bulldozer (bulldozer-3), it sends 
a request for 1 bulldozer to Disfireboss-2. Disfireboss-2 
can honor the request since it has 1 idle bulldozer. Hence, 
bulldozer-3 and bulldozer-6 are allocated to actual-fire.7. At 
this point, all bulldozers in the system are being utilized. 

The example continues when Disfireboss-2 spots a 
medium-high priority fire, actual-fire.8. Figure 15 shows 
the search of phase 1. Disfireboss-2 sends a request of 2 
bulldozers to Disfireboss-1. Disfireboss-1 has no idle bull- 
dozers but it does have a lower priority goal (actual-ftre.7). 
So, it tries to delay the start time of the bulldozer loan. 
However, Disfireboss-2 finds the alternative to be inadequate. 
Disfireboss-2 then finds that it can release the bulldozers from 
actual-fire.8 at time 95775. But the amended schedule is not 
a solution. So, Disfireboss-2 sends a modified request, trying 
to make the current schedule a solution by adding a bulldozer 
to the attack at time 77807. However, Disfireboss-1 can not 
honor the request since a bulldozer can not be released in time 
from actual-fire.5 and the bulldozers assigned to actual-fire.7 
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TIME 
13:04 

13:10 

13:13 

13:35 

13:38 

13:39 
13:40 

13:41 
14:35 

14:39 
14:40 

15:27 

15:29 
15:34 
15:35 

DISFTREBOSS-1 
New fire - actual-fire.5 spotted 
Priority: medium 
Computing Projection for actual-fire.5 
End time: 8/2 14:07 (94072) 
Needed Bulldozers: 2 
Can fight actual-fire.5 with my resources 
Adding agent-goal.5 for actual-fire.5 
Bulldozers (bulldozer-2 bulldozer-1) 
Start time 4404; end-time 94072 

New fire - actual-fire.7 spotted 
Priority: medium-low 
Computing Projection for actual-fire.7 
End time: 8/2 15:37(99438) 
Needed Bulldozers: 2 
Not enough resources for actual-fire.7 
Trying resource loan 

Received POSITIVE from disfireboss-2 

Now in charge of bulldozer-6 
Adding agent-goal.7 for actual-fire.7 
Bulldozers (bulldozer-6 bulldozer-3) 
Start time 12915; end-time 99438 

DISFIREBOSS-2 

New fire - actual-fire.6 spotted 
Priority: medium 
Computing Projection for actual-fire.6 
End time: 8/2 14:36 (95775) 
Needed Bulldozers: 2 
Can fight actual-fire.6 with my resources 
Adding agent-goal.6 for actual-fire.6 
Bulldozers (bulldozer-5 bulldozer-4) 
Start time 6044; end-time 95775 

Received Request for 
1 bulldozers; medium-low priority 
Can honor request 

Loaning bulldozer bulldozer-6 

DisfireboSS-1: Current Goals: 
[Actual-fire.5, medium, (Bulldozer-2, Bulldozer-1) allocated for complete time] 
[Actual-fire.7, medium-low, (Bulldozer-6 [on loan], Bulldozer-3) allocated for complete time] 
Idle Bulldozers: 0 

Disfireboss-2: Current Goals: 
[Actual-fire.6, medium, (Bulldozer-5, Bulldozer-4) allocated for complete time] 
Idle Bulldozers: 0 

Figure 14: Example Trace - Delaying a Fire - Starting Situation 

156 



TIME DISFIREBOSS-1 DISFIREBOSS-2 
17:40 New fire - actual-fire.8 spotted 

Priority: medium-high 
17:44 Computing Projection for actual-fire.8 

End time: 8/3 3:01 (140493) 
Needed Bulldozers: 2 

17:45 Not enough resources for actual-fire.8 
Trying resource loan 

17:48 Received Request for 
2 bulldozers; medium-high priority 
Alternative - lower priority goal 
Delay Start time to 94072 

17:49 Received Alternative from disfireboss-1 
Schedule will not work 

17:50 Getting earliest time bulldozers released 
Bulldozers (bulldozer-4 bulldozer-5) 
Time available 95775 
Evaluating Schedule 
((2 94072 97240) (2 95775 140493)) 
Schedule inadequate - Planning modified request 

17:51 Needed build time 23740.602 to make schedule a solution 
Modified Request: 1 bulldozers; start-time 77807 
Characterized as Delaying the start time 

17:55 Received Modified Request 
17:56 Sending reply of negative 
17:57 Received NEGATIVE on modified request 
17:58 ENTERING Phase II 
17:59 Phase 2 

Trying to create base schedule 
starting with fewer bulldozers 
Can release 0 bulldozers now 

18:01 Received Enter Phase n message - 
fewer characterization 

18:02 Can release 0 bulldozers now 
18:03 Entering Phase III 

Figure 15: Example Trace - Delaying a Fire - Phase 1 and 2 
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TIME DISFIREBOSS-1 DISFIREBOSS-2 
18:05 Received Enter Phase III message 
18:09 Neighbor lowest priority: medium-low; 

Bulldozers freed: 2 
My lowest priority: medium; 
Bulldozers freed: 2 
Bulldozers I have available 0 
Delay neighbor lower goal 

18:18 Loaning bulldozer bulldozer-3 Back in charge of bulldozer-6 
Returning bulldozer bulldozer-6 Now in charge of bulldozer-3 

18:19 Deleting goal agent-goal.7 Adding agent-goal.8 for actual-fire.8 
Updated goal list: (agent-goal.5) Bulldozers (bulldozer-3 bulldozer-6) 

Start time 22736; end-time 140493 
18:26 Computing Projection for actual-ftre.7 

End time: 8/3 21:31 (207112) 
Needed Bulldozers: 1 

18:27 Not enough resources for actual-fire.7 
Trying resource loan 

18:48 Received Request for 
1 bulldozers; medium priority 
Negative reply to request 

19:09 Received DENIAL from disfireboss-2 
19:10 Getting earliest time bulldozers released 
19:11 Bulldozers (bulldozer-1 bulldozer-2) 

Time available 94072 
Evaluating Schedule 
((2 94072 207112)) 
Schedule works - SOLUTION 
Using the following of my resources ... 
bulldozer-1: start 94072; end 207112 
bulldozer-2: start 94072; end 207112 

Figure 16: Example Trace - Delaying a Fire - conclusion 
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are already reserved for the new fire attack. 
Disfireboss-2 receives the negative reply from Disfireboss- 

1. Since the bulldozers from its only goal have already been 
reserved, the agents enter into phase 2. The characterization 
of starting with fewer bulldozers has not been checked off. 
Hence, the agents search for a way to release bulldozers 
immediately. However, neither agent can release a bulldozer, 
so, phase 3 is entered. 

Figure 16 shows the conclusion of the example. The 
agents have entered phase 3. They find that delaying the 
lowest goal in the system, agent-goal.7 (actual-fire.7), will 
enable Disfireboss-2 to contain the new fire, actual-fire.8, 
within a medium-high priority class. The bulldozers assigned 
to acutal-fire.7 are re-allocated to the new fire. Disfireboss- 
1 must then find a schedule for the delayed fire attack on 
actual-fire.7. 

Disfireboss-1 computes a delayed projection on actual- 
fire.7, allowing it to reach medium priority. Disfireboss-1 
finds a solution to the delayed fire attack within its own goals. 
By using 2 bulldozers instead of 1, the attack start time can 
be delayed long enough so that bulldozer-1 and bulldozer-2 
can finish the fire attack on actual-fire.7. 

Note that the first example takes only a quarter of an 
hour while the second example takes two hours. The time 
difference relates to the length of negotiation as well as 
current activity in the system. Clearly, the second example 
involves much more negotiation than the first example. In the 
first trace, most of the computations for the fire attacks have 
been performed before the negotiation starts. In the second 
example, the computations for the attacks are being performed 
concurrently with the negotiation. The current projections 
take into account the negotiation time by assuming a worst 
case scenario. A more intelligent agent would be aware of 
the time factors and adjust the projections accordingly. 

In the second example, a solution was found after only one 
fire attack was delayed. The number of iterations through 
the framework loop is dependent upon the degree to which 
the situation is overconstrained. In other words, the farther 
into the future bulldozers are assigned, the more fire attacks 
that will have to be delayed. The second example has a low 
degree of overconstrainment; initially, bulldozers have only 
been assigned to one fire attack. 

Before we can start evaluating and comparing negotiation 
strategies, a more complete search of phase 1 needs to be im- 
plemented. It is likely that lower cost solutions will be found 
once conditional loans have been included. Though the initial 
version is simplified, it has shown that the framework gives 
struture to the search process, coordinates communication, 
and provides a means to study decentralized negotiation. 

7.2   Future Work 

After we implement a more complete version of the frame- 
work, there our several directions are research can take. We 
can expand the basic framework. For instance, we can include 
an explicit model of time. Because Phoenix is a real time 
domain, the agents need to limit the amount of time spent 
negotiating and understand how the time limitations restrict 
the search process. In addition, the current characterization 
of the search process is a simple model. We feel that the 
characterization process is an important aspect of distributed 
search and a more complex model should be built. 

Alternatively, we could expand the two-agent model into 
a multi-agent model. The actual negotiation becomes quite 
complex and agents would, by necessity, have to be more 
sophisticated. For example, if an agent commits resources to 
one agent, it must not commit those same resources to another 
agent. Furthermore, finding alternatives that minimize the 
global loss may not be quite as clear as in the two agent 
model. 

In addition, the environment can be made more complex 
and thus, problem solving would be more difficult. For 
instance, bulldozers can be made to use fuel. Hence, agents 
would have to include time for bulldozers to get fuel in 
the allocation schedules. We can also add uncertainty into 
the environment. For example, watchtowers may not have 
perfect vision. Finally, environmental conditions can be made 
more realistic including such things as rain, wind shifts and 
soon. 

Multi-fireboss Phoenix is a rich domain for the study 
of cooperative planning. Our basic framework allows us 
to explore different negotiation strategies and evaluation 
functions. We can work in incrementally more difficult 
environments and configurations as we learn more about 
cooperative planning and decentralized negotiation. Thus, 
Phoenix provides an environment for the long term study of 
real-time distributed problem solving. 
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Abstract 

Past planning systems have generally focused 
on control structures capable of working in all 
domains (domain-independent planning) or on 
specific heuristics for a particular applied do- 
main (domain-dependent planning). An alter- 
nate approach is to abstract the kinds of goal 
and subgoal interactions that occur in some 
set of related problem domains, and develop 
planning techniques capable of performing rel- 
atively efficiently in all domains in which no 
other kinds of interactions occur. In this paper 
we will demonstrate this approach on a particu- 
lar formulation of multiple-goal planning prob- 
lems. 

In particular, we demonstrate that for cases 
where multiple-goal planning can be performed 
by generating individual separate plans for each 
goal independently and then optimizing the 
conjunction, we can define a set of limitations 
on the allowable interactions between goals 
that allow efficient planning to occur where 
the restrictions hold. We further argue that 
these restrictions are satisfied across a signif- 
icant class of planning domains. We present 
algorithms which are efficient for special cases 
of multiple-goal planning, propose a heuristic 
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search algorithm that performs well in a more 
general case, and describe a statistical study 
that demonstrates the efficiency of this search 
algorithm. 

1    Introduction 

One of the most widely used strategies in problem- 
solving is to decompose a complex problem into sev- 
eral simpler parts. This is particularly true in plan- 
ning, where a complicated goal is usually decomposed 
into two or more subgoals to solve. The reason for this 
is that decomposition tends to divide the exponent of 
an exponential problem, thus drastically reducing the 
total problem-solving effort. Korf [7], for example, has 
demonstrated that if the subgoals are independent, then 
solving each one in turn will divide both the base and 
the exponent of the complexity function by the number 
of subgoals. 

The major limitation of the above approach is that 
although it treats the goals as independent, this condi- 
tion does not really hold for most planning problems. 
Instead, the goals or subgoals may interact or conflict 
with each other.1 Unfortunately, it appears impossi- 
ble to achieve both efficiency and generality in handling 
goal/subgoal interactions. Domain-independent plan- 
ners ([12, 14, 9, 16, 2, 18]) attempt to handle inter- 
actions which can occur in many possible forms, and 
thus they sacrifice the gains in efficiency which might 
possibly be achieved if some of these forms were dis- 
allowed. Domain-dependent planners ([l, 6, 8, 4, 5, 
10]) can often do better at dealing with goal/subgoal 
interactions by imposing domain-dependent restrictions 
on the kinds of interactions that are allowed—but the re- 
strictions they use are often too restrictive for the plan- 
ners to be applicable to other domains. 

In this paper, we propose an approach which falls 
in between domain-dependent and domain-independent 
planning: to abstract the kinds of goal and subgoal in- 
teractions that occur in some set of related problem do- 
mains, and develop planning techniques capable of per- 
forming relatively efficiently in all domains in which no 

The most famous example of this is the "Sussman 
anomaly," in which solving one goal undoes the indepen- 
dently derived solution to the other. 
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other kinds of interactions occur. We will refer to this 
approach as limited-interaction planning. 

The restrictions which we impose on the goal interac- 
tions allow us:to develop relatively efficient techniques 
for solving multiple-goal planning problems by develop- 
ing separate plans for the individual goals, combining 
these plans to produce a naive plan for the conjoined 
goal, and performing optimizations to perform to yield 
a better combined plan. For example, consider the fol- 
lowing situation (based on [17]): 

John lives one mile from a bakery and one mile 
from a dairy. The two stores are 1.5 miles 
apart. John has two goals: to buy bread and 
to buy milk. 

The approach usually taken is to conjoin this into the 
single goal 

(GOAL JOHN 
(AND  (HAVE BREAD)   (HAVE MILK))) 

Suppose that we have developed separate plans for the 
two individual goals (drive to the dairy, buy milk, and 
come home; and drive to the bakery, buy bread, and 
come home). Taken together, these two plans will solve 
the conjoined goal; and the next step is to recognize that 
the "come home" step of the first plan can be merged 
with the "get there" step of the second, to produce a 
better plan. 

The restrictions required for our approach to be ap- 
plicable are limiting, but not as severely limiting as the 
domain-dependent heuristics used by many application- 
specific planners. Our goal has been to develop clear 
and precise restrictions which delineate a class of plan- 
ning problems broad enough to be useful and interesting, 
but "well-behaved" enough that planning may be done 
with a reasonable degree of efficiency. 

This paper presents one set of restrictions satisfying 
the above criteria, and argues that these restrictions 
are satisfied across a significant class of planning do- 
mains. It also discusses the complexity of the resul- 
tant planning problems, and demonstrates that limited- 
interaction multiple-goal planning can be performed ef- 
ficiently under these restrictions. 

2    Problem Statement , 
One example of this limited-interaction approach can be 
found in multiple goal planning problems. We consider 
a goal to be a collection of predicates describing some 
desired state of the world. A plan for that goal is a set 
of actions, together with a partial ordering on the order 
in which the actions must be performed,2 such that if the 
actions are performed in any order consistent with the 
ordering constraints, the goal will be achieved. Actions 
can have costs, and the cost of a plan is the sum of the 
costs of the actions. We assume that the plans for the 
individual goals have already been found, and we look 
at how to combine them into a "global plan". 

2In addition to the usual kind of partial ordering con- 
straint having the form "action a must be done before action 
fc," we also allow constraints specifying that two actions must, 
be performed at the same time. 

Depending on what kinds of interactions occur among 
the actions in the plans, it might or might not be possible 
for the plans to be combined. In this paper, we consider 
only the following kinds of interactions. 

1. Let A be a set of actions {ai,a.2, ■. -,an}. Then 
there may be a merged action m(A) capable of ac- 
complishing the effects of all actions in A, such that 
cost(m(yl)) < J2a€A c°st(a)- In ^is case we saY 
that an action-merging interaction occurs, and that 
the actions in A are mergeable. 
One way in which an action-merging interaction can 
occur is if the actions in A contain various sub- 
actions which cancel each other out, in which case 
the action m{A) would correspond to the set of ac- 
tions in A with these sub-actions removed. If the 
cost of each action is the sum of the costs of its sub- 
actions, then the cost of m(A) is clearly less than 
the sum of the costs of the actions in A. 
Note that even though a set of actions may be 
mergeable, it may not always be possible to merge 
that set of actions in a given plan. For example, 
suppose a and a' are mergeable, but in the plan P, 
a must precede b and b must precede a'. Then a 
and a' cannot be merged in P, because this would 
require 6 to precede itself. 

2. An action-precedence- interaction is an interaction 
which requires that an action a in some plan Pi 
must occur before an action b in some other plan 
Pj. This can occur, for example, if b removes one 
of the preconditions necessary for a, and there is no 
other action which can be inserted after b to restore 
this precondition. 
Much previous work in planning has dealt with 
deleted-condition interactions, which are not pre- 
cisely the same as actino-precedence interactions. 
However, there is a significant class of problems 
where action-precedence interactions are the only 
form of deleted-condition interactions. This class in- 
cludes certain kinds of scheduling, database query- 
optimization, and automated manufacturing prob- 
lems. Examples appear later in this section. 

3. Plans for different goals may sometimes contain 
some of the same actions. The identical-action in- 
teraction occurs when an action.in one plan must 
be identical to an action in one of the other plans. 

4. Sometimes, two different actions must occur at 
the same time. We call such an interaction a 
simultaneous-action interaction. This is different 
from the identical-action interaction, because these 
simultaneous actions are not identical. An exam- 
ple would be two robotic hands working together in 
order to pick up an object. 

The only kinds of interactions which might make 
it impossible to combine a set of plans into a global 
plan are the action-precedence, identical-action, and 
simultaneous-action interactions. The problem of find- 
ing out whether or not a set of plans can be combined 
into a global plan we call the multiple-goal plan existence 
problem. 

161 



As an added complication, each goal Gi may have sev- 
eral alternate plans capable of achieving it, and thus 
there may be several different possible identities for the 
global plan for G. The least costly plan for d is not 
necessarily part of the least costly global plan, because 
some more costly plan for Gi may be mergeable in a bet- 
ter way with the plans for the other goals. We define the 
multiple-goal plan optimization problem to be the prob- 
lem of choosing which plan to use for each goal, and 
which actions to merge in these plans, so as to produce 
the least costly global plan for G. 

Problems involving optimizing multiple-goal plans oc- 
cur in a number of problem domains, such as automated 
manufacturing factory scheduling, and database query 
optimization. In these domains, multiple goals must be 
achieved within the context of a set of constraints (dead- 
lines, machining requirements, etc.) The general class 
of all such problems clearly will not fit within the con- 
fines of the restrictions specified in this paper (for exam- 
ple, we have not yet extended our approach to deal with 
scheduling deadlines), but significant and useful classes 
of problems can be found which satisfy these restrictions. 
Several examples are given below. 

Example 1. Consider again the shopping example 
given in Section 1, in which John has two goals: 
(HAVE BREAD) and (HAVE MILK). To achieve the 
(HAVE BREAD) goal, a plan could be: 

(GO HOME BAKERY), 
(BUY BREAD), 
(GO BAKERY HOME) 

To achieve the (HAVE MILK) goal, a plan could be: 

(GO  HOME DAIRY), 
(BUY MILK), 
(GO DAIRY HOME). 

Suppose it takes less time to go between the bakery 
and the dairy than it does to go home from the 
bakery and then go from home to the dairy. Then 
the action (GO BAKERY HOME) in the first plan can 
be merged with the action (GO HOME DAIRY) in the 
second plan, resulting in a cheaper overall plan: 

(GO HOME BAKERY), 
(BUY BREAD), 
(GO BAKERY DAIRY), 
(BUY MILK), 
(GO DAIRY HOME). 

Example 2. Consider the automated manufacturing 
problem of drilling holes in a metal block. Sev- 
eral different kinds of hole-creation operations are 
available (twist-drilling, spade-drilling, gun-drilling, 
etc.), as well as several different kinds of hole- 
improvement operations (reaming, boring, grinding, 
etc.). Each time one switches to a different kind of 
operation or to a hole of a different diameter, one 
must put a different cutting tool into the drill. Sup- 
pose it is possible to order the operations so that 
one can work on holes of the same diameter at the 
same time using the same operation. Then these 
operations can be merged by omitting the task of 
changing the cutting tool.   This and several other 

similar manufacturing problems are of practical sig- 
nificance (see [3, 5]) and, in fact, much of the work in 
this paper derives from our ongoing work in develop- 
ing a computer system for solving such problems [10, 
111 
Suppose hole h\ can be made by the plan 

Pi: spade-drill h\, then bore h\\ 

and hole \i2 can be made by either of the plans 

TV twist-drill /i2, then bore hi\ 
P'2: spade-drill /*2, then bore /12; 

with cost(P2) < cos^Pj). If ^1 and /»2 have differ- 
ent diameters, then the least costly global plan will 
be to combine P\ and P2. However, if they have 
the same diameter, then a less costly global plan 
can be found by combining Pi and P'2, merging the 
two spade-drilling operations, and merging the two 
boring operations. 

Other examples include the problem of finding a 
minimum-time schedule for satisfying some set of or- 
ders for products to be produced in a job shop, and 
the problem of multiple-query optimization in database 
systems([l3]). These examples are discussed in more de- 
tail in [19]. 

3    Solving the Problem 

3.1     One Plan for Each Goal 

Many planning systems stop once they have found a sin- 
gle plan for each goal, without trying to find other plans 
as well. When there is only one plan for each goal, the 
multiple-goal plan existence problem is easy to solve. Let 
S be a set of plans containing one plan for each goal. 
Unless the interactions prevent the plans in S from be- 
ing merged into a global plan, one global plan is just 
the set of individual plans in S, with additional ordering 
constraints imposed upon the actions in these plans in 
order to handle the interactions. This combined plan is 
called combine(5), and we have developed an algorithm 
to produce it in time 0(n3), where n is the total number 
of actions in the plans (see [19]). 

The plan combine(S') is not necessarily optimal—and 
even when there is only one plan available for each goal, 
the multiple-goal plan optimization problem is NP-hard 
(see [19]). But to make the problem easier to solve, we 
can impose restrictions on how the goals can interact 
with each other. 

Restriction 1. If S is a set of plans, then the set of 
all actions in S may be partitioned into equivalence 
classes of actions E\, E?, ■ ■ ■, Ep, such that for ev- 
ery set of actions A, the actions in A are merge- 
able if and only if they are in the same equivalence 
class. We call these equivalence classes mergeabilily 
classes. 

Restriction 2. If combine(5) exists, then it defines a 
partial order over the mergeability classes defined 
in Restriction 1; i.e., if P,- and Ej are two distinct 
mergeability classes and if combine(5) requires that 
some action in P,- occur before some action in Ej, 
then combine(5) cannot require that some action in 
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Ej occur before some action in E{. (This does not 
rule out the possibility of an action in Ei occurring 
immediately before another action in Ei\ in such a 
case, the two actions can be merged.) 

Restriction 1 is reasonable for a number of problems 
(for example, it is already satisfied in the Examples 1 
and 2). Restriction 2 is more limiting in general, but 
it still allows a number of important problems to be in- 
cluded. For instance, Restriction 2 is trivially satisfied 
in Example 1 since there is only one possible merge. In 
Example 2 it is satisfied in a more interesting way, since 
there exists a common sense ordering of the machining 
operations. 

We have designed an algorithm for finding a least 
costly plan, with a worst case time complexity of 0(n3) 
(see [19]), where n is the total number of actions in the 
plans. 

3.2     More than One Plan for Each Goal 

For some multi-goal planning problems, it is reasonable 
to expect that more than one plan may be found for each 
goal. (For example, this is done by the SIPS planning 
system for the manufacturing problem discussed in Ex- 
ample 2 [lO]). Finding more than one plan for each goal 
is more complex computationally than finding just one 
plan for each goal, but it is useful because it can lead to 
better global plans. 

3.2.1     A Heuristic Algorithm with Multiple 
Plans per Goal 

If more than one plan is available for each G;, then 
there may be several different possible identities for the 
set of plans S = {P\,Pi, ■ ■ ■, Pg}, and it may be neces- 
sary to try several different possibilities for S in order 
to find one for which combine(S) exists. This means 
that for this problem, the multiple-goal plan existence 
and optimization problems are both NP-hard3. Here we 
present a heuristic approach for solving these problems, 
which uses a best-first branch and bound algorithm to 
search through the space of all possibilities for S. The 
details of this algorithm are described in [19]. 

Suppose that we are given the following: (1) for each 
goal d, a set of plans T; containing one or more plans for 
d, and (2) a list of the interactions among the actions 
in all of the plans. In the search, the state space is a 
tree. Each state is a set of plans; it contains one plan 
for each of the first i goals for some i. The initial state 
is the empty set (i.e., 7 = 0). If S is a state containing 
plans for the goals Gi, G2,..., Gi, then an immediate 
successor of 5 is any set S U {P} such that P is a plan 
for Gi+i. A goal state is any state in which plans have 
been chosen for all of the goals G\, G2, ■ ■ ■, Gg. The cost 
of a state 5 is the cost of the plan obtained by applying 
to S the merging algorithm for one plan per goal; i.e., 

cost (5") = cost(merge(combine(5'))). 

The search algorithm is a best-first branch-and-bound 
search using a lower bound function L to order the mem- 
bers of the list of alternatives being considered. If L(S) is 

a lower bound on the costs of all successors of S that are 
goal states, then the algorithm is guaranteed to return 
the optimal solution. We now discuss various possible 
functions to use for L. To do this, we temporarily as- 
sume the following property: that merging plans for two 
different goals always results in a plan at least as expen- 
sive as either of the two original plans. In other words, 
if P and Q are plans for two distinct goals, then 

cost(merge(combine(P, Q))) 
> max(cost(merge(P)), cost(merge(Q))). (1) 

In [19], we discuss what happens when this property is 
not satisfied. 

If Eq. (1) is satisfied, then clearly L0(S) = cost(S) is 
a lower bound on the cost of any successor of S (this 
would correspond to using h = 0 in the A* search al- 
gorithm). However, a better lower bound can be found 
as follows. We associate with each state S some sets 
Hi(S),H2(S),.. .,Hg(S), which are computed as fol- 
lows. For the initial state (5 = 0), for j = 1,2,..., g, 

Hj(S) = {all actions in P\P is a plan for Gj}.     (2) 

Let S be any state at level i — 1, and let S' be the state 
formed from S by including a plan Pi for the goal G,\ 
Then, for j = i + 1,..., g, 

Hj(S') = {Q'\QeHj(S)}, (3) 

3However, polynomial-time solutions do exist for several 
special cases [19]. 

where Q' is Q minus each action that falls into the same 
mergeability class as some action in P;. Thus each mem- 
ber of Hj(S') is the set of all actions a in some plan for 
Gj such that a cannot be merged with any action in S'. 

If Hi(S) and Hj(S) are as defined in Eqs. (2) and 
(3), then we define them to be strongly connected if for 
some s € Hi(S) and q 6 Hj(S), s and q contain some 
actions that are mergeable. H{(S) and Hj(S) are con- 
nected if they are strongly connected, or if there is a 
set Hk(S) such that P;(S) is connected to Hk(S) and 
Hk(S) is strongly connected to Hj(S). Connectedness is 
an equivalence relation, so let Ci(S), C^S),..., be the 
equivalence classes it induces over the set {Hj(S')\j = 
i + 1,.. . ,<?}• We refer to these equivalence classes as 
connectedness classes. 

Suppose S" is an intermediate state during the search, 
at level i of the search tree. For each connectedness class 
Ci(S'), let 

Lsi(S') 
= max{min{cost(Q) | Q e Hj(S')} | Hj(S') G G:(5')}, 

(4) 
where the min of an empty set is taken to be 0. The new 
lower-bound function is defined to be 

r 

L3(S') = cost(merge(combine(S"))) + J2 Lzi(S')-   (5) 
i = l 

It can easily be shown that L3 is admissible. 
Now we consider the computational complexity for 

evaluating L3. Suppose that state 5" was formed 
by adding some plan Pi to S. The sets Hj{S') can 
be obtained according to Eq. (3). Since Hi(S') and 
Hj(S') are subsets of Hi(S) and Hj(S), respectively, 
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Hi(S') and Hj(S') cannot be connected unless H{(S) 
and Hj(S) are connected. Thus the connectedness 
classes Ci(S'),C2(S'),..., can be computed by start- 
ing splitting Ci(S),C?(S),..., into subclasses. Let h = 
ma,x(\Hj\), v = max(\V\), and u = max(|C,-|), where 
V € Hj, Hj G d, i = 1,..., r, . Then computing L3 for 
state S' takes time 0(r(u3(hv)2 + A|P,-|)), where Pi is 
the plan newly included into 5'. 

3.2.2    Experimental Results with Multiple 
Plans per Goal 

In the worst case, the search algorithm takes expo- 
nential time. Since the multiple-goal plan optimization 
problem is NP-hard, this is not surprising. What would 
be more interesting is how well the search algorithm does 
on the average. Since it is hard to characterize what the 
"average case" is, we restricted ourselves to doing empir- 
ical performance evaluation on a class of problems that 
seemed to us to be "reasonable." 

We conducted experiments with the algorithm for 
planning in the automated manufacturing domain. The 
problem to be solved was to find a least-cost plan for 
making several holes in a piece of metal stock, as de- 
scribed in Example 2. For this experiment, we ran- 
domly generated specifications for 100 machined holes, 
randomly varying various hole characteristics such as 
depth, diameter, surface finish, locational tolerance, etc. 
We used these holes as input to our EFHA process plan- 
ning system [15], telling it to produce at most 3 plans for 
each hole. EFHA found plans for 81 of the holes (for the 
other 19 the machining requirements were so stringent 
that EFHA could not produce any plans for them). The 
distributions of the hole characteristics were chosen to 
give a wide selection of plans, not very many "obviously 
best" plans, lots of opportunities exist to merge actions 
in different plans, and the necessity of making tradeoffs 
in choosing which plans to merge. 

The results of the experiments are shown in Table 1. 
Each entry in the table represents an average result over 
450 trials. Each trial was generated by randomly choos- 
ing n of the 81 holes (duplicate choices were allowed), in- 
voking the search algorithm on the plans for these holes 
using the lower bounding function L3, and recording how 
many nodes it expanded in the search space. The total 
cost of each plan was taken to be the sum of the costs 
of the machining operations in the plan and the costs 
for changing tools. The average number of nodes in the 
search space (column 2 of the table), the average num- 
ber of nodes expanded by the algorithm (column 3 of 
the table), and the average fraction of the search space 
expanded by the algorithm (the quotient of columns 
2 and 3) closely match the functions y = 1.26(2.89"), 
y = 1.24(1.35"), and y = 1.03(0.469"), respectively. 

We regard the performance of the algorithm as quite 
good—especially since the test problem was chosen to 
be significantly more difficult than the kind of prob- 
lem that would arise in real-world process planning. In 
real designs, designers would normally specify holes in a 
much more regular manner than our random choice of 
holes, making the merging task much easier. For exam- 
ple, when merging real-world process plans, we doubt 

Table 1: Experimental results for the search algorithm 
using L3, on the process plans for some randomly chosen 
holes. 

Number Nodes in the Nodes expanded 
of holes n search space 

1 2 1 
2 10 2 
3 34 3 
4 98 4 
5 284 6 
6 852 9 
7 2372 12 
8 6620 16 
9 19480 22 

10 54679 28 
11 153467 38 
12 437460 51 
13 1268443 61 
14 3555297 86 
15 9655279 110 
16 29600354 170 
17 80748443 223 
18 250592571 250 

that there would be many of the mergeability tradeoffs 
mentioned earlier; and without such tradeoffs, the com- 
plexity of the algorithm is polynomial rather than expo- 
nential. 

4    Conclusion 

In this paper, we have proposed an approach which falls 
in between domain-dependent and domain-independent 
planning: to abstract the kinds of goal and subgoal in- 
teractions that occur in some set of related problem do- 
mains, and develop planning techniques capable of per- 
forming relatively efficiently in all domains in which no 
other kinds of interactions occur. This paper has con- 
centrated on a particular example of limited-interaction 
planning: how to do plan optimization in the presence 
of a particular set of limitations on goal/subgoal inter- 
actions. The results are summarized below. 

The multiple-goal plan optimization problem is NP- 
hard. However, by imposing some restrictions that are 
reasonable for some problem domains, the problem can 
be made computationally easy when there is only one 
plan available for each goal. If each goal has multiple 
alternate plans, the problem is still NP-hard even with 
the restrictions, but in this case there is a good heuristic 
approach for solving the problem. 

We regard this work as a first step, which demon- 
strates the potential improvements to planning that can 
be found by exploiting restrictions on allowable inter- 
actions. In our future work, we would like to explore 
natural extensions of our approach for creating plans 
rather than just optimizing existing plans. In addition, it 
may be possible to develop similar techniques for use in 
planning or plan optimization, in cases where the inter- 
actions sastisfy restrictions other than the specific ones 

164 



described in this paper. As we continue our research 
into more general forms of limited-interaction planning, 
we are convinced that this approach has potential for 
significantly improving the performance of planning sys- 
tems across a number of additional domains. 
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Abstract 
Traditional approaches to task planning assume 
the planner has access to all of the world in- 
formation needed to develop a complete, cor- 
rect plan—a plan which can then be executed 
in its entirety by a robot. We consider prob- 
lems where some crucial information is miss- 
ing at plan time but can be obtained from sen- 
sors during execution. We discuss the solution 
of these problems through deferred planning 
(i.e., by deferring specific planning steps un- 
til more complete information is available and 
then restarting the planner). We also present 
early results of a comparative study of strate- 
gies for deciding which plan steps to defer. 

1    Introduction 
Traditional approaches to task planning assume that the 
planner has access to all of the world information needed 
to develop a complete, correct plan—a plan which can 
then be executed in its entirety by a robot. Unfortu- 
nately, this information about the world may not always 
be available at plan time. This is particularly true when 
we consider autonomous robots that must operate under 
general goals over extended periods in unpredicatable, 
and changing environments. When crucial information 
is missing at plan time, it may be impossible to find 
a complete plan without obtaining additional informa- 
tion. Fortunately, this information is often available at 
execution time through the use of sensors. The problem, 
then, is how to integrate execution time sensory data into 
the planning process which, in traditional approaches, is 
completed before execution begins. 

The ability to integrate sensory data into the plan- 
ning process is important. First, it provides greater ro- 
bustness for autonomous robots. With this capability a 
robot could complete novel variations of tasks by real- 
izing what information it knows and what it must find 
out through sensor use. It could then obtain the nec- 
essary information and perform the task.   In this way 

the robot could work around its incomplete knowledge, 
filling in the gaps, to solve what would otherwise be an 
unsolvable problem. Second, this integration is helpful 
in robot recovery from execution errors and unexpected 
events. In these cases, it is likely that significant world 
information is missing (or at least in doubt). A robot 
controller could use this ability to collect the required 
information and then finish its task. 

There are two reasons why it is difficult to integrate 
sensory data into the planning process. The first has 
already been mentioned—the planning process is tradi- 
tionally completed before execution (and therefore sen- 
sor use) begins. The second difficulty is that the infor- 
mation obtained from sensors can have a dramatic ef- 
fect on the shape of the plan. To make our discussion 
more concrete we will use the following tool box domain 
throughout this paper. 

The robot is in a room with n tool boxes <i,<2i ■■ -tn, 
each containing wrenches and bolts of various sizes. 
The robot knows the initial locations of the wrenches 
and bolts. Bolts are identified by a unique name, and 
wrenches are identified by size (assume one wrench per 
size). The robot has been instructed to close and bolt 
one or more tool boxes with particular bolts. To perform 
each bolting operation, the robot must use a wrench of 
a size that matches the bolt. A sensor is available that 
can classify bolts by the size (e.g., a number from 1 to 
10). For simplicity, the bolts sizes are indicated along 
the same scale as the wrench sizes. We also assume the 
robot has a tool belt into which it can put an unlimited 
number of bolts and wrenches.1 

Figure 1 describes a sample problem instance. There 
are two tool boxes, s and t. Box t is to be bolted with 
bolt bt. Initially, the robot is at box t. There are two 
wrenches available, one of size 4 and another of size 5. 
The correct action sequence will vary depending upon 
which tool box contains the needed wrench, and this in 
turn depends on the size of bt. The plan when the wrench 
is in s will differ from the plan when the wrench is in t. 

'This work has been funded by the NSF under grants 
NSF/DMC-8518735 and NSF/CCR-8715220. 

1We are not concerned here with the arm-empty condi- 
tions used to define the blocks world. Our main goal in defin- 
ing this domain is to study how sensor use can be interleaved 
with planning. 
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Initial State: 
((at t)(bolt-not-inserted s)(bolt-not-inserted t) 
(open a) (closed t) 
(wrench-in-tbox 4 £)(wrench-in-tbox 5 a) 
(bolt-in-tbox bt t)) 

Goal State: 
((bolted t bt)) 

Figure 1: Sample Problem. 

(Open-Tbox t) 
(Get-Bolt bt) 
(Get-Wrench 4) 
(Close-Tbox t) 
(Insert-Bolt bt t) 
(Bolt t bt) 

Figure 2: Sample plan when bt has size 4. 

Sample action sequences are shown in Figures 2 and 3. 
If the planner knows the size of bt, it can find a com- 

plete plan before execution begins. Otherwise, the robot 
must use its sensors during execution to obtain the bolt 
size, and this information then determines the further 
actions that are necessary to achieve the end goals. 

2    Why Use Conventional Planning 

Planning is desirable in robotics because it attempts to 
map out future activities of the robot so that the robot 
avoids undesirable situations during plan execution. Al- 
though planning systems are known to suffer from com- 
putational complexity, with well crafted heuristics they 
have proven to be useful even for complex tasks [Wilkins, 
1989]. 

A well recognized problem with planning is the inabil- 
ity of most planners to deal with the inexactness and 
noise of the real world. Several solutions have been pro- 
posed including the following: 

• eliminating planning altogether in favor of reactive 
planning [Brooks, 1986] or situated systems [Agre 
and Chapman, 1987, Kaelbling, 1988], 

(Open-Tbox t) 
(Get-Bolt bt) 
(Close-Tbox t) 
(Insert-Bolt bt t) 
(Goto a) 
(Get-Wrench 5) 
(Goto t) 
(Bolt t bt) 

Figure 3: Sample plan when bt has size 5. 

• combining reactivity and planning [Georgeff and 
Lansky, 1987, Drummond, 1989, Hayes-Roth, 1987, 
Nilsson, 1989], 

• preplanning for every contingency [Schoppers, 
1987], 

• verifying the executability of plans and adding sens- 
ing whenever needed to reduce the uncertainty 
[Brooks, 1982, Doyle, Atkinson and Doshi, 1986], 

• interleaving planning with execution [Durfee and 
Lesser, 1989, Turney and Segre, 1989, Dean and 
Boddy, 1988, Hsu, 1990, McDermott, 1978]. 

Reactive systems, which are often proposed as a solution 
to the problems with conventional planning, suffer from 
being myopic. They tend to react to local changes, and 
have a short-term view of the problem they are trying 
to solve. 

We are interested in exploring how to use conventional 
planning in domains in which the plan-time information 
is incomplete. This includes exploring strategies to max- 
imize the chances of producing a plan that, despite in- 
complete knowledge, avoids premature actions. 

3    Adapting Conventional Planning 
Techniques 

The next question is how best to use conventional plan- 
ning techniques to solve the problems we are considering. 
Is it necessary to extend these techniques in some way, 
or can we just define new operators at the correct level 
of abstraction that will allow a conventional planner to 
handle these problems? We contend that extensions are 
necessary. To demonstrate this, we attempt to define 
the required operators and point out the difficulties we 
encounter. 

We must define the operators so that the planner need 
not be explicitly aware of the fact that sensors are be- 
ing used. Thus, no sensor processes will be available to 
the planner. Assume that the size of some bolt B is un- 
known. We begin by collapsing two separate subgoals 
of the BOLT process with the properties (Boltsize B ?z) 
and (Have-Wrench ?z), into a single goal with property 
(Have-Wrench-for-Bolt B). In this way we hide the size 
of the bolt and the identity of the matching wrench. Let 
this new goal be achieved by the process (Get-Wrench- 
For-Bolt B). It is this process upon which we must focus. 
What effect does this process have on the world state. 
At the very least, after executing this process, the robot 
will have a wrench that it did not have before, and that 
wrench will no longer be in any tool box. (It is also likely 
that the robot will be in a different location.) The cru- 
cial observation is that the planner cannot know which 
wrench has been removed from a tool box. The iden- 
tity of that wrench is determined entirely by execution- 
time sensory data that is not available to the planner. 
Thus, from the planner's perspective, (Get-Wrench-For- 
Bolt B) has nondeterministic effects, and this is problem- 
atic in conventional planners. If we allow such nondeter- 
ministic effects, the planner will have difficulty solving 
other goals that require obtaining a wrench since it no 
longer knows the location of all of the wrenches. 
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It thus appears necessary to extend conventional plan- 
ning techniques to deal with the class of problems we are 
considering. There are three basic ways to do this: 

1. Find a complete plan (or set of plans) that will work 
for all possible values of the relevant sensor reading. 
That is, plan for all contingencies (This is similar to 
universal planning [Schoppers, 1987] and to "tree 
plans" [Nilsson, 1989]). 

2. Find a single complete plan based on an assumed 
value of the sensor reading. This plan will work 
(without modification) only if the assumption is cor- 
rect. 

3. Defer planning decisions that depend on sensor 
readings until those readings are available, then con- 
tinue planning with the new information. 

Which of these strategies is appropriate depends on ex- 
ternal considerations such as the criticality of mistakes 
(i.e., Are they reversible? Is reversal costly?), the com- 
plexity of the domain, and the acceptability of suspend- 
ing execution to do more planning. 

3.1     The Three Approaches Compared 
Planning all paths is often expensive and difficult and 
should be avoided if possible. If there are 20 different 
sizes of bolt, the planner might need to find a slightly 
different plan for each of the 20 possible sensor values. 
Matters are even worse in the likely event that more than 
one sensor reading is required. If the size of two different 
bolts must be determined by sensor readings from 20 
possible values, there would be 400 combinations, each of 
which might correspond to a slightly different plan. The 
amount of planning grows exponentially in the number of 
readings that are needed. Although it might be possible 
to represent these 400 possible plans efficiently through 
the use of disjunctive nodes in the plan network, this 
does not really solve the problem. To do complete pre- 
planning, the planner must still analyze the potential 
interactions (e.g., conflicts) that arise when any of the 
400 possible combinations occurs. Despite the expense 
of this approach, there are still cases where it might be 
appropriate if it is computationally feasible: 

• The same plan will be used many times with poten- 
tially different sensor values in each execution. Note 
that the same initial state must be satisfied in each 
use of the plan. In this case the cost of the plan is 
justified by its long-term usefulness. 

• Time constraints during execution make it undesir- 
able or impossible to do any execution-time plan- 
ning (either deferred planning or replanning). 

• The criticality of errors in the plan is so high that 
the cost of extra planning is outweighed by the cost 
of a mistake. 

Unfortunately, even with all the planning effort asso- 
ciated with this approach, most execution-time errors 
and unexpected events are not anticipated. Unless these 
problems can be anticipated and handled in the plan, 
replanning may still be necessary. Due to the size and 
complexity of a plan in this approach, replanning to cor- 
rect these problems could be difficult and costly. 

Although approach (2) is less expensive, there is al- 
ways a possibility that the assumptions made were in- 
correct, and the plan is therefore invalid. When this 
happens, replanning is necessary. Parts of the original 
plan will likely be discarded, and as a result, some plan- 
ning effort is wasted. It is also possible that, due to the 
assumptions, some action is taken prematurely and must 
later be undone. If the premature action is irreversible, it 
might be impossible to solve the problem. Approach (2) 
is most appropriate when the following are all true: 

• It is acceptable to have the robot stop during exe- 
cution while replanning occurs. 

• The criticality of plan errors is low. That is, actions 
are reversible, or the cost of failure is small (e.g., 
the robot can throw away an inexpensive part and 
start over with a new one). 

• Some particular value for a sensor reading is more 
likely than any of the other possible values. In this 
case the planner has something upon which to base 
its guess. The odds are more in its favor. 

One advantage of this approach over the deferred plan- 
ning approach discussed below is that, when the planner 
guesses correctly, no execution-time planning is needed. 
However, if the planner guesses incorrectly, the time 
needed for replanning will probably be longer than the 
time needed to continue planning in a deferred planner 
since the replanner usually must remove parts of the orig- 
inal plan. 

In the same vein, probabilistic reasoning has been 
proposed to reduce the complexity of planning. For 
instance, when expectations are available concerning 
how long propositions are likely to persist, probabilistic 
predictions can be made [Dean and Kanazawa, 1988]. 
Drummond [Drummond and Bresina, 1990] proposes an 
algorithm that maximizes the probability of satisfying 
a goal. The algorithm achieves a balance, in terms of 
robustness, between triangle tables [Fikes and Nilsson, 
1971] and universal plans [Schoppers, 1987]. 

With the deferred planning approach, the planner 
avoids doing a lot of work that will later be discarded. 
Instead, it completes only those portions of the plan for 
which it has enough information at plan-time. Since the 
planner, in its initial phase, does not find a complete 
plan, there is the possibility that important dependen- 
cies and constraints in the plan will be missed. In this 
case some action might be taken prematurely which must 
later be undone. As with the replanning approach, if the 
premature action is irreversible, it might be impossible 
to solve the problem. Thus, care must be taken to detect 
these dependencies and constraints as early as possible 
before the robot has taken too many actions. Deferred 
planning is appropriate when the following are true: 

• It is acceptable to have the robot stop during exe- 
cution while planning continues. 

• The criticality of plan errors is low. That is, actions 
are reversible, or the cost of failure is small. 

It is the deferred planning approach that we are study- 
ing. The central problem for this approach is how to 
avoid premature actions that must be reversed (or even 
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worse, that cannot be reversed). In Section 3.2 we will 
describe how we have implemented this approach, and 
integrated it with an execution simulator. In Section 3.3 
we will give an example of how this system works. Sec- 
tion 4 outlines a number of strategies for deciding which 
plan goals to defer. 

3.2     A Deferring Planner 

The basis of our system is an agenda-controlled plan- 
ner called BUMP (Basic University of Minnesota Plan- 
ner). BUMP uses STRIPS-style operators [Fikes and 
Nilsson, 1971] to build a plan network consisting of goal 
nodes and process nodes. At present, BUMP is very 
basic in that it does not do hierarchical planning [Sac- 
erdoti, 1974], nor does it use special methods to reason 
about resources [Wilkins, 1988]. It does maintain links 
from process nodes to goal nodes that record the pur- 
poses of each process node in the plan. The other major 
component is the EXECUTION CONTROLLER (EC). This 
controller is at the top-level in our system. It invokes 
BUMP to get solutions (plans) for particular problems, 
and it then controls the execution (in simulation) of the 
steps within those plans. It can also invoke the planner 
on a partially specified plan, asking BUMP to finish it. 
A system diagram is shown in Figure 4. 

To solve the problems with which we are dealing, the 
BUMP plan must contain requests for sensor readings 
that obtain the information that the planner is miss- 
ing. This is accomplished by adding a new type of pro- 
cess node to the planning system. A SENSOR PROCESS 

NODE constitutes an instruction to the execution con- 
troller (and hence the robot) to take a particular sensor 
reading at a particular point in the execution. We as- 
sume that the results of a sensor process can, at the plan- 
ner's level of abstraction, be described by one or more 
logical predications.2 This allows us to represent sensor 
processes in much the same way as non-sensor processes. 
That is, they are described by three lists of predications: 

Add List — A list of predications describing the prop- 
erties asserted as a result of the process. At least 
one of these will be the new information obtained 
by the sensor. This list can also specify side effects 
of the sensor process. 

Delete List — A list of predications for properties de- 
nied as a result of the process. (This would likely 
include things that are changed in the world as side 
effects of sensing.) 

Precondition List — Properties that must be true in 
order to use the sensor. This list will be used to 
generate the set-up actions for the sensor. 

Since sensor processes are explicitly represented in the 
plan in much the same way as all other processes, their 

How sensor data is converted into such predications is a 
nontrivial problem that is beyond the scope of this paper. We 
do however assume that the conversion would be based upon 
some hierarchical representation of sensor data which allows 
that data to be represented at multiple levels of abstraction 
[Henderson and Shilcrat, 1944]. The planner would work at 
one of the highest levels. 

side effects as well as their set-up actions can be dealt 
with by BUMP. 

A sensor process is used (like any other process node 
in a BUMP plan) to achieve one or more of the proper- 
ties on its Add List. For example, to solve a goal node G 
for property (Boltsize B ?z), BUMP can insert a sensor 
process node (SENSE-BOLTSIZE B) into the plan. This 
sensor process node, when executed, will assert that the 
bolt B has some particular size as determined by the 
relevant sensor or sensors. The node could for example 
assert the property (Boltsize B #4). If some property 
matching (Boltsize B ?z) is already asserted, either in 
the initial state or by some process node that can occur 
before G, then the planner can solve G by performing 
the appropriate linking operation. No additional sensor 
process node is needed. Thus, the planner can easily 
recognize what information it already has available and 
what information must be obtained from sensors. Fur- 
thermore, it performs this reasoning through the same 
mechanisms that determine whether to use a helpful in- 
teraction or an operator to solve a goal. While plan- 
ning, BUMP uses special dummy constants in place of 
the values that will come from sensor readings. Dur- 
ing the initial planning phase, the plan variable ?z from 
(Boltsize B ?z) will be bound to one of these constants. 
Any subsequently attempted plan goals that refer to one 
of these constants will be deferred until the executor has 
obtained the reading. 

When all goals in the plan network have been either 
solved or deferred, BUMP returns the plan at its cur- 
rent state of completion. The execution controller then 
begins executing the partial plan, preferring sensor pro- 
cesses over other parallel processes since the former in- 
crease the robot's information about the world. This 
preference also extends to the set-up actions of sensor 
processes and to any other process nodes that are con- 
strained to occur before a sensor process. This strategy 
is intended to obtain the sensory data at the earliest pos- 
sible point in execution in order to avoid the problems 
caused by premature actions. Once a plan-requested sen- 
sor reading is obtained, BUMP is immediately restarted 
with the new information which it can use to make addi- 
tional plan decisions. BUMP returns a new (perhaps still 
partial) plan to the executor. This cycle continues until 
all the necessary sensing has been done and BUMP has 
found a complete plan. The execution controller then 
executes the remainder of that plan. 

3.3     An Example 

To clarify this process we present an example. Con- 
sider the problem shown in Figure 1. A sample trace 
for this problem is shown in Figure 5. After an initial 
planning phase, BUMP halts with one Sense-Boltsize 
process in the plan and with the corresponding Have- 
Wrench goal deferred. EC begins the execution of the 
partial plan. The first two operations are required as 
preparatory steps for the third operation (Sense-Boltsize 
B). Since this solution is done in simulation, EC asks 
the user for a sensor reading. In this case, 4 is entered. 
BUMP is now restarted with this new information and 
this time produces a complete plan.   The remainder of 
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Problem Description 

Plan 
Execution 
Controller 

Commands 

Sensor 
Robot 

Readings 

"Start" 
Sensor Readings 

BUMP -H    Sensor Constants 

Figure 4: System Architecture. 

<Initial Planning...> 

Executing #<PR0CESS19>   (Open-Tbox T) 
Executing #<PR0CESS15>  (Get-Bolt Bt) 
Executing #<SENS0R-PR0CESS11>  (Sense-Boltsize Bt) 
Enter the size of bolt Bt:     4 

<More Planning...> 

Executing #<PR0CESS33>  (Get-Wrench 4) 
Executing #<PR0CESS28>   (Close-Tbox T) 
Executing #<PR0CESS23>   (Insert-Bolt Bt T) 
Executing #<PR0CESS5>   (Bolt T Bt) 

Figure 5: Sample run for boltsize = 4. 
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the operations are now executed and the task completed. 

4    Deferral Strategies 

The primary question in deferred planning is deciding 
what goals to defer. At the very least we want to defer 
the goals that are defined in terms of a sensor reading 
since we do not know the complete goal statement until 
the reading has been obtained. For example, we cannot 
formulate a plan or solve the goal (Have-Wrench ?s) un- 
til we know the value of ?s, the size of the wrench we 
must retrieve. We may not know this until we have used 
sensors to determine the size of some bolt. 

Is it advantageous to defer additional goals? That is, 
should we do as much preplanning as possible, or should 
we be more conservative? To study this question, we 
have defined two distinct deferral strategies: 

Continue Elsewhere - In this strategy we defer only 
those goals that are denned in terms of data that 
must be obtained through a sensor reading. This 
strategy preplans as much as possible. 

Stop and Execute - As soon as BUMP reaches a goal 
defined in terms of a sensor reading, it stops, de- 
ferring all remaining goals until the sensor reading 
has been obtained. This approach is "maximally 
conservative". 

The Stop and Execute strategy does less preplanning 
than the Continue Elsewhere strategy. This has the dis- 
advantage that crucial plan dependencies can be missed, 
and as a result, actions can be taken prematurely. On 
the other hand the planner will do significantly less plan- 
ning with incomplete information. This tends to de- 
crease the number of premature actions. Furthermore, 
Stop and Execute respects the order in which the planner 
wants to attack goals (which is, of course, independent of 
the order in which they are achieved during execution), 
but Continue Elsewhere does not. This is important for 
BUMP since it orders goals heuristically, and it is likely 
to be important for other planners as well. 

We are currently conducting a study on the perfor- 
mance of these two strategies. We have conducted actual 
system tests for a set of 32 problems defined for a 2-box 
version of the tool box world. In this version there are 
two boxes s and t, and they are to be bolted shut with 
bolts 64 and bt, respectively. Initially, the robot is at tool 
box s. Without loss of generality, we assume 6, has size 
4 and bt has size 5 (we can rename sizes to make this 
true), but the planner does not know this and must add 
sensor processes to the plan. The problem space is de- 
fined as in Figure 6. Note that since there are two boxes 
that must be closed, the planner must be careful not to 
bolt a box containing a wrench that will be needed later. 

sIt should be noted that goals such as (Boltsize B ?s) are 
not treated in this way. When this goal is first encountered 
BUMP does not immediately know that a sensor reading is 
needed. Recall that when the bolt size is already known, a 
sensor process is not added to the plan. If the bolt size is 
unknown, a sensor process is added, ?s is bound to a sensor 
constant, and any further references to ?s will be recognized 
as a reference to a sensor reading. 

Initial State: (Bolt-in-tbox bx x) 
A -1 (Bolt-in-tbox by x) 
A     (Wrench-in-tbox 4 x) 
A      (Wrench-in-tbox 5 x) 
A     (At s) 

Goal State: (Bolted x 6I)(Bolted y by) 

Figure  7:    2-Box Study   "Stop and  Execute"  Failure 
Cases. 

Initial State: (Bolt-in-tbox 6, s) 
A -1 (Bolt-in-tbox bt s) 
A     (Wrench-in-tbox 5 s) 
A     (At 5) 

Goal State: (Bolted x 6s)(Bolted y by) 

Figure 8:   2-Box Study  "Continue Elsewhere"  Failure 
Cases. 

We consider such a case to be a failure since significant 
actions are taken prematurely.4 

As a control we tested BUMP with complete infor- 
mation on the 32 problems. It produced a correct plan 
with no failures for every problem. The Stop and Exe- 
cute strategy fails on two of the 32 cases, and Continue 
Elsewhere fails on four of them. The failure cases are 
described in Figures 7 and 8. The variables x and 
y range over the set {s, i}. The Continue Elsewhere 
failures occur because BUMP follows the rather natural 
heuristic of doing everything it can at its initial location 
before going somewhere else. In cases where bt is not in 
s, the initial plan will instruct the robot to bolt s before 
sensing bt. When the size of bt is finally determined, its 
wrench may have already been bolted inside s. BUMP 
has ordered these actions prematurely and incorrectly 
since insufficient information was available at the time. 

We have also experimented with a modified Continue 
Elsewhere strategy called Sense Before Closing. In this 
strategy, the planner attempts to order all sensor pro- 
cesses before all Close-Tbox processes. (This ordering is 
not always possible because of other ordering constraints 
that may already be in the plan.) This strategy per- 
formed as well as Stop and Execute (see Figure 9 for the 
failure cases), however, it is not as general-purpose as 
the first two strategies. It is applicable only in domains 
where we want all sensor operations to precede all box 
closings. This would not be the case if the robot were 
requested to bolt a box, move to another room, and then 
do more sensing there. 

*In this case the mistake is easily reversed. If the robot 
were welding the boxes shut, the recovery would be more 
difficult. 
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goal-ordering e {[(bolted s 6,)(bolted t bt)], [(bolted t 6t)(bolted s b,)]} 
6, location £ {«.*} 
bt location £ {»,*} 

wrench 4 location e {s,t} 
wrench 5 location e {s,t} 

Figure 6: 2-Box Study Problem Space. 

Initial State: (Bolt-in-tbox b, s) 
A -i (Bolt-in-tbox bt s) 
A     (Wrench-in-tbox 5 s) 
A     (At s) 

Goal State: (Bolted t 6t)(Bolted s bt) 

Figure 9:   2-Box Study "Sense Before Closing" Failure 
Cases. 

5    Discussion 

Interleaving of planning and execution has been used 
extensively. For instance, in the work of [Durfee and 
Lesser, 1989] the planner uses a blackboard based prob- 
lem solver to abstract sensory data. This enables the 
planner to approximate the cost of developing potential 
partial solutions to achieve long-term goals. Detailed 
plans are created only for the immediate future using 
the sketch of the entire plan. By keeping the long-term 
goals the planner bases its short-term details on a long- 
term view. 

Dean and Boddy [1988] propose a class of algorithms 
that they call "anytime" algorithms. These algorithms 
can be interrupted at any point, returning a partial plan. 
The quality of this plan depends upon the time used to 
compute it. 

We have decided to investigate a more limited class of 
problems. We are interested in proposing and evaluating 
strategies to be used when some information is missing 
at planning time and needs to be obtained with sensors. 
In our approach planner decisions that depend on sen- 
sory information are deferred. As soon as sensory data 
become available the planning activity is resumed. 

Doyle [Doyle, Atkinson and Doshi, 1986] uses sensors 
to verify the execution of a plan. The sensor requests are 
generated after the plan has been produced by examin- 
ing the preconditions and postconditions of each action 
in the plan. Domain dependent verification operators 
map assertions to perception requests and expectations. 
Since perception requests are actions that could have 
preconditions, the planner is used to modify the original 
plan to guarantee that the preconditions are established. 
If the expectations are not satisfied by the perception the 
plan is repaired using predefined fixes. The entire pro- 
cess is done before executing the plan. 

Our work has been inspired, in part, by the recent 
work of [Turney and Segre, 1989]. The system they 
present,   SEPIA,  alternates  between improvising and 

planning. It addresses sensing errors, control errors, and 
modeling errors. Their example is a traveling salesper- 
son problem with time constraints at every place to be 
visited. The set of rules suitable for firing contains rule 
instances whose preconditions and constraints have been 
met, but whose sensor requests have yet to be evaluated. 
Since sensing is assumed to be expensive, the system fires 
the rule instance with the fewest sensor requests first. 
The cost of a rule is proportional to the number of sen- 
sor requests it contains. The planner is interrupted when 
the cumulative cost exceeds its budget. The quality of 
the heuristic improvisation strategy has the most signif- 
icant effect on the quality of the solution (both with the 
simple improvisation strategy and with SEPIA). This 
seems to suggest that it is more important to develop 
good heuristics than to develop a highly sophisticated 
planner. 

Dean [1987] recognized the complexity of solving re- 
alistic planning problems and suggested heuristic ap- 
proaches to decompose a task into independent subtasks 
that are easier to solve. He suggested using a library of 
strategies applicable to a set of tasks instead of a library 
of plans. 

The need to plan with incomplete information raises 
interesting theoretical issues in finding an appropriate 
balance between the time spent to plan and the time 
spent to get additional information. Hsu [1990] proposes 
a method for planning with incomplete information. She 
shows that if the information available to the planner is 
not sufficient to produce a plan, then no amount of plan- 
ning will help find the optimal solution. The idea is to 
generate a "most general partial plan" without commit- 
ting to any choice of actions not logically imposed by 
the information available at that point. An anytime al- 
gorithm is then used to chose the appropriate action on 
the current partial plan when the system has to act. She 
defines a PERCEPT to be a (possibly partial) description 
of the world. Percepts are saved to form HISTORIES. A 
history prescribes or prohibits some actions, allowing the 
refinement of a partial plan. Finally, a plan is a map- 
ping from histories to actions. Instead of using the most 
general partial plan she introduces the notion of effec- 
tive partial plan. Conceptually an effective partial plan 
is a huge table where each entry contains a perceptual 
history and a set of actions. This resembles universal 
plans and is probably impractical unless powerful do- 
main heuristics can be used to prune the search space. 
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6    Further Work and Conclusions 

We are currently extending our strategy study to a 3-box 
world where the robot must bolt three boxes with three 
different bolts using three different wrenches.5 Prelimi- 
nary results suggest that as the problem becomes more 
complicated, Continue Elsewhere will begin to outper- 
form Stop and Execute. This is due to the fact that 
BUMP with the Stop and Execute strategy is unable 
to plan more than one sensor operation ahead. This 
is too shortsighted for complex problems. More inter- 
estingly, preliminary results also suggest that neither of 
the general-purpose strategies are very good at avoiding 
failures, and that more specialized, domain-dependent 
strategies such as Sense Before Closing may be neces- 
sary. 

To conclude, we have adapted a conventional plan- 
ner to do deferred planning. This planner can then be 
used for problems where there is insufficient informa- 
tion at planning time to develop a complete plan. We 
have developed several strategies for deciding which plan 
goals to defer, and we are studying the performance of 
these strategies. In the 2-box study, the Stop and Exe- 
cute strategy seems to perform (slightly) better than the 
other two strategies. The 3-box study is still in progress. 
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Abstract 
When plans are used as programs for controlling the 
action of autonomous robots, their abstract 
representation can easily obscure a great deal of the 
critical knowledge that originally led to the planned 
course of action. In this paper, we highlight an 
autonomous vehicle experiment which illustrates how 
the information barriers created by abstraction can 
result in undesirable action. We then show how the 
same task can be performed correctly using plans as a 
resource for action. As a result of this simple change in 
outlook, we become able to solve problems requiring 
opportunistic reaction to unexpected changes in the 
environment. 

1 Introduction 

In the endeavor to develop intelligent autonomous robotic 
agents capable of interacting with a dynamic environment, 
there has been a growing awareness that traditional planning 
methods may not be compatible with the demands for real- 
time performance. Recent efforts to re-evaluate the 
relationship between plans and action have led to alternative 
viewpoints in which plans are not primarily responsible for 
controlling a robot's behavior. Work by Brooks, for 
example, is aimed at avoiding the use of plans altogether 
[Br]. In this approach, intelligent action is a manifestation 
of many simple processes operating concurrently and 
coordinated through the context of a complex environment. 
While there is no tangible representation for plans in such a 
system, plans are implicitly designed into the system 
through the pre-established interactions between behaviors. 
Similarly, Agre and Chapman have shown how a system 
that determines its actions through the constant evaluation of 
its current situation can perform complex tasks that might 
otherwise have been thought to require planning [AC1]. 
Despite their emphasis on the theme that action is obtained 
by always knowing what to do at any instant, Brooks, Agre, 
and Chapman do not discard the notion that look-ahead and 
anticipation of future events are desirable activities. While 
these activities are normally associated with planning, there 
is a difference in how the resultant "plans" are represented 
and used in their systems. 

Agre and Chapman, for example, draw a sharp 
distinction between the concept of plans as communication 
and the more traditional views of plans as programs [AC2]. 

The key difference lies in the idea that plans must be 
constructed as a resource to the autonomous agent, not as an 
explicit set of instructions to be followed [Su]. As a 
resource, plans must serve as sources of information and 
advice to agents that are already fairly competent at dealing 
with the immediate concerns of their environment. In this 
sense, plans are used optionally, and serve only to enhance 
system performance. This is a significant departure from 
the conventional view of plans which puts them in the role 
of specifying a distinct course of action to systems which 
are often incapable of doing anything without them. 

The differences between these two perspectives on 
planning are clearly evidenced when information from a 
map must be used to help guide an autonomous vehicle that 
must also make extensive use of sensors for detailed 
maneuvering and obstacle avoidance. In a plan-driven 
system, map-based plans are typically constructed to 
describe the optimal path that must be followed in order to 
arrive at a specified goal location. However, since the 
vehicle will invariably stray from the ideal path as it avoids 
sensed obstacles, the plan must be expressed in an abstract 
form that allows for error. In contrast, when map-based 
plans are represented for use as resources for action, this 
abstraction is not necessary. Instead, it is possible to make 
direct use of all information within the state-space of the 
map. As a result, information of all possible alternatives 
may be retained, allowing for flexible opportunistic 
behavior. 

Our own experience with the DARPA Autonomous 
Land Vehicle (ALV) has led to some valuable insights into 
some of these issues. In a series of experiments performed 
by members of the Hughes Artificial Intelligence Center in 
August and December of 1987, a number of successful tests 
of autonomous cross-county navigation were performed 
using a system with integrated map and sensor-based control 
[Da] [KPR]. Some of the difficulties encountered in these 
experiments have pointed out certain consequences of the 
inappropriate use of abstraction that can occur in plan- 
driven systems. In this paper, we highlight one of these 
experiments to illustrate how the information barriers 
created by abstraction can lead to undesirable action. We 
then show how the same task can be accomplished without 
abstraction using plans as a resource for action, and we 
discuss how this approach may be extended for more 
complex problems. 
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2 The Misuse of Abstraction 

In one of the cross-country experiments performed with 
the ALV we witnessed a surprising example of how easily 
plans can be misinterpreted in a plan-driven system. In this 
experiment, a very simple abstraction of a map-based plan 
was used to provide guidance to sensor-based obstacle 
avoidance behaviors. As shown in Figure 1, the basic 
mission objective was for the vehicle to get from one 
location to another while maintaining radio contact at all 
times. The map-based planner generated an appropriate 
route plan and abstracted a sequence of intermediate sub- 
goals to represent the critical points along this path. A 
portion of this sequence is illustrated in Figure 1 as Goals 1, 
2, and 3. Note that the route had to veer specifically around 
one side of a rock outcrop in order to avoid loss of radio 
contact. To accomplish the mission, the sensor-based 
behaviors had primary control of the vehicle so that all 
obstacles could properly be avoided. The behavior 
decisions, however, were always biased in favor of selecting 
a direction toward the current map sub-goal whenever 
possible. As soon as the vehicle got within a specified 
radius of its current sub-goal, that goal would be discarded 
and the next sub-goal would be selected. On paper and in 
simulation, it seemed that this approach would be effective. 

GOAL 2 

GULLY 

GOAL 2 

(X)«    L^Z] 
GOAL1 

Figure 1.  An ALV route plan expressed as a sequence of 
intermediate goal points. 

When we attempted to perform this mission with the 
ALV, the deficiencies of our method became strikingly 
clear. During the execution of this route, the vehicle 
achieved Goal 1 but then, because of local obstacles, was 
unable to turn appropriately to reach Goal 2. Figure 2 
depicts the difference between the desired and actual routes. 
While this error is clearly apparent from the map data, the 
sensor-based behaviors had only the abstract route 
description as their guide, and this gave no indication that 
there was any problem with their action. Fortunately, 
contrary to our expectations, radio contact was not lost 
behind the obstacle. The mission could still be completed 
successfully if the vehicle were to move onward to Goal 3. 
Despite this new opportunity, however, the vehicle 
continued to persist toward Goal 2 because the abstract 
route description failed to give any indication that the 
original goal sequence was no longer suitable. 

ROCK OUTCROP GULLY 

GOAL 3 

[ALT] 

Figure 2.  Errant vehicle action while executing its route 
plan. 

This example highlights the system's inability to take 
opportunistic advantage of unexpected situations when such 
situations are not properly accounted for in the abstract plan. 
We know from our understanding of the mission constraints 
that Goal 2 was merely an intermediate waypoint intended 
to keep the vehicle away from the rf shadow. Looking at 
the abstract plan in isolation, however, there is no way of 
knowing why a particular sub-goal has been established. 
The Goal 2 location could just as easily have been a critical 
choke point along the only path to Goal 3. It is only through 
our understanding of the underlying mission constraints that 
we can both identify the vehicle's failure to turn right and 
see the opportunity that arose as a result. 

The deficiencies of the abstract route plan may at first 
appear to be due solely to the simplicity of the 
representation. Certainly a more sophisticated approach 
could be employed in which further path constraints are 
added to help prevent the vehicle from straying from the 
desired route. Should any significant deviation from the 
plan be detected, the route might then be re-evaluated. This 
strategy, however, focuses on preventing the violation of 
constraints which may in fact have very little bearing on the 
successful completion of overall mission objectives. 
Consider, for example, a case in which the vehicle can get 
near Goal 2, but cannot get close enough to satisfy the 
criterion of the abstract plan. The system may expend a 
great deal of time and energy attempting to reach this 
arbitrary sub-goal when it might otherwise have no 
difficulty proceeding onward. The problem stems from the 
fact that the sequence of subgoals is both an 
overspecification and an underspecification of mission 
objectives. If the true constraints on vehicle motion relative 
to a given mission are properly represented, then subgoal 
locations become immaterial. Therefore, the real deficiency 
of the abstract route plan lies in the fact that in specifying a 
pre-determined course of action, it fails to supply the 
information needed for intelligent decision-making. 

3 Avoiding Unnecessary Abstraction 

In order to minimize the amount of information lost in 
forming a plan for action, it is best if all relevant knowledge 
is organized with respect to a given problem and then, 
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without any further abstraction, provided in full for use in 
real-time decision-making. In order for this to be possible, 
the plan must no longer be viewed as a program for action, 
but rather, as a resource to help guide the decision-making 
process. When this viewpoint is adopted, there is no longer 
a need to translate plans into awkward representations for 
action. Instead, the original state-space in which the plan is 
formulated can be retained, enabling the plan to provide 
advice to sensor-based behaviors whenever the current state 
of the system can be identified within that state-space. We 
refer to plans formulated and used in this manner as 
internalized plans, since they embody the complete search 
and look-ahead performed in planning, without providing an 
abstracted account of an explicit course of action [Pa]. 

The difference between the use of internalized plans 
and conventional abstracted plans is best illustrated in the 
context of the previous example. In contrast to the abstract 
route plan, consider a gradient description of a plan to 
achieve the same objectives. As illustrated in Figure 3, 
there is no explicit plan shown, yet one can always find the 
best way to reach the goal simply by following the arrows. 
Such a representation would not ordinarily be thought to be 
a plan because it provides no specific course of action. As a 
resource for guiding action, however, the gradient field 
representation is extremely useful. No matter where the 
vehicle is located, and no matter how it strays from what 
might have been the ideal path, turn decisions can always be 
biased in favor of following the arrows. 

Upon closer examination of Figure 3, we can see not 
only how the mistake of entering the rf shadow could be 
avoided, but we see also how the system could be 
opportunistic should the vehicle happen to enter the shadow 
and be able to continue onward. First, when the vehicle had 
to make a choice between going left or right near the bottom 
of the rock outcrop, the gradient field would strongly bias its 
decision in favor of going right. If the vehicle got too close 
to the shadow on the left, the gradient field would actually 

be telling it to turn around. Further, should the vehicle 
happen to be forced to go below the rock outcrop and enter 
the rf shadow, then it would continue to be directed toward 
the final goal despite the radical deviation from its expected 
path. This type of behavior is opportunistic in that the 
vehicle is not constrained to reach any arbitrary pre- 
established sub-goals, and therefore all action can be 
directed exclusively toward achieving the mission 
objectives. 

A more dramatic illustration of the difference between a 
conventional route plan and an internalized plan can be seen 
in problems requiring the attainment of any of several 
possible goals. This type of problem is often referred to as 
the "Post Office Problem" [Ed] because it can be likened to 
the task of finding the shortest route to the nearest of several 
post offices in a neighborhood. In the example shown in 
Figure 4, the mission requires that the vehicle reach either of 
two distinct goal locations. The resultant gradient field is 
computed by propagating a search wavefront simultaneously 
from each of the two goals. As the wavefronts meet at a 
Voronoi edge, a ridge is created in the gradient field which 
will cause the vehicle to be guided toward one goal or the 
other depending on which side of the ridge it happens to be 
located. 

Clearly, it would be difficult for an abstract route plan 
to capture the essence of choice contained in the gradient 
field representation. If we were to produce a route plan, we 
would invariably have to select a route to the closest goal, as 
shown in Figure 4. Once such a choice is made, however, 
we have discarded all that is known about the alternate goal 
even though that goal was nearly as close as the one 
selected. In contrast, by using the gradient field directly, the 
choice of goals may be made during the execution of the 
mission. Without having made an a priori selection of 
goals, the best choice may be made at every instant in time, 
regardless of how the vehicle might stray while avoiding 
obstacles. 
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Figure 3. A gradient field representation provides one form of internalized plan. 
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Figure 4. The gradient field provides a useful internalized 
plan for reachingeither of two goals. 

The gradient field is an ideal example of an internalized 
plan because the map-grid state-space in which the original 
problem is formulated is the same state-space in which the 
plan is represented. The gradient field, in fact, is a natural 
by-product of existing route planning algorithms [MPK]. 
These algorithms begin by assigning a cost to each grid cell 
of a digital terrain map. By associating high costs with 
locations that are undesirable according to mission criteria, a 
combination of mission constraints can be represented. 
Whether an A* [Ni], or Dijkstra [Di] search algorithm is 
employed in the cost grid, the net result of the search is a 
score for each grid cell, indicating the minimum cost 
remaining to get from that cell to the goal. From any given 
grid cell, the best incremental step to get to the goal is the 
neighboring grid cell which has the lowest score. 
Ordinarily, when we use these scores to compute a standard 
route plan, we simply begin at the starting point and locally 
choose the lowest-score adjacent cell until we finally reach 
the goal. The record of our steps along the way gives us the 
minimum cost path to the goal. If we look at these scores in 
a slightly different way, we see that the best path to the goal 
from any grid cell may be determined by selecting the 
direction of the lowest-score adjacent cell. Thus, without 
any further abstraction, search in the map-grid can provide a 
useful resource for action. 

4 Using Plans as Resources 

The method of use of a gradient field is an important 
factor in establishing it as an internalized plan 
representation. Since a digital terrain map generally cannot 
provide adequate resolution to support detailed maneuvering 
around small obstacles, there is inevitably a need to 
incorporate the advice provided by the gradient field into 
real-time decision-making processes which are attending to 
immediate sensory data. While, ordinarily, a single abstract 
route plan is generated, some approaches have taken 
advantage of a gradient field in order to quickly generate 

new route plans should the constraints of an initial plan be 
violated [LMD] [CF]. Problems with establishing and 
monitoring these constraints, however, are still unavoidable. 
In contrast, use of the gradient field as an internalized plan 
requires that the real-time decision-making processes 
continuously attempt to locate the system within the state- 
space of the plan and bias each decision in favor of the 
recommended course of action. The absence of an explicit 
course of action means that no arbitrary plan constraints 
need be established or monitored. The plan is a resource, 
providing suggestions for preferred action but never actually 
controlling the system. If, for any reason, no suggestion is 
available from the plan, the real-time decision-making 
processes must proceed in a reasonable manner on their own 
accord. 

Another vector field type of representation, the artificial 
potential field, appears superficially very similar to the 
gradient field and it also is used for robot navigation and 
obstacle avoidance [Kr][Kh][Ar]. The basic differences, 
though, between how these two types of representations are 
constructed and used sheds further light on what it means 
for a plan to serve as a resource for action. The computation 
of potential fields is generally based on a superposition 
model in which charges are distributed such that repulsive 
forces are generated near obstacles and attractive forces are 
generated near goals. Superposition allows the potential 
field vector at any point to be computed quickly by adding 
up the contributions from each charge. The resultant field, 
however, does not represent an optimal path, and may easily 
contain local minima and traps. In contrast, the gradient 
field is computed from a more time consuming graph search 
process. As a result of this search, the gradient field has no 
local minima and will always yield the set of all optimal 
paths to the goal. 

A more significant distinction between gradient fields 
and potential fields, however, is in how they are used. 
Often, when potential field methods are employed for 
navigation, the potential field is used for direct control of 
action. All sensory information is compiled into a single 
representation which is suitable for modeling an appropriate 
distribution of charges. The local potential field forces are 
then continuously computed at the location of the vehicle, 
and these forces are used directly to compute the desired 
motion. On the other hand, as internalized plans, gradient 
fields are never used to provide direct control of the vehicle. 
Instead, they are merely an additional source of information 
provided to a set of real-time decision-making processes. 
Since these processes can make use of many disjointed 
representations of the world in order to control the vehicle, 
there is never a need for all features of the environment to 
be abstracted into a single representational framework. 

It is helpful to view internalized plans as though they 
were sources of supplementary sensory input data. From 
this perspective, it is clear that action is not controlled by 
plans any more than it is by sensory input. Instead, the 
system must be viewed as an entity which interacts with its 
environment, responding to both internal and external 
information sources. The gradient field plan, for example, 
can be thought of as a phantom compass that always gives a 
general idea of the right way to go. Just like other sensors, 
data from this internal sensor influences action but is never 
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used to the exclusion of other sensory data. At any given 
time, however, a single information source can have 
significant influence over system behavior if need be. Just 
as an external sensor can be used to ensure that the vehicle 
never runs into obstacles, an internalized plan can be used to 
ensure that mission constraints are not violated. Thus, 
despite the fact that there is no top-down control, the system 
can adhere to high level mission requirements. 

5 Multiple Internalized Plans 

A significant advantage of using internalized plans as 
resources for action is that it is possible to use multiple 
internalized plans simultaneously. Each plan can contribute 
an additional piece of advice which can enhance the overall 
performance of the system. In this way, different plans may 
be formulated in incompatible state-spaces without the need 
to merge these state-spaces through abstraction. 

We can consider as an example, the combined use of 
map-based plans with plans based on symbolic mission 
constraint data. In the case of the rf shadow problem, a 
constraint to maintain radio contact may be derived from 
mission knowledge. If this knowledge is used in 
conjunction with a signal strength sensor, then whenever the 
vehicle enters an rf shadow, it can immediately back up in 
order to regain contact. In the absence of such problems, the 
gradient field produced from map data can constantly 
provide advice on which way to go. An unexpected loss of 
radio contact would then be treated much like an encounter 
with an obstacle. The vehicle would have to make special 
maneuvers in order to regain contact and ensure that the 
same mistake would not be repeated. After this, the map- 
based plan would regain primary influence. 

There are also many cases in which it might be 
desirable to use multiple internalized plans formulated 
within the same state-space. For example, a gradient field 
plan could be augmented with information about the amount 
of fuel and time required to get from each grid-square to the 
goal. While this information could not directly indicate a 
course of action, it might allow available fuel and time 
resources to be monitored constantly and compared with 
expected needs. If there were barely enough fuel to succeed 
but plenty of time available, the vehicle might be able to 
switch to a simple fuel conserving strategy such as reducing 
its speed. If time and fuel were both in short supply, the 
gradient field might need to be re-computed, placing more 
emphasis on conserving fuel and time resources and 
possibly less emphasis on other factors such as vehicle 
safety. 

Another form of internalized plan exploits the map as a 
resource for action by probing it directly during execution. 
As the vehicle is traveling, the portion of the map 
corresponding to the area just in front of the vehicle is 
examined to determine what types of features should be 
detected. This understanding of the local environment can 
have a direct bearing on how sensor data is interpreted for 
action. Remember, for example, the problem illustrated 
earlier in Figure 2. Here, one of the main reasons the 
vehicle failed to avoid the rf shadow was that its sensors 
indicated a clear path in this area. This error could be 
overcome by differentiating between obstacles that are 

observable and those that are not, and then appropriately 
discounting sensor readings that are known to be 
inapplicable. Thus, by treating the map as if it were a 
sensor, the value of real sensor data can be greatly 
enhanced. 

A great diversity of behavior may also be gained by 
dynamically combining information from multiple gradient 
fields. Consider, for example, two independent gradient 
fields, one which can guide a vehicle along a safe, well 
hidden route, and another which can lead the vehicle to 
nearby observation points. We can imagine that the vehicle 
is guided by the safe gradient field until the time comes for 
it to make an observation. Then, the gradient field for 
getting to observation points would become the primary 
guiding factor. Such a gradient field, formed similar to the 
field in Figure 4, would lead the vehicle to the nearest of 
several possible observation points. Once an observation 
point had been reached and observation data collected, the 
safe gradient field would again be used for guidance. Using 
such a combination of internalized plans allows the 
performance of tasks that would be difficult to accomplish 
with a symbolic plan. Without an explicit plan for action, it 
is the interplay between the vehicle and its environment that 
determines how the mission will ultimately be carried out. 

6 Conclusion 

Although abstraction is necessary if we are to provide 
organization and structure to the vast amounts of 
information available to an intelligent agent, we have seen 
examples in which the abstraction of plans can obscure their 
true intent and result in serious failures. In light of these 
issues we must ask whether forming the abstraction was 
really necessary or whether it was merely an artifact of an 
approach in which plans are regarded as programs rather 
than as resources for action. Using internalized plans, we 
have shown that with no abstraction of the map-based plan, 
we can obtain an ideal resource for action. 

Just as the grid of a digital terrain map is an 
abstraction of the Earth's surface, abstraction may be used 
to create other state-spaces which are suitable to use for 
planning. In many cases, however, it may be best not to 
attempt the fusion of information from different sources if 
an excessive degree of abstraction is required to do so. 
Instead, state-spaces should be formed to suit the type of 
information available, and once planning is performed in 
these state-spaces, no further abstraction of the results 
should be performed. The unabstracted product of planning 
search provides a measure of desirability for transitions 
from one state to the next, and this measure may be used 
directly as a resource for action. 

Although the discussion in this paper has focused 
primarily on internalized plans based on map data, it is also 
possible to consider internalized plans based on symbolic 
data such as found in more general problem-solving 
domains. There are some significant differences, however, 
between symbolic data and maps. In maps, state can be 
defined by position and orientation, and proximity between 
states is easily estimated by a Euclidian metric. In more 
complex domains, state may be difficult to define and even 
more difficult to sense.    Proximity of states may be 
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determined only through knowledge of what state transitions 
are achieved by various operations. However, when a 
domain can be divided into a set of recognizable states, and 
these states can be linked according to their accessibility to 
one-another, then internalized plans can be produced. Just 
as with map data, search through an abstract state space can 
indicate the progression of states required to reach a desired 
goal. If this knowledge can be used as advice within a 
system that can move between states on its own accord, then 
we can generate an internalized plan. 
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Abstract 
One approach to bringing coherence to the area 
of planning is to develop a framework that 
covers the set of requisite planning behaviors, 
enables comparisons among them by 
decomposing the behaviors into common 
primitives, and forms the basis for an integrated 
planning system. In this article we report on an 
on-going effort to build such a framework from 
the combination of a basic memory-driven agent, 
behavioral impasses, and generic responses to 
these impasses. This framework is loosely based 
on the planning strategy embodied within the 
Soar architecture, and is illustrated with 
examples from Soar. Though the framework's 
current level of development still falls far short 
of an integration of all of planning, progress has 
been made. 

1. Introduction1 

What is the range of planning behaviors necessary 
in an intelligent agent, and how do (or should) they 
arise during performance? Though this is a key 
question in the design and construction of intelligent 
agents, we — the AI community — are still rather far 
from answering it. What we have are partial answers 
to both parts of this question. For the first part, we 
have identified a grab bag of planning methods and 
behaviors — such as linear planning, nonlinear 
planning, opportunistic planning, wait-and-see 
planning, hierarchical planning, abstraction planning, 
goal decomposition, least-commitment planning, 
constraint posting, case-based reasoning, tweaking, 
schema-based planning, skeletal planning, reaction 
planning, reactive planning, backward chaining, 
operator        subgoaling,        means-ends        planning, 

This research was sponsored jointly by the Defense Advanced 
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simulation, envisionment, projection, lookahead 
search, state-space search, and temporal planning — 
and have a few attempts to build planners capable of 
multiple behaviors, such as NOAH [Sacerdoti, 1977], 
MOLGEN [Stefik, 1981a; Stefik, 1981b], 
SIPE [Wilkins, 1984], and TWEAK [Chapman, 
1987]). For the second part, we have proposed three 
general classes of answers, (l) The traditional answer 
is that these behaviors are preprogrammed into a 
general planning method that is run prior to 
performing each task and (possibly) when the 
application of the plan to the task goes awry. (2) 
The reactive answer is that the agent is already 
structured in such a way as to obviate the need for 
planning at run time, so no planning behaviors occur 
either just prior to, or during task performance. (3) 
The hybrid answer is to avoid the initial planning 
phase by utilizing the agent's existing structure, but 
to fall back on more general planning methods when 
this structure proves to be inadequate (and possibly 
to acquire more structure as a result). 

The purpose of this article is to report on an on- 
going effort at taking a next step towards answering 
the above question. The approach underlying this 
effort is to construct, and implement, a generic 
framework for planning by combining a particular 
instantiation of the hybrid approach — a recursive 
memory-driven agent roughly based on the approach 
to planning embodied in the Soar system [Laird, 
Newell, & Rosenbloom, 1987; Laird & Rosenbloom, 
1990] — with a set of generic responses to behavioral 
impasses. What this yields is a space of planning 
behaviors that overlaps with the set of behaviors 
listed above. The intent in so doing is to provide an 
organization over this space of behaviors, characterize 
when the individual behaviors can arise, provide a 
decomposition of the behaviors that allows 
comparisons in terms of common primitives, and to 
provide the foundation for the construction of a 
powerful and flexible planner. Though this still 
leaves     several     important     things     partially     or 
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completely undone — the framework does not include 
all known planning behaviors, nor does it characterize 
which behaviors are necessary in an intelligent agent 
or precisely when the individual behaviors are 
desirable — the hope is that this is a step in a useful 
direction. 

Section 2 describes the hybrid approach, with 
short digressions to ground the abstract 
characterization in Soar. Section 3 catalogues the 
behavioral impasses and a set of generic responses to 
them. This does not yet provide a complete set of 
response types, but is a start towards such a set. A 
sampling of the planning behaviors resulting from 
these impasses and responses are also provided from 
research on this framework in Soar. Section 4 relates 
this overall approach to other work in the field. 
Section 5 concludes and discusses future directions. 

2. A Hybrid Planning Framework 
Start with an agent capable of performing 

operations to achieve some end, where "operation" is 
used in a generic sense, referring to any specification 
of something to be accomplished. The operation can 
be external (a motor act) or internal (in a simulated 
world, for example), and either primitive (closing a 
gripper) or high-level (picking up a block). The 
specification can be procedural (directly executable) 
or declarative (interpretable), and specified in terms 
of what is to be accomplished (a goal) or how it is to 
be accomplished (an operator). The agent proceeds 
by cycling through four steps: 

1. Generation: Generate a set of candidate 
operations. 

2. Selection: Select an operation from the set 
of candidates. 

3. Applicability: Determine if the selected 
operation is applicable in the current 
situation (or make it applicable). 

4. Execution: Execute the selected operation. 

In Soar, this corresponds to the process of selecting 
and applying operators in problem spaces. 

So far, this describes a generic, serial, agent — 
though one with a particularly local drive, as it is 
always attempting to take the next step towards 
some end. What is missing, and what distinguishes 
the various planning behaviors, is how the four steps 
come to be performed. In our hybrid agent, 
precedence is given to a context-dependent, 
memory-driven performance strategy. In a memory- 
driven strategy, the information required for the 
performance of each step is directly accessed from the 
agent's  memory —  no involved  chains of reasoning 

For simplicity we will stick to serial agents in this article. 
However, it should be possible to extend the framework to agents 
capable of performing operations in parallel. 

are involved. In a context-dependent, memory-driven 
strategy, the current context — provided by 
perception, goals, etc. — determines what is accessed. 
For example, in a robot manipulation domain, the 
problem leads to accessing the available manipulation 
operations (for example, pickup, putdown, 
translate, open, and close). Based on the goal 
and situation, memory is then accessed about which 
operation to select (close, for example). Memory is 
then accessed about whether the preconditions of 
close are met in this type of situation. If the 
preconditions are met, then the final memory access 
either determines how the situation is changed by the 
operation (if this is an internal, or simulated, 
operation), or which motor actions are to be 
performed (if this is an external operation). 

The exact form of the memory is not critical for 
this behavior — it could be declarative or procedural; 
contain information that is generalized (plans) or 
instantiated (cases); and be structured as boolean 
circuits, rules, or frames. However, what does matter 
is that access to the memory be computationally 
limited. Without this restriction, arbitrary amounts 
and kinds of processing — such as full first-order 
theorem proving — can be surreptitiously imported 
under the heading of "memory access". The 
resulting agent — the basic agent — is a generic, 
computationally-bounded, memory-driven agent. 
While this is a fairly simple sort of agent, it forms 
the core out of which more complex planning 
behaviors can emerge. It also serves as a useful 
abstraction over a set of common agent types — 
depending on the exact details of the memory, the 
basic agent can be a reactive agent (if the memory is 
sufficiently limited computationally), a rule-based 
agent (if the memory contains computationally- 
limited rules about step performance), a tweak-free 
case-based agent (if the memory contains previous 
problem instances), or a non-hierarchical 
schema-based agent (if the memory contains 
generalized plans). 

In Soar, the memory is structured as a parallel 
production     system. Knowledge     about     step 
peformance is stored predominantly in procedural 
form, as productions that generate preferences about 
changes to working memory; however, it can also be 
stored in more episodic or declarative 
forms [Rosenbloom, Newell, & Laird, 1990]. 
Likewise, what predominantly corresponds to a plan 
is a set of preference-generating productions that 
jointly determine the agent's behavior, rather than 
more declarative specifications that yield behavior 
through interpretation. The latter is possible — see 
[Reich, 1988], for example — but is not the 

predominant approach. 
More complex — planning — behaviors arise when 

the basic agent hits impasses. Impasses occur 
whenever     the    memory    is    inadequate    for    the 
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performance of one of the four basic steps — for 
example, when the memory proves insufficient for 
generating a set of candidate operations. When such 
an impasse occurs, the agent is applied recursively to 
the problem of resolving the impasse. The hybrid 
agent consists of the basic agent — a generic, 
computationally-limited, memory-driven agent — plus 
this ability to recur on impasses. In its most flexible 
form, this recursion allows full meta-level — or, 
equivalently, reflective — processing. In Soar, this 
recursion occurs via the automatic generation of 
subgoals within which flexible meta-level processing is 
possible via the selection and use of further problem 
spaces [Laird, 1983; Rosenbloom, Laird, & Newell, 
1988]. 

The range of responses available during the 
recursive processing determines the range of planning 
behaviors exhibited by the hybrid agent. Consider 
two illustrative examples. In the first example, the 
agent is performing operations in the external world 
— it is in "execution mode" — and an impasse occurs 
because of an inability to select the next operation 
from the set of candidates. This drops the agent into 
"planning mode" where it can, for example, perform 
a lookahead search; that is, execute the candidates in 
a simulated world to determine which ones are likely 
to    achieve    its    end. The    resulting    behavior 
corresponds to a classical case of execution 
monitoring — detecting that the agent has reached a 
situation for which it does not have a preprogrammed 
response — and dynamic replanning. In the second 
example, the agent reaches an impasse because the 
selected operation is not applicable to the current 
situation. If it responds to this impasse by selecting a 
second operation in the recursive space that can 
modify the situation so that the first operation is 
applicable, the resulting behavior is appropriately 
characterized as backward chaining or operator 
subgoaling. 

Because impasses are tackled via a recursive 
process, further impasses can occur within this 
processing, leading to yet further levels of recursion. 
One implication of this recursion is that many of the 
same phenomena will occur for both execution and 
planning — both involve applying sequences of 
operations, and both can run into impasses on the 
same performance steps. This uniformity not only 
simplifies the structure of the planner — for example, 
making particularly simple the transfer of 
information from planning to execution — it also 
simplifies the subsequent analyses of planning 
behaviors. A second implication of this recursion is 
that many planning behaviors may arise from a 
cascade of impasses and responses, rather than from 
just single ones. Consider the first illustrative 
example above, which is described in a simple two- 
level fashion. This example actually occurs in Soar 
over three levels of behavior (two levels of impasses). 

As above, the first level consists of task execution. 
However, at the second level the operations are ones 
that evaluate the first-level candidates. If an impasse 
occurs during execution of one of these second-level 
operations — because of a lack of memory structures 
about the value of the first-level operation — a 
lookahead search is performed, beginning with the 
simulated execution of the first-level candidate. 

One important consequence of this overall hybrid 
framework is that planning occurs on an as-needed 
basis. Performance is predominantly memory-driven, 
but when memory is insufficient, planning is possible. 
Such a strategy can be quite effective in many 
situations, as it avoids expensive deliberation until it 
is needed, and can potentially be improved by simple 
learning strategies. However, in hazardous and/or 
time-limited domains it can get into trouble if the 
memory contains incorrect information, or if the 
memory turns out to be incomplete when attempting 
to perform a time-critical step (for which there is 
insufficient time to perform on-the-fly planning). 
Under such circumstances a prudent agent would be 
sensitive to its context, and deliberately do 
contingency planning prior to performing in the real 
domain. The results of this contingency planning 
could be used to alter the agent's memory structures 
so that when the real problems are faced, issues of 
incorrectness and incompleteness do not arise. If 
these memory alterations are persistent, this amounts 
to a form of learning. If the architecture is 
sufficiently uniform, the same approach can also be 
used to learn new memory structures from all 
planning episodes — whether it be deliberate 
contingency planning or as-needed planning (or 
replanning). If enough learning occurs in a domain, 
it may be possible to eliminate all impasses, and thus 
all planning, converting the agent into a completely 
memory-driven agent (for that domain). In Soar, this 
form of learning occurs via a chunking process that 
adds new productions to memory from the results of 
subgoal-based processing. 

3. Generic Responses to Impasses 
The hybrid framework presented in Section 2 

implicitly defines four distinct impasse types, one for 
each type of step: 

1. Generation: Failure to generate a set of 
candidate operations. 

2. Selection: Failure to select an operation 
from the set of candidates. 

3. Applicability: Failure to determine if the 
selected operation is applicable (or to 
make it applicable). 

4. Execution: Failure to execute the selected 
operation. 

The principal thesis underlying this article is that if 
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these impasse types are crossed with a set of generic 
response types, then a framework is generated which 
covers a significant fraction of the important 
planning behaviors. A complete rendering of such a 
framework is currently beyond our means. However, 
what has been accomplished so far is the isolation of 
four generic response types, an understanding of some 
of the planning behaviors that fall within their scope, 
and implementations of some of these behaviors 
within Soar. 

In the remainder of this section we characterize 
these four generic response types: 

1. Pursuit: Pursue resolution of the impasse. 
2. Termination:    Terminate    the    line    of 

development. 
3. Suspension:      Suspend      the      line      of 

development. 

4. Obviation: Alter context to make impasse 
irrelevant. 

A sampling of the planning behaviors generated in 
the context of Soar will be presented as illustrations. 

3.1. Pursuit 
Pursuit is the classical response to an impasse. It 

covers strategies that manipulate either the agent's 
knowledge, or the world itself, to resolve the impasse. 
For example, simulated lookahead is a typical pursuit 
strategy for selection impasses — it is a potentially 
unbounded method for squeezing out more 
information from what the agent already knows. 
Pursuit methods are widespread in planning. They 
include linear and nonlinear planning, the simulation 
methods (simulation, envisionment, projection, 
lookahead search, state-space search, operator 
subgoaling, and backward chaining), the 
decomposition methods (AND hierarchies, skeletal 
planning, schema-based planning, macro expansion), 
the deductive methods (theorem proving) , the 
inductive methods (case tweaking, analogical 
transfer), the attentional methods (shift of attention, 
extended memory search), the experimentation 
methods, and the advice-taking methods. Such a 
large and diverse list reveals that pursuit is rather a 
large grab bag itself, and implies that further levels 
of structure will eventually be needed in a complete 
framework. However, part of this diversity is only 
apparent, as it arises from the use of different terms 
for essentially the same behavior — such as 
simulation, projection, envisionment, lookahead 
search, and state-space search — while part of the 
remaining diversity arises from the development of 
different   classes   of  responses   for   different  impasse 

Many of the other methods are also technically deductive, but 
it seems useful to separate them out from the pure theorem 
proving methods. 

types: the just-mentioned simulation behaviors for 
selection impasses; the backward chaining (operator 
subgoaling) method for applicability impasses; the 
decomposition methods for execution impasses; and 
the attentional methods for generation impasses. So 
the picture isn't quite as bleak as it might at first 
appear. 

Previous articles on Soar have already detailed the 
implementation of a number of these behaviors. 
Decomposition occurs when a problem space 
containing more primitive operators is used in 
response to an impasse. Examples of decomposition 
for both selection impasses — where the selection 
problem space is used to decompose the problem into 
one of computing evaluations for each of the 
candidate operations — and execution impasses — 
where high-level operations, such as configuring a 
computer backplane, are decomposed into a 
conjunction of more primitive operations, such as 
configuring a module into a slot of the backplane — 
can be found in [Laird, Newell, & Rosenbloom, 1987]. 
The use of simulation for execution impasses — for 
the operations in the selection problem space — can 
also be found in [Laird, Newell, & Rosenbloom, 1987]. 
The use of advice taking for selection is described in 
[Golding, Rosenbloom, & Laird, 1987], and for more 

general impasses, in [Laird et al, 1990]. 
Rather than reprise this existing material in any 

detail, we will make do with a brief return to the 
issue of lookahead search — which nicely illustrates 
how planning behaviors can arise out of combinations 
of impasses and responses — and then look at recent 
implementations of linear and nonlinear planning. 
When lookahead was first introduced in Section 2, it 
was described as a response to a selection impasse. 
Later, this was refined to two levels of impasses: a 
selection impasse and an execution impasse. Now it 
can be further refined to a decomposition response to 
a selection impasse, plus a simulation response to an 
execution     impasse. In     fact,     under     many 
circumstances, this pair of impasses only yields one 
step of lookahead — once the simulated candidate has 
been executed, a new selection impasse may occur 
because of a lack of memory about what operation to 
select next. Thus, each such additional level of 
lookahead can correspond to two new levels of 
impasses. 

Both linear and nonlinear planning are quite 
familiar to the community by now. What makes 
them interesting here is not their novelty, but that 
they both turn out to be complex combinations of 
multiple impasses with varying pursuit responses. 
They thus turn out to be good examples for 
illustrating    the    framework. In    addition,    by 
decomposing each method into a set of impasses and 
responses, the framework makes explicit their 
normally implicit, fine-grained structure, and reveals 
their similarities and differences. 
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Both linear and nonlinear planning start with an 
operation that represents a conjunctive goal, and 
reach an execution impasse on this operation. They 
both then pursue this impasse, but in different 
fashions. In linear planning — as shown for the 
blocks world in Figure 1 — the agent responds to this 
execution impasse by decomposing the original 
operation into a set of operations, one for each 
conjunct. A selection impasse then occurs, unless 
there is memory about how to pick among them, or 
there is only one conjunct (in which case the 
decomposition also need not occur). In this selection 
impasse, a simulation begins by selecting one of the 
candidates. Execution of the operation then consists 
of achieving the corresponding conjunct. If the 
conjunct is not already met, it cannot be achieved by 
simple memory access, so an execution impasse occurs 
("goals" as operations have the property that they 
are always applicable, so no applicability impasse will 
occur). This execution impasse is responded to by a 
simulation in which means-ends analysis is used to 
generate a set of candidate operations from the 
operators in the domain. If there are multiple 
candidates, another selection impasse occurs. 
However, in this example there is only one candidate, 
so it is just selected. Its applicability is then tested, 
and if it is known to be applicable it is executed; 
otherwise, as is the case here, an applicability impasse 
occurs. The whole process then recurs, with the 
achievement of the operation's preconditions as the 
new goal, which in this case is non-conjunctive. 

In nonlinear planning — Figure 2 — the original 
operation is not decomposed. The agent instead 
responds immediately with a simulation in which the 
candidate operations are generated via means-ends 
analysis from the entire set of conjuncts. An 
operation is then selected, and if it is applicable, it is 
executed. If an applicability impasse occurs, the 
whole process then recurs, with a set of goal 
conjuncts corresponding to the original set, except 
that the conjunct responsible for generating the 
selected operation is replaced by the operation's 
preconditions. 

From these descriptions it can be determined that 
the key differences between these methods are: (1) at 

^<x 

For simplicity of presentation, and since we have already gone 
over the structure of lookahead, this and later figures show 
simulation directly arising from a selection impasse. 

5 There  is some  confusion  in  the  use  of the  term   "nonlinear 
planning" in the field.  Here we take it to mean the construction of 
plans   whose   ordering   of  operations   does   not   respect   subgoal 
boundaries.   In other words, operations for different goals can be 
interleaved.    Least commitment is one technique for generating 
nonlinear   plans,   but   it   is   not   what   is   meant   by   "nonlinear 
planning". Likewise,  nonlinear plans can  be built from partially 
ordered   plans,   but   they   need   not   be   (see [Veloso,   1989],   for 
example). 

•    •    • 

Figure 1: 
blocks world. 

Trace  of  linear   planning   in   the 

any point in time, linear planning generates a 
candidate set of operations by looking at only one 
goal conjunct — the current one — while nonlinear 
planning looks at all active goal conjuncts 
(irrespective of their level of generation); (2) linear 
planning must achieve a goal conjunct before moving 
on to a sibling (or higher level) conjunct, while 
nonlinear planning can intermingle operations 
generated from any of the active conjuncts; and (3) 
when linear planning finishes with a goal conjunct, it 
proceeds to one of the conjunct's siblings, while 
nonlinear planning has no locus of control (all active 
conjuncts are considered at all times). The bottom 
line is that linear planning obeys a strict depth-first 
progression. It looks at only one goal conjunct at a 
time, continues looking at that conjunct until it is 
resolved, and moves on to one of the conjunct's 
siblings when it is resolved. Nonlinear planning, on 
the other hand, is free to move around at will. 

Given this breakdown of the differences between 
the two methods, it can be used to generate methods 
intermediate between the two extremes. One such 
intermediate method is like linear planning, except 
that    no    decomposition    occurs    before    operation 
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^o^ Close-Door 
(5/6) 

►     •     •     • 

Figure 2: 
blocks world. 

Trace of nonlinear planning in the 

generation; or equivalently, it is like nonlinear 
planning, except that the conjunctive goal in the 
recursive step consists of only the selected operation's 
preconditions. Figure 3 shows a trace of such a 
method in a simple robot domain. This trace also 
contains two simplifications with respect to the traces 
we have seen so far. The first simplification is that 
the original conjunctive goal is not represented as an 
operation. Instead it is represented directly as the 
(only) end the agent is to achieve. The second 
simplification is that when an applicability impasse 
occurs, it is pursued directly by a simulation using 
operations generated via means-ends analysis from 
the    impassed    operation's    preconditions. This 
contrasts with the more involved approach used in 
the previous traces, where there is an intermediate 
step of creating a new operation for the new 
conjunctive goal, and simulation isn't used until an 
execution impasse occurs on this new operation. 
Other such simplifications — eliminations of impasse 
levels — are also possible under the appropriate 
circumstances. 

The    trace    begins    with    the    pursuit    of    the 
conjunctive     goal     via     a     simulation. When 
applicability impasses occur during the simulation, 
further simulation is performed to pursue them. This 
method can violate the strict depth-first progression 

Figure 3: Trace of intermediate planning in 
the robot domain, starting from the pursuit of 
the conjunctive goal. The task is to find the 
shortest path for achieving the problem in 
Figure 4, so evaluations correspond to minimal 
path lengths. 
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Figure 4: Initial state and goal for the 
robot-domain problem. The goal conjuncts are 
dashed (move block C into room 7 and close the 
door between  rooms 5 and 6.) 

used by linear planning, but only during operation 
selection for sibling conjuncts. 

In addition to using simplifications such as those 
in this last trace, another way to eliminate impasse 
levels, and thus to simplify performance, is to 
augment the agent's memory so that the impasses 
don't    occur. This    can    occur    by    deliberate 
prestructuring   of   the   agent's   memory,   or   it   can 
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happen dynamically via learning. As an example, 
Figure 5 shows a control production learned for the 
initial selection impasse in the intermediate trace 
from Figure 3. This production, in conjunction with 
others that are also learned, forms a control plan that 
allows selection to proceed for this task in a totally 
memory-driven fashion. Learned productions can 
also potentially transfer to other situations, thus 
allowing other selections to be performed in a 
memory-driven fashion. 

In the robot problem space, 
want door <dl> closed 

and box <b> In room <r2>, 

the robot is In room <rl>, 
door <dl> Is to room <rl>, 
door <d2> Is to rooms <r2> and <r3>, 
door <d3> Is to rooms <rl> and <r2>, 
door <d4> is to rooms <rl> and <r3>, 
door <d5> Is to rooms <r3> and <r4>, 
doors <dl> through <d5> are open, 
box <b> Is In room <r4>, 
box <b> is next to door <d5>, 
box <b> Is pushable, 

operators <ol> and <o2> are candidates, 
operator <ol> is Close-Door(<dl>), 
operator <o2> is 

Push-Through-Door(<b>, <r3>, <r2>) 

—> 

prefer <ol> to <o2>. 

Figure 5: Control production learned for the 
initial selection impasse in the intermediate 
robot trace of Figure 3. Angle brackets denote 
variables, and different variables bind to different 
objects. 

3.2. Termination 
Termination covers strategies that abort lines of 

development (that is, sequences of operation 
executions) that result in impasses. It leads to a class 
of what can be called completeness methods, because 
they assume that memory can be complete enough for 
successful     step     performance. In     applicability 
completeness, lines of development are terminated if 
they lead to applicability impasses. When this 
response is used for execution-time applicability 
impasses, it aborts any problem in which a selected 
operation is not applicable. When this response is 
used during planning-time applicability impasses, it 
focuses effort on lines containing operations known to 
be applicable. As an example, consider the blocks- 
world problem presented in the previous subsection. 
If this is initially pursued as with linear planning, but 

applicability impasses are responded to with 
termination, the behavior shown in Figure 6 arises. 
This behavior can be described as a search through 
the permutations of (subsets of) the operations 
generated for the original goal conjuncts. The 
planning methods described in the previous section 
also searched through sets of permutations, but they 
were different sets. Those methods had the 
additional ability to introduce new goal conjuncts — 
from the preconditions of selected operations — and 
thus to introduce new permutations based on the 
operations generated from these conjuncts. To 
counterbalance this increased flexibility, the linear 
and intermediate methods then use goal boundaries 
to restrict the set of permutations that are 
considered. 

^X 

•   • 

Fail 

Figure 6:    Trace of 
completeness in the blocks world. 

applicability 

Other (not yet implemented) completeness methods 
yield variations on this behavior. For example, with 
selection completeness, lines of development that 
yield selection impasses are terminated; essentially 
giving up whenever an ambiguous choice is reached. 
If termination is used for all impasses, pure memory- 
driven behavior — reactive behavior(?)  — is forced. 

3.3. Suspension 
Suspension covers strategies that delay the 

development of lines that lead to impasses. An 
example is execution suspension, where lines that lead 
to operations with nonobvious execution methods are 
delayed.     It is like  termination,  except  that  it  is 
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possible to return to the aborted lines at a later 
point. It also corresponds to a form of least- 
commitment behavior, in which there is a preference 
to    investigate     "understood"     lines    first. No 
suspension methods have been implemented so far in 
Soar, and it is still to be determined whether Soar 
provides the primitive functionality to implement 
such responses in a straightforward fashion. 

3.4. Obviation 
Obviation consists of changing the performance 

context so that the impasse no longer matters. It 
covers strategies that reformulate either the ends (the 
goal to be achieved) or the means (the operations) in 
such a way that the impasse becomes irrelevant. The 
difference between this and pursuit is that, in pursuit 
the impasse is resolved, while in obviation changes 
are made so that the impasse can be avoided without 
being resolved. One classical example of an obviation 
strategy is precondition abstraction, where 
applicability impasses are obviated by deleting those 
operation preconditions that lead to the impasses. 
When this is done during planning, it can yield an 
abstract plan which may be refined later. When this 
is done during execution, it corresponds to an 
attempt to bull through the constraints imposed by 
the world. 

Figure 7 shows what happens when obviation 
(precondition abstraction) is used in response to the 
applicability impasses that occur during planning for 
the robot-domain problem of Figure 4. As before, 
the original conjunctive goal is responded to via 
pursuit (simulation), but now applicability impasses 
are glossed over by assuming that unmet 
preconditions are actually met — this is a local way 
of deleting a precondition, without its affecting other 
uses of the same operation — and the operation is 
executed to the extent possible. Because the 
abstraction of a precondition can lead to partial 
execution of the corresponding operation, and thus to 
the generation of an abstract state, the abstraction 
propagates dynamically through the simulation (not 
shown). 

When the abstract simulations have successfully 
completed, they yield an abstract plan that 
determines what operations to perform during 
execution. Figure 8 shows a control production 
learned for the initial selection impasse in this trace. 
This production is quite similar to the one learned in 
the corresponding non-abstract trace (Figure 5), 
except that many of the situational conditions are 
missing. This occurs because successful completion of 
the abstract simulation depends on fewer aspects of 

Close-Door 
(5/6) 

See [Unruh, Rosenbloom, & Laird, 1987; Unruh & Rosenbloom, 
1989; Unruh & Rosenbloom, 1990] for more details about, and 
results from, impasse-driven abstraction in Soar; including the 
presentation of more sophisticated methods, such as iterative 
abstraction [Unruh & Rosenbloom, 1990]. 

Figure 7: Trace of precondition abstraction 
in the robot domain, starting from the pursuit of 
the conjunctive goal. The task is to find the 
shortest path for achieving the problem in 
Figure 4. A lexicographic evaluation function is 
used whose first component is the number of 
preconditions that have been deleted, and whose 
second component is the  minimal path length. 

the situation. The result is a more general 
production, which can be used in more situations, 
though not necessarily always correctly. 

In the robot problem space, 
want door <dl> closed 

and box <b> in room <r2>, 

the robot is in room <rl>, 
door <dl> is to room <rl>, 
door <d2> is to rooms <r2> and <r3>, 
doors <dl> and <d2> are open, 
box <b> is pushable, 

operators <ol> and <o2> are candidates, 
operator <ol> is Close-Door(<dl>), 
operator <o2> is 

Push-Through-Door(<b>, <r3>, <r2>) 

prefer <ol> to <o2>. 

Figure 8: Control production learned for the 
initial selection impasse in the abstract robot 
trace of Figure 7. Angle brackets denote 
variables, and different variables bind to different 
objects. 

Refinement of the abstract plan occurs when the 
operations that were abstracted during simulation are 
reselected during execution. When applicability 
impasses occur during execution, they are not 
obviated, since this is quite difficult in the real world; 
instead, they are responded to via pursuit methods. 
If further applicability impasses occur during the 
planning   of  this  pursuit,   then  further  abstraction 



occurs (and so on). Figure 9 shows a fragment of the 
refinement process for the trace in Figure 7. This 
processing is just a continuation of the earlier trace 
from the point where Close-Door (5/6) is selected 
for execution. Once this is done, the operation is 
executed without further impasses (the robot is 
already in the room containing the door to be closed). 
A random selection is then made between the other 
two options, because their abstract evaluations are 
equal, and an applicability impasse occurs. This 
impasse is obviated, and processing continues. The 
resulting behavior corresponds to multi-level 
refinement, where the original plan is as abstract as 
possible, and each level of refinement adds one more 
level of detail. It arises here not because of the 
deliberate construction of a multi-level agent, but 
because: (1) obviation is used for applicability 
impasses that occur during simulation, while pursuit 
is used for applicability impasses that occur during 
execution; and (2) the same processes occur during 
planning and replanning. 

Push-Through-Door 
(C.4.7L 

• • • 

Figure 9:    Refinement of the abstract plan in 
the robot domain. 

As with as-needed planning in general, impasse- 
driven abstraction engages in some trade-offs with 
respect to the more traditional, preprocessing 
approaches to abstraction, such as 
ABSTRIPS [Sacerdoti, 1974] and ALPINE [Knoblock, 
1990]. The    principal    advantage    is    that    the 
determination of what to abstract when can be driven 
by the dynamic needs of the agent in the context of 
the problem to be solved. The principal disadvantage 
is that, because abstraction is focused on obviating 
the local impasse, rather than on optimizing global 
performance,  potentially  powerful  abstractions  may 

be missed. 
In addition to obviating (abstracting) applicability 

impasses, research in Soar on obviating (abstracting) 
execution impasses in a computer-configuration 
domain is reported in [Unruh, Rosenbloom, & Laird, 
1987; Unruh & Rosenbloom, 1989]. This leads to 
successive-refinement behavior for the execution of 
operations. More general impasse-driven goal and/or 
problem space reformulations are also conceivable, 
but have not yet been investigated in any great 
depth. 

4. Relationship to Other Work 
This work does not stand alone. Because the 

flexibility of the framework comes from reflective 
processing in response to impasses, there is a close 
relationship to other work on meta-level architectures 
and reflection [Maes & Nardi, 1988]. In focusing on a 
set of standardized responses to behavioral impasses, 
this work is very much in the spirit of repair 
theory [Brown & VanLehn, 1980]. Veloso has 
developed a nonlinear planner for the PRODIGY 
architecture [Veloso, 1989], has proposed to use a 
memory-driven (case-based) strategy to drive the 
planning, and has identified a set of three general 
responses to be made when a justification from a case 
fails to apply [Veloso & Carbonell, 1990]. The 
BUILD system employed the notion of "gripes" and 
of "gripe handlers" that had flexible meta-level 
access to the situation [Fahlman, 1974]. In TWEAK, 
Chapman developed an integrative framework for 
partial-order planning [Chapman, 1987]. 

5. Conclusions 
Planning is an important, but still rather 

disorganized, subdomain of artificial intelligence. 
One route towards ameliorating this is to develop a 
framework for planning behaviors. Not only might it 
help bring organization to the field, but it might also 
provide the basis for constructing flexible and 
powerful planning agents. 

In this article, we have described one on-going 
research effort aimed at doing just this. The 
framework is based on the combination of a basic 
memory-driven agent, behavioral impasses, and 
generic responses to these impasses. Learning is also 
discussed as a way to compile impasse responses into 
bounded memory structures, thus allowing future 
behavior to be more memory-driven. Though the 
framework is still quite a ways from completion, 
several methods have already been covered, and 
decomposed into combinations of more primitive 
elements. 

A number of things remain to be done. First, the 
existing framework needs to be refined, especially in 
areas like pursuit, where it casts too coarse a net. 
Second, the scope of the framework must be 
expanded   to   cover   a   wider   range   of   planning 

This assumption is relaxed in the iterative abstraction method. 
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behaviors, such as temporal planning. Covering these 
may only require extending our understanding of the 
existing framework, but it is likely that actual 
extensions of the framework will also be required. 
Third, a more systematic investigation is required in 
which all of the generic responses are crossed with all 
of the impasse types. This should reveal how 
additional known planning methods are covered, and, 
more importantly, may yield new interesting 
methods. Fourth, investigations are needed into how 
to intelligently mix the generic responses across 
different types of impasses, and across different 
impasses of the same type. We have already seen 
some of this sort of mixing — of different forms of 
pursuit, of pursuit with termination, and of pursuit 
with obviation — but much more is possible. This 
has the potential to generate both novel methods, and 
more sophisticated versions of existing methods. For 
example, more sophisticated abstraction methods 
could be enabled by making decisions on an impasse- 
by-impasse basis about whether to obviate or pursue 
applicability impasses. This fits well within the 
framework, but it is not yet clear what knowledge is 
needed to make such decisions in an intelligent 
fashion. Fifth, and finally, this framework needs to 
be tied in with work on weak problem solving 
methods and on skill acquisition. On the former, the 
weak problem solving methods — such as depth-first 
search and hill climbing — cover a large segment of 
the generic pursuit methods, so efforts at developing 
integrative frameworks for the weak methods [Laird 
& Newell, 1983; Bennett & Dietterich, 1986; Nau, 
Kumar and Kanal, 1982] are particularly relevant. 
On the latter, augmenting memory with new plan 
information is a form of skill acquisition, so work on 
such topics as control-rule and macro-operator 
acquisition [Fikes, Hart, & Nilsson, 1972; Korf, 1985; 
Laird, Rosenbloom, & Newell, 1986; Langley, 1985; 
Mitchell, Utgoff, & Banerji, 1983] is particularly 
relevant. 
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Abstract 

0-Plan2 is an AI planning architecture which 
supports research into a number of aspects of 
planning, scheduling and control. It is based 
on earlier work on the O-Plan System which 
was directed towards plan generation. The pa- 
per explores the different types of choice or- 
dering decisions which need to be made in an 
architecture for command and control. The 
mechanisms for choice ordering and selection 
in the original O-Plan system were found to 
be too general for efficient use for all purposes. 
The paper describes a number of choice order- 
ing mechanisms provided in the 0-Plan2 Archi- 
tecture which provide specialised mechanisms 
more suited to the range of different ordering 
problems that arise in planning, scheduling and 
control applications. 

1    Introduction 

O-Plan is a continuation of earlier work on Nonlin [Täte, 
1977] and was influenced by a number of other systems 
developed in the late '70s and early '80s. In particular 
it inherits features from: 

• NOAH: [Sacerdoti, 1977] by using a least commit- 
ment search strategy based on a hierarchical repre- 
sentation of plans in which actions may be partially 
ordered. 

• Nonlin: which introduced the notion of goal struc- 
ture as a means of recording the rationale behind 
actions in the plan, and also the use of typed precon- 
ditions as an aid to search space control. A declar- 
ative Task Formalism (TF) was also used to provide 
a description of applications to the planner. 

• Deviser: [Vere, 1981] itself derived from Nonlin but 
was extended to handle time and events. 

'This work is supported by the US Air Force/European 
Office of Aerospace Research and Development by grant num- 
ber EOARD/88-0044 monitored by Dr Nort Fowler at the 
Rome Air Development Center. The views expressed are 
those of the author only. 

• Molgen: [Stefik, 1981] notable for its ability to per- 
form object selection using least commitment prin- 
ciples. This is supported by constraint formulation 
and propagation techniques. 

• McDermott: [McDermott, 1978] provided the no- 
tion of defining a plan to encompass the decisions on 
plan structure already taken and outstanding prob- 
lems still to be handled by the planner. 

• OPM: [Hayes-Roth k Hayes Roth, 1979] provided 
an opportunistic planning framework in a blackboard 
architecture. It introduced the concept of cognitive 
specialists which can make certain kinds of decisions 
to alter the plan as it is being built and showed how 
measures of the worth of invoking these specialists 
could be utilised. 

O-Plan borrows from these systems, but importantly 
it presents a framework, or architecture, which enables 
these techniques to be incorporated into a single system 
in a uniform way. The system is fully described in [Currie 
k Täte, 1989]. 

0-Plan2 is a more portable redesign and reimplemen- 
tation of the O-Plan architecture in a Common Lisp, X- 
Windows and Unix environment. It improves on O-Plan 
in a number of ways. This paper will give an overview 
of the 0-Plan2 architecture and describe the different 
mechanisms provided within the architecture to enable 
the planning and control system builder to select suitable 
implementation methods for describing choices, posting 
constraints which will restrict choice, postponing choice 
making decisions until the most opportune time to make 
them, and triggering choices that are ready to be acted 
upon. 

2     0-Plan2 Architecture 

0-Plan2 is a domain independent architecture to sup- 
port the construction of planning, scheduling and control 
systems. By providing suitable versions of the Domain 
Description, Plan State, Knowledge Sources and Sup- 
port Tools, the architecture can be tailored and made 
more efficient for specialised use. Three different sys- 
tems are currently being explored using the same basic 
architecture. 

• An activity based task planner: O-Plan is being re- 
tained as the name for the activity based task plan- 
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ning application of the architecture. 

• A scheduler: TOSCA is a variant of the system spe- 
cialised to manufacturing scheduling applications. 
Here the plan state includes information on the 
work capacity of the machines available and re- 
source based representations of the schedules being 
constructed. Knowledge sources are specialised to 
resource analysis and resource based planning. 

• A planner with a logical temporal representation: a 
project is underway to employ a temporal logic used 
for temporal data bases as the basis for the plan 
state. Specialised Domain Description, Knowledge 
Sources and Support Tools will allow the planner to 
generate plans in this representation. 

The basic 0-Plan2 architecture with definitions of its 
parts suited to activity based task planning is shown in 
Figure 1. 

The Task Formalism or TF domain description is com- 
piled into static data structures, to be used during the 
plan generation process - in particular, activities are rep- 
resented as schemas. The left hand side of Figure 1 
denotes the plan state, which comprises the emerging 
plan (based on the partial order of activities), the list of 
plan flaws, and internal detail such as the Goal Struc- 
ture [Täte, 1977], the effects of activities (as in NOAH'S 

Table of Multiple Effects or TOME [Sacerdoti, 1977]) and 
plan variables. The flaws are posted onto agenda lists, 
which are simply lists of outstanding tasks to be per- 
formed during the planning process, and are picked off 
by an overall controller to be processed by the knowl- 
edge sources in the middle of the diagram. The knowl- 
edge sources provided represent the planning knowledge 
of the system and are referred to as plan modification 
operators. Knowledge sources run on one or more knowl- 
edge source platforms which are able to run some or all 
of the available knowledge sources. Knowledge sources 
in turn may add detail to the plan state, for example by 
expanding actions to greater levels of detail, establish- 
ing how conditions are satisfied, adding ordering links 
or choosing bindings for plan variables. The knowledge 
sources may also post new flaws as a result of discover- 
ing constraint violations, detecting goal interactions and 
other problems. The knowledge sources also provide the 
means whereby a user can assist the planner. 

There are a range of flaw types and each is matched 
with an appropriate knowledge source which can pro- 
cess the particular flaw. Recognised flaw types in 
the activity based task planner include expand an 
action, satisfy a condition, add a link, bind a 
plan variable and even call the user. This ap- 
proach allows for the extension of the capabilities of the 
system. O-Plan knowledge sources relate to plan gener- 
ation only. The early versions of 0-Plan2 will replicate 
the plan generation features of O-Plan. However, new 
flaw types and knowledge sources will be provided in O- 
Plan2 to provide an experimental platform for planning 
and control in a simplified distributed environment com- 
prising a ground based planner and a space-borne exe- 
cution agent. The 0-Plan2 architecture will support the 
reasoning of both agents and the extraction and patch- 

ing in of plans fragments between the on-going control 
environments of both agents [Täte, 1989]. 

0-Plan2 is built up in a succession of layers of func- 
tionality in order to support the control requirements in 
a concise manner. At the lowest level is a simple fact 
storage and retrieval database. This is used to provide 
support for effect and condition maintenance in a context 
layered fashion. In turn the effect and condition manager 
maintains "clouds" of (aggregated) effects and holding 
periods (ranges) for effects contributing to the satisfac- 
tion of necessary conditions in the plan state being de- 
veloped [Täte, 1986]. Moving up the layers, this is turn 
provides support for QA (Question Answering) which is 
the basic reasoning component within the system. QA re- 
sults drive plan state alterations made by the planner's 
knowledge sources which in turn are maintained by the 
net management and time point network manager mod- 
ule. To facilitate re-use of support tools across a range 
of different specialisations of the 0-Plan2 architecture, 
there is a clear distinction between the plan state specific 
description (called by us the associated data structure) 
and the underlying management of time points and tem- 
poral relationships. 

0-Plan2 is given tasks by adding entries to its plan 
state flaw list (agendas). 0-Plan2 maintains a partial 
plan at all stages, and makes alterations to the partial 
plan and the flaw list as it proceeds. The partial plan 
represents a complete description of a set of possible 
plans which are only partially specified. The controller is 
responsible for selecting an outstanding flaw to process 
whenever a knowledge source can be activated on a wait- 
ing knowledge source platform. The domain information 
is consulted by knowledge sources as they run. This lets 
knowledge sources access task descriptions, definitions 
of resources and other domain constraints. The domain 
information also gives access to the operator schemas 
which define higher level activities in terms of more de- 
tailed activities. There will often be more than one plan 
modification possible; that is, there will often be a choice 
of how to remove a flaw. These choices lead to search. 
Normally, the consequences of a decision are maintained 
by the support tools and information about the selec- 
tion made is stored as dependency information within 
the plan state. However, there are occasions on which 
alternative plan states may need to be generated to ex- 
plore the options. O-Plan and 0-Plan2 allow for such 
alternative based explorations. 

O-Plan searches through a space of partial plans, mod- 
ifying one plan to obtain another. It seeks a complete 
plan that is free of flaws - though this may not be achiev- 
able in continuous command and control applications. 
The plans produced by the activity based task planner 
variant of 0-Plan2 are described in networks. The nodes 
in the network denote actions, and the arcs signify an or- 
dering on action execution. Each node has information 
associated with it which describes the action's conditions 
and effects. Time and resource information can also be 
associated with each action in a plan network node. 
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3    Ordering Mechanisms in O-Plan 

The O-Plan system seeks to include mechanisms to al- 
low for the implementation of an efficient planning sys- 
tem able to take an opportunistic approach to selecting 
where computational effort should be concentrated dur- 
ing planning. This aim was only partially achieved in 
the original O-Plan. The basic mechanisms are listed in 
the following sections. 

3.1 Building up information in an Agenda 
Record 

O-Plan included the ability to allow a knowledge source 
to examine a possible decision point (represented by the 
agenda entry it was asked to process) and to add infor- 
mation relating to the choice to the fields of the agenda 
record. If the choice did not become suitably tightly re- 
stricted as a result of the addition of this information, 
it is possible to put the agenda entry back onto the out- 
standing flaws list with improved information for decid- 
ing on the time to reselect it for processing. The ability 
to build up information around an agenda entry in an 
incremental way prior to a final knowledge source activa- 
tion is an important feature that ensures that work done 
in accessing data bases and checking conditions can be 
saved as far as possible when processing is halted. There 
are some similarities to mechanisms within real-time re- 
sponsive architectures such as RT-1 [Sridharan, 1988]. 

3.2 Granularity of Knowledge Sources 

Each knowledge source within the 0-Plan2 architecture 
encodes a piece of planning knowledge. For example, 
how to expand an action, bind a variable, check a re- 
source, etc. From a modularity viewpoint, there is some 
advantage in having a very fine grain of knowledge source 
to implement planning knowledge. However, this can 
lead to tens of agenda entries and knowledge source ac- 
tivations with the overheads associated with such ac- 
tivations for even the simplest types of action expan- 
sion. In simpler planners, such as Nonlin, an expansion 
is efficiently handled as an atomic operation. There is a 
conflicting desire to have efficient large grain knowledge 
sources implementing planning knowledge and very fine 
grain knowledge sources detailing each individual step of 
some higher level plan modification operator. 

With a finer grain of knowledge source, it was also 
found that ordering relationships between agenda entries 
left in the agenda list had to be stated to ensure efficient 
processing. The controller was then required to unravel 
the web of activation orderings that resulted. A special 
form of agenda entry called a sequence was implemented 
to assist the controller in this task, it would only consider 
the head of the sequence for activation at any time, sub- 
sequently releasing the following agenda items clustered 
in the sequence in the order indicated. This process is 
similar to the control blocks used in the Tecknowledge 
S.l system [Tecknowledge, 1988]. 

3.3 Priority of Processing Agenda Entries 

O-Plan assigns priorities to every flaw placed on the 
agendas at the time they are placed. The priorities are 

calculated from the flaw type, the degree of determi- 
nancy of the flaw and information built up in the Agenda 
Record as described earlier. These provide measures 
of choice within the flaw. Two heuristic measures are 
maintained in each agenda entry. One called BRANCH-1 
indicates the immediate branching ratio for the choice 
point. An upper bound on this can be maintained 
quite straightforwardly. The second measure is called 
BRANCH-N and gives a heuristic estimate of the num- 
ber of distinct alternatives that could be generated by 
a naive and unconstrained generation of all the choices 
represented by the choice point. 

In O-Plan, three agendas are maintained to efficiently 
select between agenda entries which are ready for knowl- 
edge source activation and ones awaiting further infor- 
mation to bind open variables in the agenda information. 
This is described in [Currie & Täte, 1985]. Eventually 
though, the ready to run agenda entries are simply rated 
according to a numerical priority maintained for each 
agenda entry on the basis of flaw type and the BRANCH- 
1 and BRANCH-N estimators. This forms too simplistic 
a measure for allowing the controller to decide between 
waiting agenda entries. Consideration was given to a 
rule based controller with knowledge of other measures 
of opportunism but no implementation of this was done 
within the original O-Plan. 

4    Ordering Mechanisms in 0-Plan2 
0-Plan2 seeks to provide a more coherent set of mecha- 
nisms to enable the planning and control system builder 
to select suitable implementation methods for describing 
choices, posting constraints which will restrict choice, 
postponing choice making decisions until the most op- 
portune time to make them, and triggering choices that 
are ready to be acted upon. 

4.1     Knowledge Source Stages 

The O-Plan mechanism for building up information in 
an agenda entry prior to making some selection between 
alternatives was a very useful feature but proved difficult 
to use in practice. A knowledge source had to be acti- 
vated to initiate processing which might simply add a lit- 
tle information to the agenda entries and then suspend 
to allow the controller to decide whether to progress. 
This is very inefficient. 

In 0-Plan2, knowledge sources are defined in a series 
of stages. There can be one or more stages, only the last 
may make alterations to the plan state (thus locking out 
other knowledge source final stages which can write to 
the same portion of the plan state). Any earlier stages 
may build up information useful to later stages. At the 
end of any stage, the knowledge source must be prepared 
to halt processing if asked to by the controller. If it is 
asked to halt at a stage boundary, the knowledge source 
may summarise the results of its computation in a field 
of the agenda record provided for this purpose. A con- 
troller directed support routine is called by the knowl- 
edge source at the end of each stage to identify whether 
it must halt or may continue. This allows the controller 
to dynamically re-direct computation as it considers all 
the information available to it, while providing a simple 
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and efficient way for the knowledge source to continue 
computation without intermediate state saving while it 
continues to receive a go-ahead from the end of stage 
continuation authorisation routine. 

A Knowledge Source Formalism for 0-Plan2 is being 
designed to allow for stage definition and to assist with 
declaring the restrictions on the plan state portions af- 
fected by the final plan state modifying stage of the 
knowledge source - to assist in lock management. 

4.2 Knowledge Source Triggers 

In 0-Plan2, a mechanism of setting triggers on agenda 
entries for activating knowledge sources (and an individ- 
ual stage of a knowledge source if desired) is provided. 
The triggers may use various "items" of data available 
within the plan state and other global information avail- 
able to the planner. These may include things such as 
the availability of a specific binding for a plan variable, 
the satisfaction of a condition at a specific action node 
in the plan network, the use of a specific resource, the 
occurrence of an external event, information from the 
"clock" within the planner, etc. The Knowledge Source 
Formalism referred to earlier will also be used to define 
triggers on knowledge source stages. The triggering con- 
structs in the language will initially be quite restrictive to 
ensure that efficient agenda entry triggering mechanisms 
can be implemented. However, as we gain experience, we 
expect the triggering language to be quite comprehen- 
sive. A knowledge source may also dynamically create 
a trigger on a continuation agenda entry when halting 
processing at a stage boundary. 

Only agenda entries which are currently triggered will 
be available to the controller for decisions on which en- 
tries to activate through to a knowledge source running 
on a knowledge source platform. 

4.3 Compound Agenda Entries 

Individual simple agenda entries can be grouped together 
into compound agenda entries. Only the head entries 
in the compound agenda entry are considered at any 
time by the controller (and possibly by the triggering 
mechanism considered above), thus cutting down on the 
amount of processing required by the controller to select 
the next agenda entry to execute when such pre-defined 
orderings can be specified. Compound agenda entries 
can be made by knowledge source to implement some 
definite planning strategy or to implement planning al- 
gorithms with finer grain knowledge sources to provide 
modularity and real time response improvement. 

A Support Routine is to be provided in 0-Plan2 to 
allow any knowledge source to easily and reliably build 
and return a compound agenda entry. 

4.4 Controller Priorities 

The controller is given the task of deciding which of the 
current set of triggered agenda entries should be run on 
an available knowledge source platform. It does this by 
considering the priority and measures of opportunism 
of the agenda entry. Four priority levels are available 
within 0-Plan2 - Low, Medium, High and Emergency. 
The Emergency priority level is only available to handle 

incoming external events. The RT-1 system has simi- 
lar priority based processing arrangements [Sridharan, 
1988]. In certain cases, an 0-Plan2 implementation will 
possess knowledge source platforms dedicated to pro- 
cessing specific real-time responsive events appearing as 
agenda entries - thus allowing for reliably real-time re- 
sponse to events categorised as Emergency priority. 

A waiting knowledge source platform will be able to 
run one, several, many or all knowledge sources. Any 
restriction on a specific platform will be known to the 
controller. Only triggered agenda entries at the high- 
est priority level which can be processed on a waiting 
knowledge source are considered by the controller on 
each cycle. Where there is still choice, a range of mea- 
sures of opportunism and priority are employed to make 
a selection. The underlying principle is to make a se- 
lection according to a strategy given to the controller. 
Initially this strategy will use user selected preferences 
or by default will seek to reduce search to the extent 
it can judge this (reflecting the opportunistic generative 
planning nature of the early versions of 0-Plan2 - like 
its predecessor O-Plan). Measures such as BRANCH-1 
and BRANCH-N described earlier for O-Plan are relevant 
to this. However, the use of a utility function guided 
by task specifiers given to the controller will be explored 
later for 0-Plan2 when it is used in continuous command 
and control applications. 

5     Summary 

0-Plan2 seeks to provide a more coherent set of mecha- 
nisms to enable the planning and control system builder 
to select suitable implementation methods for control- 
ling the flow and ordering of making choices in an AI 
planner. These mechanisms are: 

• the use of stages in knowledge sources to allow for 
a linear thread of computation to be defined which 
can be assumed to run through to completion, but 
provides a means for interruption at defined staging 
points. 

• the definition of triggers on knowledge sources and 
knowledge source stages to provide a clear means to 
delegate a higher level of knowledge source activa- 
tion checks to the controller. 

• the use of compound agenda entries to put direct de- 
pendencies of some tasks on others that must com- 
plete earlier. This allows complex computational 
dependencies and strategies to be created. 

• the use of agenda manager priorities to allow the 
controller to select appropriate ready-to-run agenda 
entries and match these to waiting knowledge source 
platforms. 

All the mechanisms described above are part of the 
0-Plan2 planner now being constructed. 
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ABSTRACT 

This paper1 examines how game theory techniques can 
be combined with knowledge-based planning procedures 
to reason about an adversary's beliefs and the extent to 
which a competitive agent is capable of defeating a plan. 
The main results are that (a) the hypergame provides a 
convenient mechanism for representing and reasoning 
about knowledge/data not available to a competitive 
agent and (b) automated implementation of this form of 
game theory-based reasoning is conceptually 
straightforward. 

1.0 INTRODUCTION 

In multi-agent environments effective planning requires 
that the planner have an ability to reason about beliefs, 
intentions, and likely actions of other agents.  This fact 
has lead various researchers to explore alternative 
formalisms for reasoning about other agents' beliefs (e.g. 
Halpem, 1986; Vardi 1988). Unfortunately, most of these 
approaches only deal with categorical assertions about 
belief; and agent either does or does not believe some 
sentence.  Statements such as Probably 'A believes X,' or 
Probably 'A is not aware of option X' cannot be reasoned 
about.  This is a severe limitation, since it is rare that 
one can predict an agent's actions, particularly those of 
an adversary, with an precision.  Practical planning 
requires the generation of plans that are flexible and 
robust against probable actions of other agents. 

In this paper we show how game theory techniques can 
be combined with AI planning techniques to reason 
probabilistically about an agent's beliefs.  At the same 
time, we demonstrate how AI techniques provide a new 
approach to the "outguessing problem" in game theory. 

1 This research is part of an ongoing research program in 
automated adversarial planning.  Support for this research 
program is provided by the Center of Excellence in Command, 
Control, Communications, and Intelligence at George Mason 
University. The Center's general research program is sponsored 
by the Virginia Center for Innovative Technology, MITRE 
Corporation, the Defense Communications Agency, CECOM, 
PRC/ATI, ASD(C3I), TRW, AFCEA, and AFCEA NOVA. 

This discussion focuses on adversarial 
planning/competitive games.   However, the basic 
approach and all the algorithms are applicable to 
noncompetitive planning problems as well. 

The material below is decomposed into two parts. 
Section 2.0 is a self-contained discussion of game theory 
and on use of hypergames in adversarial planning. 
Section 3.0 then discusses how to implement this form of 
reasoning as part of an automated adversarial planning 
system. 

2.0 GAMES AND HYPERGAMES 

In this section we are going to introduce some primitive 
game theory concepts, develop a consistent set of terms, 
and give you a peek at hypergames.  This system was 
specifically designed to address problems which are 
factorial or exponential in terms of possible strategies. 

GAME THEORY 
In game theory, an opponent is referred to as a player. 
Each player has a countable number of choices, called 
strategies. The possible outcomes of a game are a 
function of all of the strategies available to both players. 
The optimal solution of a game may be a pure strategy or 
a mixture of pure strategies.  A pure strategy is a single 
strategy. A mixed strategy combines two or more of a 
player's pure strategies. If the outcomes for one player 
are the negative of the outcomes for the other player, 
then the game is called a two-player, zero-sum game. 
Only one value for each strategy pair is needed to 
describe this kind of game.  We usually show the 
outcome from player A's perspective. 

Extensive Form 

The extensive game is a representation of all the 
possible play by players and chance in a game. For even 
games as simple as 2-player Monopoly™, this form must 
consider all die rolls for both players and their buying 
decisions (estimated conservatively as 11x2x2, or 44) for 
each turn. This form has its computational problems. 
However, it is the most information containing form, so a 
more rigorous definition follows. 
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The extensive form of a game is a finite tree 
which represents all of the possible moves in a game. Its 
origin, o, represents the initial starting position. Each 
node of the tree is a possible future position. Each edge 
of the tree is a player's alternative. The endnodes are 
those that have no future alternatives, that is the game is 
over when an endnode position is reached.  Any path 
from the origin to an endnode is called a play. 

The tree itself can be depicted as a n-ply tree, 
where the number of opponents, n, are represented at 
each ply.  Each ply is used to show the alternatives 
available to the player being examined. In standard 
games such as Monopoly, Poker, and Chess each n-ply 
are called a turn.  Each ply can represent a simultaneous 
decision or a sequential one.  Therefore a Planner which 
plans m turns ahead accounts for m x n plies in the tree. 

A's strategies 

B's strategies 1 

Outcomes   (1,1) 

Normal Form 

(1,2)      (2,1)      (2,2) 

The normal (or matrix) form of a game is a 
synopsis of the extensive form. The normal form is based 
on choices of strategy, which may be thought of as a 
complete set of contingency plans for every situation 
which might arise.  Although it is not easy to identify all 
of the strategies available to a player, it is theoretically 
possible to do this for every finite game. In this form 
every player has but one move, the choice of a strategy. 
Most examples in Game Theory are shown in this form. 

Player B 

Player A B's Strategy 1 B's Strategy 2 

A's strategy 1 outcome(l,l) outcome(l,2) 

A's strategy 2 outcome(2,l) outcome(2,2) 

Normal form of 2 Player Game 

Games represent the ultimate case of a lack of 
information about the reasoning process of the opponent. 
The result is that a very conservative criterion, the 
MAXIMIN and MINIMAX criterion, is usually proposed 
for two player zero-sum games.  This criterion selects a 
strategy which yields the best of the worst possible 
outcomes. 

MAXIMIN is the maximum of the minimums. It is 
the lower bound of the value of the game. 

MINIMAX is the minimum of the maximums. It is 
the upper bound of the value of the game. 

An optimal solution is defined as a strategy in which 
neither player gains a benefit from altering his strategy. 
In this case the game is said to be stable or in a state of 
equilibrium. 

Player B 

Player A Strategy 
1 

Strategy 
2 

MAXIMTN 

A's strategy 1 2 3 2 

A's strategy 2 -1 4 -1 

MINIMAX 2 4 2 

An Example of a Game with a Pure Strategy Equilibrium 

The example provides the following information: 

A's MAXIMIN (rightmost column) strategy is 
strategy 1 with a value of 2, italicized and 
bolded in the MAXIMTN column. 

B's MINIMAX (bottommost row) strategy is 
strategy 1 with a value of 2, italicized and 
bolded in the MINIMAX row. 

The game is stable and the value of the game is 2 (in the 
double box). We will adopt two terms from the US Army: 

Course of Action (COA) - a strategy for our forces. 
Plan - a strategy for enemy forces. 

Enemy 

US Forces Plan 1 Plan 2 MAXIMIN 

C0A1 2 3 2 

C0A2 -1 4 -1 

MINIMAX 2 4 2 

An Example of a US Forces Game with US 
Outcomes. 

Mixed strategy - a probabilistically weighted use of more 
than one plan or CO A. 
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Enemy 

% 0% 42% 58% 

% US Forces Plan 
1 

Plan 
2 

Plan 
3 

MAXIMIN 

75% COM 2 

-1 

1 

3 

4 

-4 

0 

-2 

5 

0 

0% COA2 -2 

25% COA3 4 

MINIMAX 2 4 5 0to2 

An Example of a US Mixed Strategy 

Using a linear program to solve, the US Forces should 
use COAs 1-3 in the mix: [75%, 0%, 25%]. The enemy 
is calculated to be optimal when using Plans 1-3 in the 
following mix: [0%, 42%, 58%].  The actual value of the 
mixed strategies is 1.25. The value of a game will 
always lie between the MAXIMIN and MINIMAX bounds 
(0 and 2, in this case).   Several interesting properties are 
seen in the above case. 

(1) Some strategies are dominated by other 
combinations of strategies, such as Plan 1 for the 
enemy and COA 2 for us. 

(2) The mixed strategy does not even include the 
MTNIMAX strategy of player B, that is the pure 
strategy which guarantees the worst result for 
player B. 

(3) The value of the game is something other than 
a result in the chart. 

But what if you know that the opponent is likely to use 
plan 1?  How do we reason about an opponent with whom 
we are familiar?   We are discussing a strategy selection 
in a situation which is not at the equilibrium point. What 
is our optimal plan against a mixed strategy which 
incorporates such reasoning? 

HYPERGAME THEORY 
Hypergame theory has been used to discuss games where 
both sides are playing different games (Bennett 1982). 
This subjective approach has many intuitive features that 
would be valuable if an optimal hyperstrategy could be 
derived.  It can be used to support the reason that master 
game players rarely use their most sophisticated 
strategies on novices.  Hypergame theory is necessary 
anytime one side knows information unavailable to the 
other side.  This information can be a novel course of 
action, as well as the value of surprise, deception, or 

unexpected reinforcement  It could answer questions 
about incorporating experience and planning time 
differences when choosing a course of action. These 
questions are particularly appropriate when lots of 
combinations of tactical moves are available to players 
such as in war games.  It is also valuable when enemy 
decisionmakers are concentrating on schemes of 
maneuver using predictable doctrinal templates. 

Our extension to hypergame theory is the process of 
optimizing one's strategy using subjective probabilities 
(expert judgments) about the game being considered by 
an adversary. The basis of these judgments can be 
military intelligence reports, previous tendencies of an 
enemy commander, and our knowledge of the enemy's 
doctrine.  There is a conceit that the game that we are 
using is a superset of the opponent's game, although 
some probability can be assigned that the opponent is 
using the complete hypergame.  If we are certain about 
which game an opponent is playing then the probability 
used in our model is represented as 1.0 for that game. If 
the enemy might be considering different games then we 
estimate the probabilities of each.  Note: an enemy only 
considers one game, we apply probability to describe our 
uncertainty about which game is being played.  Game 
theory is still used to determine the strategies for both 
sides for each possible game.  When the games are 
combined into a hypergame, a hyperstrategy can be 
determined. 

Hypergames are analogous to a possible world framework 
with explicit belief assigned to each possible world. 
Reasoning is done on each of the frames and aggregated 
for an overall assessment of the strategy adopted by an 
opponent.  Hypergames, therefore represent a modal 
extension to the logic of normal game theory.  In fact to 
reason about an opponent's belief of our beliefs is an 
interesting modal logic oriented future step in this work. 

HYPERSTRATEGIES 
The general form for determining a zero-sum 
hyperstrategy follows. Let pi be the probability of an 
opponent playing a subgame i of the hypergame, which 
we will call a game. Note that: 

IA = I 
I=I 

In other words, n accounts for all of the possible games 
that the opponent might play.  Let sj be the enemy 
minimax strategy vector for the each game, whether 
mixed or pure.  This strategy is determined using standard 
game theory assumptions and results in a rational 
strategy.  Unfortunately for the opponent, this is a local 
optimization of only one game.  Use the following: 
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where p/ is the probability weight of game i, and Sy is 
the probability weight of playing strategy j for each game. 

to determine Sj, the probabilistically weighted strategy 
vector for the opponent. This vector is the weighted 
average of the enemy strategies. 

H = max 
k 

where ujk is the utility value for the outcome Plan j and 
COAL 

The hyperstrategy, H, can be chosen to maximize the 
expected value of each row, k, by summing the utilities, 
ujic, weighted by the probability of the enemy strategy, 
Sj.  The result is the new expected value of the 
hyperstrategy.   Since the decisions of each commander 
are now decoupled, only a pure strategy is recommended. 
That a single strategy is recommended is an extremely 
important result.  This means that we can make a definite 
recommendation.   While hyperstrategies are an 
important, tractable, theoretical extension of game 
theory, investigations are underway to provide evidence 
about the practical usefulness of hyperstrategies (Vane 
1990) in a wargaming environment. 

A SIMPLE NOTATION 
The following diagrammatic notation, designed by Vane, 
is introduced to ease discussion of hypergames and 
hyperstrategies. 

P2% X 

Pl% X X X 

AST Plan 1 Plan 2 ■ ■■ Plan m 

X X CCA I UM U12 U-m 

X X C0A2 U2, U22 U2m 
a 
■ 

CQAn n2 I   "J 

This notation shows two games of an m x n hypergame, 
game 1 weighted by Pl% and game 2 by P2%. The 
complete game is shown in the heavy rectangle.  In the 
above diagram, Game 1 does not include all of the 
friendly options in the reasoning (at least COA n is 
missing).  Game 2 uses only one enemy strategy, Plan 1. 
These situations are shown by the X's above Plans and to 
the left of CO As to show which CO As and Plans are 
associated with each belief percentage. 

Sj Si S2 Sm 

P2% S21% 

Pl% Si 18 Si 2% Sim% 

Ex pected 
Value 

\ B 
ANT Plan 1 Plan 2 ■ ■• Plan m 

EV 1 X2l% Xl \% COA 1 un Ui2 
U!m 

EV2 X22% Xl2% COA 2 U2i u22 U2m 

• 
• 

1     ■ 

EVn Xn2% |C0An u,, Un2 Unm| 

NORMAL FORM OF HYPERGAME 

NORMAL HYPERGAME WITH SOLUTION 

The normal form with solution is a hypergame that is 
solved.  It includes all of the information of the normal 
form of a hypergame, as well as the actual percentages 
and expected value for the game.  There is a value in 
every place that an X occurred in the normal form. If the 
strategy evaluates to 0%, a '0%' placeholder is still 
placed in the entry, so that one can still reconstruct 
games.  The aggregate vector is determined, Sj, and the 
expected values calculated.   Obviously the maximum 
value is the pure strategy to choose.  This form will not 
be used in the explanations which follow, so that a step 
by step construction of the solutions can be presented. 

APPLICATIONS OF HYPERSTRATEGIES 

We will explain the use of hyperstrategies in one 
notional case, in one historic example, and provide 
guidance when uncertainty about enemy reasoning is 
high. 

THE PREDICTABLE FOE 
But what if you know that the opponent is likely to use 
plan 1?  We are discussing a strategy selection in a 
situation which is not at the equilibrium point.  What is 
our optimal plan against a mixed strategy which 
incorporates such reasoning?  First we judge that likely 
in this case means 70%.  Since we have no other 
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information we assign all of the remaining probability to 
the hypergame (30%). 

We set up a hypergame matrix incorporating the games 
that are being considered as noted below by X'ing the 
plans and CO As. 

Enemy 

Subgame 
1 

70% X 

Subgame 
2 

30% X X X 

1&2 US Forces Plan 1 Plan 2 Plan 3 MAXIMIN 

X COM 2 

-1 

1 

3 

4 

4 

0 

-2 

5 

0 

X COA2 -2 

X COA3 -4 

MINIMAX 2, 4 5 0to2 

An Example of a US Hypergame 

Reasoning about both subgames, using standard game 
theory: we determine that in subgame 1 that the opponent 
plays the strategy [100%, 0%, 0%] and the rest of the 
time [0%, 42%, 58%].  The expected enemy strategy, Sj, 
is [70%,13%,17%] based on 70% for subgame 1 and 30% 
for subgame 2. This strategy is a probabilistic composite 
picture of two games. It is not subject to the equilibrium 
based MINIMAX argument because the percentages 
represent our subjective judgment of how likely the 
opponent is to play each subgame. 

Subgame 
1 

70% 100% 

Subgame 
2 

30% 0% 42% 58% 

1&2 US Forces Plan 1 Plan 2 Plan 3 MAXIMIN 

X COA1 2 

-1 

1 

3 

4 

4 

0 

-2 

5 

0 

X COA2 -2 

X COA3 4 

MINIMAX 2 4 5 0to2 

An Example of a US Hyperstrategy 

By evaluating the expected value of Sj, the enemy 
strategy, we see that COA 1 is our only rational choice, 
which is H.  We have undertaken some risk for potential 
gain. The gain is equal to the risk, which is the expected 
value of 1.79 versus 1.25, or .54. 

Note that the hypergame solution does not have to lie in 
the MAXIMIN range. 

ILLUSTRATIVE HISTORIC EXAMPLE 
Let's consider an illustrative game - The Flanders 
Campaign 1940, from a game theoretic framework.    It is 
known to military practitioners, has been researched by 
others (Bennett 1979) and shows the power of hypergame 
theory.  Germany and the Allies (France, Britain, 
Belgium, and the Netherlands) were in a declared war, 
where both sides had conducted few significant military 
operations. Neither side was confident of its capacity to 
wage a successful (decisive and economical) offensive 
campaign.  We will examine the different games that 
both Allied and German planners were playing. We will 
trace the military planning paradigm and show where 
hypergame theory can be applied by decisionmakers in 
war games, Or systems, or decision support systems. 
Basically, analyzing avenues of approach there are 7 
possible defensive plans and 3 offensive plans. The 
Allied counterattack option of Dupuy (Dupuy 1987) has 
been ignored , although it most definitely has merit. 

The offensive plans are: 

• attack in the north across the Belgian Plains (as 
in 1914), 

• attack in the south through the Maginot Line (as 
in Franco-Prussian War 1870), or 

• hey-diddle-diddle through the middle (the 
Ardennes Forest). 

The defensive plans are: 

• weighted defense in the south (adding to the 
already formidable Maginot complex, 

• weighted defense in the north, 
• weighted defense in the middle, 
• defense with a strong reserve in the center, 
• defense with strong reserve in the north, 
• defense with strong reserve in the south, or 
• flank weighted defense (use the natural terrain 

advantages of the Ardennes for economy of 
force). 

Please see the following normal form matrix to view the 
alternatives and from an Allied perspective. For ease of 
exposition we will assume a zero-sum game. 
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Attack 
North 

Attack 
South 

Attack 
Middle* 

Defend North 1 -.8 -.5 

Defend South -1 1 -.5 

Defend Center -1 -.8 1 

Reserve Center .4 .4 .8 

Reserve North .8 -.4 .5 

Reserve South -.8 .8 .5 

Weighted Flanks* .6 .6 -.5 

Flanders Campaign in normal form 

* The actual choices of each side. 

The utility values represent the range between complete 
victory(l) to absolute defeat (-1).  All of the battle tuples 
were judged, not simulated, whether it was good from the 
Allied perspective.  Some of the semantics which 
underlies the values is: 

• the Ardennes (the middle) is inherently a slower 
battlefield, 

• fortifications of the Maginot line are valuable in 
the protection of Allied troops, 

• the inherent attritional nature of combat. 

t the MAX of the MTNs is a lower bound, the MIN 
of the MAXs is an upper. 

The result is that the Allies should win with somewhere 
between a substantial to a decisive victory.  The 
following linear equations can be used to describe the 
problem, solve for the expected value, and prescribe the 
proper mixed strategy. 

Yr-.SY2  .^*3 

max(w) = Yl + Y2 + Y3 

5F3<1 

-7I+y2-.5y3<i 

-F-.8F2 + r3<l 

.4r1+.4y2+.8r3<i 

.8^-. 4F2+.5F3<1 

.6Y{+.6Y2-.5Y3<1 

YvY2,Y3>0 

This formulation yields the following linear programming 
tableau. 

First we will look at the MTNs of the Rows and the 
MAXs of the Columns and cull out any dominated 
strategies in the matrix below to determine the effective 
range. 

Attack 
North 

Attack 
South 

Attack 
Middle 

* 

MIN of 
Rows 

Defend North 1 -.8 -.5 -.8 

Defend South -1 1 -.5 -1 

Defend Center -1 -.8 1 -1 

Reserve Center 4 .4 .8 .4 

Reserve North .8 -.4 .5 -.4 

Reserve South -.8 .8 .5 -.8 

Weighted Flanks* .6 .6 -.5 -.5 

MAX of columns 1 1 1 .4 to It 

Flanders with MINIMAX 

Sl 

$2 
S3 
S4 

S5 
S6 
S7 

Y3 Si S3   S4   S5   S6   S7 

Calculating for the original problem: 

w 

ü 
w 

y* = . 

The dual tableau can be used to find the Allied strategy. 
As a result the optimal strategy for both players is a 
mixed strategy: 
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The Germans find that they should: 

Attack North 62% 
Attack South 25% 
Attack Middle 13%. 

The Allies should play: 

Reserve Center 73% 
Weighted Hanks 27%. 

The value of the game is .45, a virtually guaranteed 
substantial victory. 

The Allies and the Germans did not reason this way, 
though. Either the Allies did not consider the Ardennes 
(Attack Middle) or they decided that the Germans would 
discard it.  They played the game: 

Attack 
North 

Attack 
South 

Attack 
Middle 

* 

x% 1-X% EXPECTED 
VALUE 

Defend North 1 -.8 -.5 

Defend South -1 1 -.5 

Defend Center -1 -.8 1 

73% Reserve Center .4 .4 .8 

Reserve North .8 -.4 .5 

Reserve South -.8 .8 5 

100% 27% Weighted 
Flanks* 

.6 .6 -5 

Attack 
North 

Attack 
South 

MTNof 
Rows 

Defend North 1 -.8 -.8 

Defend South -1 1 -1 

Defend Center -1 -.8 -1 

Reserve Center .4 .4 .4 

Reserve North .8 -.4 -.4 

Reserve South -.8 .8 -.8 

Weighted Flanks* .6 .6 .6 

MAX of columns 1 1 .6tol 

The Allies' subgame. 

The mixed strategy for the Germans would be: 

Attack North 78% 
Attack South 22%. 

The Allied strategy is Weighted Flanks 100%. 

The Germans thought that there was a significant chance 
that the Allies were ignoring their Attack Middle option. 
How confident did they have to be?  From the following 
matrix, we see that the Germans were able to rationally 
attack in the middle when they were X% sure that this 
subgame was being played. 

Flanders with MINIMAX 

They determined that if they were only e% sure that the 
Allies were ignoring the middle that they should attack 
there.  They actually did attack in the middle and 
achieved even better results than the expected -.5.  They 
broke through and achieved a decisive victory. 

3.0 HYPERGAMES IN AUTOMATED 
PLANNING 

AI research in automated game playing, and to a lesser 
extent automated planning, has also examined the 
problem of intelligent play by adversaries.  Unlike game 
theory, AI systems generally deal with the extensive form 
of the game directly.  Move/action generation procedures 
fall into two categories: game-based and knowledge- 
based.  Game-based enumeration uses the rules of the 
game to generate options (e.g., a chess playing program 
that generates all legal moves).   Knowledge-based 
enumeration, on the other hand, generates moves 
according to a model of the objectives, goals, subgoals, 
tactics, etc., each player might have.  The knowledge- 
based approach is common for "games" (e.g., go, 
wargames, military planning, etc.) where there are far too 
many legal moves to examine exhaustively (e.g., Lehner, 
1982, 1990; Reitman and Wilcox, 1979; Young and 
Lehner, 1986; Wilkins, 1980).  It is of course also the 
approach used ion nonadversarial planning problems 
(Georgeff, 1987). 

When a game-based move generation procedure is used, 
the game theoretic and Al-based formulations are 
equivalent.  In principle, the extensive form generated by 
the AI programs could be summarized in normal form, 
and the same minimax option would be selected.  On the 
other hand, when a knowledge-based procedure is used, 
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there is a great deal of useful information in the 
extensive for each branch of the extensive form, there is 
information about how that branch was generated. 

To illustrate the usefulness of this information, imagine a 
context where one agent, after analyzing the situation 
asserts, "If I were her, I would do X," but then asserts 
"but determining that X will work involves knowing some 
advanced tactics which I don't think she is familiar with, 
so she will probably do Y instead." This type of 
reasoning involves several steps.  First generate the 
extensive form of the game by solving the problem 
yourself.  Second, assess whether the agent is capable of 
generating the same extensive form (i.e., identify the 
subgames).  Third, select the best option given your 
assessment of the options that may not be in the other 
agent's repertoire (i.e. select a hyperstrategy).  Not that 
the assessments in the second stage although 
probabilistic, are not subject to the outguessing problem. 
This is because the assessments determine whether or not 
another agent is capable of generating and option (for 
either side), and not how that agent will process the 
option once it is generated.  An adversary cannot 
outguess a missing option. 

Although this is simplified, the above discussion suggests 
the following steps for automated adversarial planning. 

1. Generate/examine a proposed sequence of 
actions. 

2. Identify a possible adversary action (or event) 
that can defeat the plan. 

3. Determine what knowledge/data the adversary 
must have in order to determine the action 
identified in step 2. 

4. Assess the probability that the adversary has the 
knowledge/data identified in 3.  Each potential 
element of missing knowledge defines a 
subgame and the assessed probability is the 
probability of that subgame. 

5. If the probability value determined in step 4 is 
too great, modify the plan. This can be done by 
(a) generating a contingency branch, (b) back 
tracking and selecting alternative actions, (c) 
inserting actions that will decrease the 
probability of failure (e.g., add in a deception 
tactic, etc.). 

6. If the probability of success is less than a 
desired threshold, go to 1. 

Steps 1,2, and 5 are well within the scope of existing AI 
planning techniques. In particular, steps 2 and 5 can be 
achieved by recursively calling the planner with the goal 

of defeating/repairing individual aspects of a proposed 
plan.  In part, Step 3 is automatic.  Whatever 
knowledge/data was used in Step 2 can be used as a 
basis for Step 3 processing. 

Step 4, probability estimation, is by far the most 
problematic.  However, here the hypergame 
representation allows a conservative strategy. The worst 
case situation is one where the adversary is aware of the 
complete game. To the extent that there is higher order 
uncertainty regarding the probability that the adversary is 
unaware of certain knowledge/data elements, the 
probability of the corresponding subgame can be 
decreased and the probability of the complete game 
increased. 

4.0 SUMMARY 

In this paper we have sketched some of our ongoing 
research in automated adversarial planning.  In particular, 
we have shown how game theory techniques can be 
combined with knowledge-based planning procedures to 
reason about an adversary's beliefs and the extent to 
which a competitive agent is capable of defeating a plan. 
The main results to keep in mind are: (a) the hypergame 
representation provides a convenient mechanism for 
representing and reasoning about knowledge/data not 
available to a competitive agent and (b) automated 
implementation of this form of reasoning is conceptually 
straightforward. 
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Abstract 
Most nonlinear problem solvers use a least- 
commitment search strategy, reasoning about par- 
tially ordered plans. Although partial orders are 
useful for exploiting parallelism in execution, least- 
commitment is NP-hard for complex domain de- 
scriptions with conditional effects. Instead, a 
casual-commitment strategy is developed, as a nat- 
ural framework to reason and learn about control 
decisions in planning. This paper describes (i) how 
NoLlMlT reasons about totally ordered plans using 
a casual-commitment strategy, (ii) how it generates 
a partially ordered solution from a totally ordered 
one by analyzing the dependencies among the plan 
steps, and (iii) finally how resources are allocated 
by exploiting the parallelism embedded in the par- 
tial order. We illustrate our claims with the im- 
plemented algorithms and several examples. This 
work has been done in the context of the PRODIGY 
architecture that incorporates NoLlMlT, a nonlinear 
problem solver. 

1   Introduction 
Nonlinear problem solving is desired when there are strong 
interactions among simultaneous goals and subgoals in the 
problem space. NoLlMlT, the nonlinear problem solver of the 
PRODIGY architecture [Carbonell et al, 1990, Veloso, 1989], 
develops a method to solve problems nonlinearly that explores 
different alternatives at the operator and at the goal ordering 
levels. Commitments are made during the search process, 
in contrast to a least-commitment strategy [Sacerdoti, 1975, 
Täte, 1977, Wilkins, 1989], where decisions are deferred until 
all possible interactions are recognized. With the casual- 
commitment approach [Minton et al, 1989], background 
knowledge, whether hand-coded expertise, learned control 
rules, or heuristic evaluation functions, guides the efficient 
exploration of the most promising parts of the search space. 
Provably incorrect alternatives are eliminated and heuristi- 
cally preferred ones are explored first. Casual commitment is 
crucial because it provides a framework in which it is natural 
to reason and learn about the control decisions of the problem 
solver. 

The immediate output of a problem solver that searches 
using a casual-commitment strategy is a totally ordered plan. 
It is advantageous to know the solution in terms of the least 

constrained partial ordering of its steps, which NoLlMlT gen- 
erates by analyzing the dependencies among the different op- 
erators. The algorithm implemented constructs a directed 
acyclic graph that relates preconditions and effects of opera- 
tors and then translates this graph into a partial order. 

The independent actions shown in the partially ordered 
graph may not directly correspond to parallel executable ac- 
tions due to resource contention. We show how a resource 
allocation module further analyzes the partial order and gen- 
erates the final parallel plan. 

This paper is organized in five sections. Section 2 briefly 
presents the casual-commitment search algorithm discussing 
its motivation and claims. In section 3, we introduce the 
algorithm that generates the partially ordered plan from the 
totally ordered one. In section 4 we describe the method to 
allocate resources, by analyzing the parallelism of the partially 
ordered solution. Finally, in section 5, we draw conclusions on 
this work. We illustrate our concepts, claims, and algorithms 
with several examples throughout the paper. 

2   Nonlinear Problem Solving using Casual 
Commitment 

NoLlMlT reasons about totally ordered plans that are nonlin- 
ear, i.e., the plans cannot be decomposed into a sequence 
of complete subplans for the conjunctive goal set. All deci- 
sion points (operator selections, goal orderings, backtracking 
points, etc.) are open to introspection and reconsideration. In 
the presence of background knowledge - heuristic or defini- 
tive - only the most promising parts of the search space are 
explored to produce a solution plan efficiently [Veloso, 1989, 
Veloso et al, 1990 forthcoming]. The skeleton of NoLlMlT's 
search algorithm, shown in Table 1, describes the basic cycle 
of the nonlinear planner. 

In step 1 of the algorithm, the planner checks whether the 
goal is true in the current state. If so, the planner has found 
a solution to the problem. In step 2, it computes both the 
set of pending goals and the set of applicable operators. A 
goal is pending, if it is a precondition of a chosen operator 
that is not true in the state. An operator is applicable, if all 
its preconditions are true in the state. In step 3, the planner 
selects a goal to work on or an operator to apply. If a goal 
is chosen, the problem solver expands the goal in step 4, by 
generating and selecting a relevant instantiated operator. If 
an applicable operator is selected, then, in step 5, it is applied, 
i.e. executed in the internal current state to produce a new 
state. 
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1. Check if the goal statement is true in the current state, or there 
is a reason to suspend the current search path. 
If yes, then either return the final plan or backtrack. 

2. Compute the set of pending goals Q, and the set of possible 
applicable operators A. 

3. Choose a goal G from Q or select an operator A from A that is 
directly applicable. 

4. IfG has been chosen, then 
• expand goal G, i.e., get the set Ö of relevant instantiated 

operators for the goal G, 
• choose an operator O from Ö, 
• go to step 1. 

5. If an operator A has been selected as directly applicable, then 
• apply A, 
• go to step 1. 

Table 1: A Skeleton of NoLlMlT's Search Algorithm. 

PRODIGY provides a rich action representation language 
coupled with an expressive control language. Preconditions 
in the operators can contain conjunctions, disjunctions, nega- 
tions, and both existential and universal quantifiers with typed 
variables. Effects in the operators can contain conditional 
effects, which depend on the state in which the operator is ap- 
plied. The control language allows the problem solver to rep- 
resent and learn control information about the various prob- 
lem solving decisions, such as selecting which goal/subgoal 
to address next, which operator to apply, what bindings to 
select for the operator or where to backtrack in case of fail- 
ure. Different disciplines for controlling decisions can be 
incorporated [Drummond and Currie, 1989, Anderson and 
Farley, 1990]. In PRODIGY, there is a clear division between 
the declarative domain knowledge (operators and inference 
rules) and the more procedural control knowledge. This sim- 
plifies both the initial specification of a domain and the in- 
cremental learning of the control knowledge [Minton, 1988, 
Veloso and Carbonell, 1990]. 

Previous work in the linear planner of PRODIGY used 
explanation-based learning techniques [Minton, 1988] to ex- 
tract from a problem solving trace the explanation chain re- 
sponsible for a success or failure and compile search control 
rules. We are now extending this work to NoLlMlT, as well as 
developing a derivational-analogy approach to acquire control 
knowledge [Carbonell, 1986, Veloso and Carbonell, 1990]. 
The machine learning and knowledge acquisition work sup- 
ports NoLlMlT's casual-commitment method, as it assumes 
there is intelligent control knowledge, exterior to its search 
cycle, that it can rely upon to make decisions. 

2.1   Example 
Consider a generic transportation domain with three simple 
operators that load, unload, or move a carrier, as shown in 
Figure 1 (variables in the operators are shown in bold face). 

Suppose that the operator MOVE a carrier has constant 
locations locA and locB. This transforms the current gen- 
eral domain into a one-way carrier domain. The problem 
we want to solve consists in moving two given objects objl 
and obj2 from the location locA to the location locB using 
a ROCKET as the carrier, for example. Without any control 
knowledge the problem solver searches for the goal order- 
ing that enables the problem to be solved.  Accomplishing 

(LOAD 
(preconds 

(and 
(at obj loc) 
(at carrier loc))) 

(effects 

(UNLOAD (MOVE 
(preconds (preconds 

(and (at carrier locA)) 
(inside obj carrier) (effects 
(at carrier loc))) (add (at carrier locB)) 

(effects (del (at carrier locA)))) 
(add (inside obj carr)) (add (at obj loc)) 
(del (at obj loc)))) (del (inside obj carrier)))) 

Figure 1: A Transportation Domain. 

either goal individually, as a linear planner would do, in- 
hibits the accomplishment of the other goal, as a precondition 
of the operator LOAD cannot be achieved: the ROCKET 
cannot be moved back to the object's initial position. So 
interleaving of goals and subgoals at different levels of the 
search is needed to find a solution. NOLIMIT solves this 
problem, where linear planners fail (but where, of course, 
other least-commitment planners also succeed), because it 
switches attention to the conjunctive goal (at obj2 locB) be- 
fore completing the first conjunct (at objl locB). This is shown 
in Figure 2 by noting that, after the plan step 1 where the 
operator (LOAD ROCKET objl locA) is applied, NOLIMIT 
changes its focus of attention to the other top-level goal and 
applies the operator (LOAD ROCKET obj2 locA). NOLIMIT 
returns the totally ordered solution (LOAD ROCKET objl 
locA), (LOAD ROCKET obj2 locA), (MOVE ROCKET), 
(UNLOAD ROCKET objl locB), (UNLOAD ROCKET obj2 
locB). 

Figure 2: The Complete Conceptual Tree for a Successful 
Solution Path. The numbers at the nodes show the execution 
order of the plan steps. 

Clearly, NOLIMIT solves much more complex and general 
versions of this problem. The present minimal form was 
used to illustrate the casual-commitment strategy in nonlinear 
planning, allowing full interleaving of goals and subgoals. 
We present below examples with a complex logistics domain. 

3   Total and Partial Orders 
A partially ordered graph is a convenient way to represent the 
ordering constraints that exist among the steps of the plan. 
Consider the partial order as a directed graph (V, E), where 
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V, the set of vertices, is the set of steps (instantiated operators) 
of the plan, and E is the set of edges (ordering constraints) 
in the partial order. Let V = {opo,op2,... ,opn+\}. We 
represent the graph as a square matrix P, where P[i, j] = 1, 
if there is an edge from opi to opj. There is an edge from op, 
to opj, if opi must precede opj, i.e. op, -< opj. The inverse 
of this statement does not necessarily hold, i.e. there may be 
the case where opi -< opj and there is not an edge from op, 
to opj. The relation -< is the transitive closure of the relation 
represented in the graph for the partial order. Without loss of 
generality consider operators opo and opn+i of any plan to be 
the additional operators named start and finish, represented 
in the Figures below as s and /. 

3.1   Transforming a Total Order into a Partial Order 

A plan step opt necessarily precedes another plan step opj if 
and only if opi adds a precondition of opj, or opj deletes a 
precondition of opt. For each problem, the start operator s 
adds all the literals in the initial state. The preconditions of 
the finish operator / are set to the user-given goal statement. 
Let the totally ordered plan T be the sequence op\,..., opn 
returned by NoLlMlT as the solution to a problem. In Table 2, 
we show the algorithm to generate the partially ordered plan 
from this totally ordered one, T. 

Input: A totally ordered plan T = opi, opi,..., opn, and the start 
operator s with preconditions set to the initial state. 

Output: A partially ordered plan shown as a directed graph V. 

procedure Build_Partial.Order(T, s): 
1. for i <— n down-to 1 do 
2. for each precond in Preconditionsjof(op,) do 
3. supporting .operator <— 

<— Last_Op-Adding_Precond(precond,i) 
4. Add_Directed J}dge(supportingjoperator,op; ,V) 
5. for each del in Delete_Effects(opO do 
6. supported .operators <— 

<- All-Ops_Needing_Effect(del,i) 
7. for each supported .operator do 
8. Add_Directed_Edge(supported-operator,op;,'P) 
9. V <— Remove_Transitive_EdgesCP) 

Table 2: Building a Partial Order from a Total Order 

Step 1 loops through the plan steps in the reverse of the 
execution order. Lines 2-4 loop through each of the pre- 
conditions of the operator, i.e. plan step. The procedure 
Last-Op .Adding-Precond (not shown) searches from the op- 
erator opi back to, at most the operator s, for the first operator 
(supportingjoperator) that has the effect of adding the pre- 
condition in consideration. Note that one such operator must 
be found as the given T is a solution to the problem (in 
particular the initial state is added by the operator s). All 
the supportingjoperators of an operator opi must precede it. 
The algorithm sets therefore a directed edge from each of 
the former into the latter. Lines 5-8 similarly loop through 
each of the delete effects of the operator. The procedure 
AlLOps-Needing_Effect (not shown) searches for all the ear- 
lier operators that need, i.e. have as a precondition, each 
delete effect of the operator. We call such operators, sup- 
ported joperators. Lines 7-8 capture the precedence relation- 
ships by adding directed edges from each supportedjoperator 

to the operator that deletes some of their preconditions. Fi- 
nally, line 9 removes all the transitive edges of the resulting 
graph to produce the partial order. Every directed edge e 
connecting operator opi to opj is removed, if there is an- 
other path that connects the two vertices. The procedure Re- 
move-Transitive-Edges tentatively removes e from the graph 
and then checks to see whether vertex opj is reachable from 
opi. If this is the case, then e is removed definitively, other- 
wise e is set back in the graph. 

If n is the number of operators in the plan, p is the average 
number of preconditions of an operator, and d is the average 
number of delete effects of an operator, then steps 1-8 of the 
algorithm BuilcLPartial-Order run in 0((p+d)n2). Note that 
the algorithm takes advantage of the given total ordering of 
the plan, by visiting, at each step, only earlier plan steps. The 
final procedure Remove_TransitiveJEdges runs in 0(e), for 
a resulting graph with e edges [Aho et dl., 1974]. Empir- 
ical experience with test problems shows that the algorithm 
Build-Partial-Order runs in meaningless time compared to the 
search time to generate the input totally ordered plan. 

We now illustrate the algorithm in the simple one-way 
rocket problem introduced in the previous section. NoLlMlT 
returned the totally ordered plan T = (LOAD ROCKET objl 
locA), (LOAD ROCKET obj2 locA), (MOVE ROCKET), 
(UNLOAD ROCKET obj 1 locB), (UNLOAD ROCKET obj2 
locB). Let opi be the ith operator in T. In Figure 3 we show 
the partial order generated by the algorithm, before remov- 
ing the transitive edges. As previously seen, the goal of the 
problem we solved is the conjunction (and (at objl locB) (at 
obj2 locB)). These two predicates are added by the UNLOAD 
steps, namely by op4 and ops respectively. The edges labelled 
"g" show the precedence requirement between op4 and ops, 
and the finish operator /. The numbers at the other edges 
in Figure 3 represent the order by which the algorithm intro- 
duces them into the graph. As an example, while processing 
op5 (UNLOAD ROCKET obj2 locB), it sets the edges 1 and 
2, as the preconditions of ops, namely (inside objl ROCKET) 
and (at ROCKET locB) (see Figure 1), are added by op2 and 
op3 respectively. When processing op3 (MOVE ROCKET), 
edge 5 is set because op3 's precondition (at ROCKET locA) is 
in the initial state. The edges 6 and 7 are further set, because 
op3 deletes (at ROCKET locA) that is needed (as a precondi- 
tion) by the earlier steps opi and op2. Removing the transitive 
edges, namely edges 1, 3, and 5, in this graph results in the 
final partial order. 

Figure 3: Partial Order with Transitive Edges. 

4   Exploiting Parallelism in the Plan Steps 
When there are multiple execution-time agents in a domain, 
they must be able to organize their activities so that they can 
cooperate with one another (e.g. to push a very heavy block) 
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and avoid conflicts (e.g. not to tyr to use the same tool at the 
same time). 

Our approach for doing multiagent planning is a centralized 
one [Georgeff, 1983, Lansky and Fogelsong, 1987]. An ini- 
tial planning phase produces a plan as parallel as possible by 
reasoning about a presumably infinite number of resources. 
Real available resources are then assigned to obtain the fi- 
nal parallel plan [Wilkins, 1989]. A problem is first solved 
creating generic instances of the resources. In this context, 
"resources" refer to agents, such as robots, or trucks or air- 
planes in a logistics transportation domain, or machines in a 
process planning domain. Control rules assign different re- 
sources to different unrelated goals to obtain a plan as parallel 
as possible. In some cases the same resource can be used to 
solve different unrelated goals. For example, it is better to 
load different objects in the same truck if they have the same 
destination), if minimization of resources usage is preferred 
by the control knowledge. 

Let T be the resulting plan and s the start operator. Table 3 
outlines the algorithm for resource allocation. 

1. Generate the partial order graph V using the algorithm in Ta- 
ble 2 with inputs T and s. 

2. Insert parallel split and join nodes in the partial order graph V 
obtaining a graph V'. 

3. Recursively analyze in V' the parallel branches inside a split- 
join pair. If some of the parallel branches are in conflict insert 
sequential split and join nodes. If all the parallel branches are in 
conflict, transform the parallel split-join pair into a sequential 
one. Let V" be the resulting graph. 

4. From V", assign real resources to the generic instances. 

5. Assign plans to the individual resources and monitor their ex- 
ecution to avoid conflicts. 

Table 3: Algorithm for Resource Allocation. 

In step 1 the algorithm section 3.1 generates the partial 
order graph from T. Step 2 extends this graph with nodes 
that are not associated with steps in the plan. They only serve 
as guidelines to determine which actions can be executed in 
parallel. If a node opi has several successors op;,, ..., optn, 
a parallel split node is inserted having opi as a predecessor 
and op,-,, ..., opin as successors. The edges between op, 
and opix, ..., opin are removed. Similarly, if a node opj 
has several predecessors opj^, ...,opJn, a parallel join node is 
inserted having opj as only successor and opjt, ..., opjn as 
predecessors. The edges between opj^, ..., opjn and opj are 
removed. 

Step 3 analyzes the parallel branches. It may be necessary 
to add sequential split and join nodes to the graph, or replace 
some of the parallel ones. The branches inside a sequential 
split-join pair must be executed sequentially although any 
order is allowed. 

A class of objects C can be declared as a possible reason 
for conflict. Two actions are in conflict if they use the same 
instance of C, and hence they are not allowed to occur si- 
multaneously. A conflict between two branches is detected 
when there is not a pair of actions, one of each branch, that 
can be executed at the same time. If all the actions of the 
two branches are in conflict, they are enclosed in a sequen- 

tial split-join pair. If only some of them are, the parallel 
split-join remains. Committing to executing the branches in 
sequence would constrain the parallelism in the plan, as the 
actions not in conflict could still be done simultaneously. As 
we describe below, an execution monitor is responsible for 
avoiding that the conflicting actions are performed simulta- 
neously. This analysis is done recursively to deal with nested 
split-join pairs. 

Step 4 assigns real resources to the generic instances, by 
recursively analyzing the branches inside a split-join pair. If 
enough resources are available, the algorithm assigns different 
ones to each branch. Otherwise the available resources are 
shared by several branches. These branches are put inside 
a sequential split-join pair so the monitor can execute them 
without conflicts. The planner may have to be called again 
to obtain the actions that situate the real resource in the same 
initial state as the generic one it replaces. 

From the global parallel plan obtained so far, step 5 gen- 
erate plans for each of the agents or resources. A monitor 
module is responsible for synchronizing the execution of the 
different plans (for example, in the case when two or more 
agents are necessary to perform an action). It uses the se- 
quential split and join nodes to deal with conflicts or resource 
sharing among different branches. Those conflicts can be 
considered as critical regions. Standard operating systems 
methods can be used to enforce synchronization in the plans 
so the conflicting critical regions are not entered at the same 
time [Georgeff, 1983]. 

4.1   Example in the Extended-STRIPS Domain 

To illustrate this we will consider a simple example where 
two robots, Rl and R2, have to move two blocks, a heavy 
one H, and a light one L. The two robots have to cooperate to 
push H. The domain is an extension of the STRIPS domain; the 
operators include going to locations, going through doors and 
pushing objects to locations. There are also "team" operators 
that require the cooperation of two robots to perform an action 
(e.g. t-push-to-location). Only one robot can go through a 
door at a time, therefore doors are considered reasons for 
potential conflicts. Figures 4 (a) and (b) show the initial 
state and goal statement, and (c) shows the initial state using 
generic robots GR1, GR2 and GR3. 

R2 
Rl 

dl2 

3 

2 

1 

0 

dl2 

3 

2 

1 

0 

GR2 
GR1 

dl2 

m B H 
E 
El GR3 

E 
0 123 0123 0123 

(a) (b) (C) 

Figure 4: Initial State, Goal Statement, and Initial State with 
Generic Resources for the Example Problem. Coordinates 
represent the locations within the rooms. 

The problem is first solved with generic robots. Their initial 
situation was decided based on domain dependent heuristics 
such as the initial situation of the available robots and of the 
objects that have to be pushed. The solution is: 
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(goto-loc GR1 3 0 2 2) 
(go-thru-door GR1 doorl2 2 2 2 1) 
(goto-loc GR1 2 1 2 0) 
(goto-loc GR2 3 0 2 2) 
(go-thru-door GR2 doorl2 2 2 2 1) 
(goto-loc GR2 212 0) 
(t-push-to-loc GR1 GR2 heavy-block 2 0 3 1) 
(push-to-loc GR3 light-block 0 0 3 1) 

Figure 5: Partial Order Graph for the Example Problem. 

Figure 5 shows the partial order generated by the algorithm 
in section 3. The only conflict is between 2 and 5 when GR1 
and GR2 try to go through the door at the same time. As 
the other actions (1, 3, 4, 6) in the parallel branches do not 
conflict, these branches are not put inside a sequential split 
join pair. The resource assignment step assigns Rl to GR1, 
and R2 to both GR2 and GR3. After this step the graph looks 
like in Figure 6. 

Figure 6: Graph after Assigning Resources. 

Now the task of the monitor is to control the plan execution 
avoiding the conflict at the door and deciding which of the 
two branches will be executed first. The planner is called to 
plan the actions of R2 to join the end of branch 1-2-3 with 
the beginning of branch 4-5-6. A resulting parallel plan is 
the one shown below, where branch 1-2-3, and branch 4-5-6 
are monitored to be executed in parallel avoiding the conflict 
between steps 2 and 5. Step 7' is added to the plan. 

monitored-parallel-split 
1 (goto-loc Rl 3 0 2 2) 
2 (go-thru-door Rl doorl2 2 2 21) 
3 (goto-loc Rl 2 1 2 0) 

4 (goto-loc R2 3 0 2 2) 
5 (go-thru-door R2 doorl2 2 2 21) 
6 (goto-loc R2 2 1 2 0) 
monitored-parallel-join 

7 (t-push-to-loc R1 R2 heavy-block 2 0 3 1) 
7'     (goto-loc R2 3 1 0 0) 
9      (push-to-loc R2 light-block 0 0 3 1) 

4.2   Example in the Logistics Domain 
We are currently implementing a complex logistics planning 
domain. In this domain, packages are to be moved among 
different cities. Packages are carried within the same city in 
trucks and across cities in airplanes. Trucks and airplanes 
may have limited capacity. At each city there are several lo- 
cations, e.g. post offices (po) and airports (ap). This domain 

(without introducing the capacity of carriers) is an extension 
of the generic transportation domain (see Figure 1). Consider 
carriers of type TRUCK and AIRPLANE. The logistics do- 
main consists of the operators LOAD TRUCK (LT), LOAD 
AIRPLANE (LA), UNLOAD TRUCK (UT), UNLOAD AIR- 
PLANE (UA), DRIVE TRUCK (DT), FLY AIRPLANE (FA). 
Consider the problem shown in Figure 7 where bo, pg and sf 
stand for Boston, Pittsburgh and San Francisco respectively. 
There are three packages (pl,p2,p3), two airplanes (al ,a2), 
and four trucks {tbol, tbo2, tsf, tpg). NoLlMiT returns the plan 
in Figure 8, and Figure 9 shows the partial order generated by 
the algorithm in Table 2. 

INITIAL STATE: 
PS bo sf 

po        ap 
GOAL STATEMENT: 

Pg 

m @ a2 ^ 

po        ap 
IT: 

bo 

m 

w 
po         ap 

sf 

0 m 
po ap po ap po ap 

Figure 7: A Problem in the Logistics Domain. 

l.(LTp3tpgpg-po) 
2.(DTtsfsf-posf-ap) 
3.(DTtpgpg-popg-ap) 
4.(UTp3tpg pg-ap) 
5.(LAp3 al pg-ap) 
6.(FA al pg-ap bo-ap) 
7.(UA p3 al bo-ap) 
8.(LTp3 tbol bo-ap) 
9.(DT tbol bo-ap bo-po) 

10.(UTp3tbolbo-po) 
11 .(DT tbo2 bo-ap bo-po) 
12.(LTp2tbo2 bo-po) 
13.(LTpl tbo2 bo-po) 
14.(DT tbo2 bo-po bo-ap) 
15.(UTp2tbo2 bo-ap) 
16.(UTpi tbo2bo-ap) 
17.(LA p2 a2 bo-ap) 
18.(LApla2 bo-ap) 

19.(FAa2 bo-ap sf-ap) 
20.(UA p2 a2 sf-ap) 
21.(UA pi a2 sf-ap) 
22.(LTp2 tsf sf-ap) 
23.(LTpl tsf sf-ap) 
24.(DT tsf sf-ap sf-po) 
25.(UTp2 tsf sf-po) 
26.(UT pi tsf sf-po) 

Figure 8: Totally Ordered Plan - Logistics Domain. 

Figure 9: Partially Ordered Plan - Logistics Domain. 

Suppose now that when executing this plan, there is avail- 
able only one airplane (a) and only one truck in Boston (tbo). 
The resource allocation algorithm assigns a to both al and 
al, and tbo to both tbol and tbol after generating the parallel 
serial graph. Figure 10 shows a possible solution for the plans 
of a and tbo. Using the information on the graph built by 
the algorithm, the monitor synchronizes the execution of the 
plans for the different agents, without violating the constraints 
discovered by the algorithm. 

We are refining the monitor synchronization mechanism to 
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Plan for airplane a: 

(LA p3 a pg-ap) 
(FA a pg-ap bo-ap) 
(UA p3 a bo-ap) 
(LA p2 a bo-ap) 
(LA pi a bo-ap) 
(FA a bo-ap sf-ap) 
(UA p2 a sf-ap) 
(UA pi a sf-ap) 

Plan for truck tbo: 

(DT tbo bo-ap bo-po) 
(LT p2 tbo bo-po) 
(LTpl tbo bo-po) 
(DT tbo bo-po bo-ap) 
(UT p2 tbo bo-ap) 
(UTpl tbo bo-ap) 
(LT p3 tbo bo-ap) 
(DT tbo bo-ap bo-po) 
(UT p3 tbo bo-po) 

Figure 10: Plans for Each Resource. 

deal with more complex conflict constraints, by using domain 
dependent heuristics. 

5   Conclusion 
In this paper, we first discuss the use of a casual-commitment 
strategy to generate plans for nonlinear problems. This strat- 
egy provides a natural framework to learn and reason about 
control decisions during the planning process. The method 
becomes increasingly efficient as the planner learns control 
knowledge from experience. Committing while searching 
generates a totally ordered solution. As it is advantageous to 
know the least constrained partial ordering of the plan steps, 
we then discuss how we efficiently generate a partial order 
from the total order returned by the casual-committing prob- 
lem solver. Finally, we show a resource allocation strategy 
that reasons about the partially ordered plan to convert it into 
a parallel executable graph. 

This work has been done in the context of the PRODIGY 
architecture that is designed as a testbed for machine learn- 
ing research. Casual commitment relies upon learned control 
knowledge to efficiently make decisions. The resource alloca- 
tion module is an ongoingresearch effort to address multiagent 
(or multi-resource) planning and execution. 
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Abstract 

This paper describes a heuristic search 
method that has been employed to solve the 
Hubble Space Telescope Scheduling problem. 
Given an initial schedule created by a greedy 
algorithm, the method operates by search- 
ing though the space of possible rearrange- 
ments of the initial schedule. The search 
is guided by an ordering heuristic, the min- 
conflicts heuristic, that attempts to minimize 
the number of constraint violations after each 
step. 

1    Introduction 

In a previous paper, Minton et al.[l0] described a local 
search method for solving large-scale constraint satis- 
faction and scheduling problems. The method oper- 
ates by generating an initial, suboptimal solution and 
then applying a local repair heuristic, which we refer 
to as the min-conflicts heuristic. Local search tech- 
niques have met with empirical success on many prob- 
lems, including the traveling salesman and graph par- 
titioning problems [5]. Such techniques also have a long 
tradition in AI, most notably in problem-solving sys- 
tems that operate by debugging initial solutions [14; 
15]. However, this approach is a relatively new ap- 
proach for solving constraint-satisfaction problems, 
and offers some important advantages over traditional 
methods. 

The local search method described here was dis- 
tilled from an analysis of a surprisingly effective 
neural network developed by Johnston and Adorf[l; 
7]. for scheduling the use of the Hubble Space Tele- 
scope. The method is very effective at solving the 
Hubble Space Telescope scheduling problem, and em- 
pirical studies have demonstrated that it also performs 
extremely well on some standard problems. For ex- 
ample, we have shown that instances of the n-queens 
problem with one million queens can be solved very 
rapidly. The method also has the virtue of being ex- 
tremely simple. In this paper, we describe the ba- 
sic method and its application to the Space Telescope 
Scheduling problem. 

2    The Min-Conflicts Heuristic 

A constraint-satisfaction problem consists of n vari- 
ables, Xi... Xn, with domains Di...D„, and a set of 
constraints. We will assume for the moment that each 
constraint is a binary constraint, that is, each con- 
straint Ca(Xj,Xk) is a subset of Dj x Dk specifying 
incompatible values for a pair of variables. In this pa- 
per we consider the task of finding a single solution to 
a problem, i.e., an assignment for each of the variables 
such that the constraints are satisfied. 

Our method takes an initial, inconsistent assignment 
for the variables in a constraint satisfaction problem 
(CSP) and incrementally repairs constraint violations 
until a consistent assignment is achieved. The method 
is guided by a simple ordering heuristic for repairing 
constraint violations: select a variable that is currently 
participating in a constraint violation, and choose a 
new value that minimizes the number of outstanding 
constraint violations. This heuristic can be specified 
as follows: 

Min-Conflicts heuristic: 
Given: A set of variables, a set of binary con- 
straints, and an assignment specifying a value 
for each variable. Two variables conflict if their 
values violate a constraint. 
Procedure: Select a variable that is in conflict, 
and assign it a value that minimizes the number 
of conflicts. (Break ties randomly.) 

As an illustration of our approach, consider the n- 
queens problem, a standard benchmark for testing 
CSP algorithms. The n-queens problem requires plac- 
ing n queens on an n x n chessboard so that no two 
queens share a row, column or diagonal. To solve the 
problem, we begin by randomly placing a queen on 
each row of the board. This gives us an initial assign- 
ment. Then we take a queen that is currently in con- 
flict, and move it to the column (in the same row) that 
has the fewest conflicts (with ties broken randomly). 
This "repair process" is repeated until a solution is 
found, or a preset iteration bound is reached. 

The method outlined above is a hill-climbing algo- 
rithm. Thus, it is entirely possible that a local max- 
imum may be encountered, in which case the sys- 
tem will typically oscillate between a small number of 
states. However, as described in [10], the min-conflicts 
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heuristic can be used with a variety of search strate- 
gies, including best-first search, simulated-annealing 
and backtracking. For the scheduling applications de- 
scribed in this paper, the hill-climbing approach was 
employed, due to its effectiveness and simplicity. 

In [10], we analyzed the min-conflicts approach in 
order to determine the types of problems for which 
the algorithm will work well. Not surprisingly, it ap- 
pears that the algorithm is likely to be more effec- 
tive if the preprocessing stage can generate an assign- 
ment that is close to a solution, i.e., an assignment 
in which relatively few repairs need to be made. In 
the n-queens problem, we can generate a good initial 
assignment in the following manner. In the preprocess- 
ing phase, when each queen is assigned to an inital row 
and column, we prefer columns where there are no con- 
flicts, rather than choosing a random column. Using 
this technique, we reported that the "million queens" 
problem could be solved in less than two minutes on 
a SparcStationl (with very high probability). This is 
orders of magnitude better than has be achieved with 
traditional backtracking CSP algorithms. 

3    The HST Scheduling Problem 

By almost any measure, the Hubble Space Telescope 
(HST) scheduling problem is a complex task [16; 13; 
6]. Between ten thousand and thirty thousand as- 
tronomical observations per year must be scheduled, 
subject to a vast variety of constraints involving time- 
dependent orbital characteristics, power restrictions, 
priorities, movement of astronomical bodies, stray 
light sources, etc. Because the telescope is an ex- 
tremely valuable resource with a limited lifetime, ef- 
ficient scheduling is a critical concern. An initial 
scheduling system, SPSS, developed in FORTRAN us- 
ing traditional programming methods, highlighted the 
difficulty of the problem; among other problems, it was 
estimated that the system would take several weeks to 
schedule one week of observations. A more successful 
constraint-based system, the SPIKE system, was then 
developed to augment the original system. 

The input to SPIKE is a set of detailed specifications 
for exposures that are to be scheduled on the telescope. 
These exposures are submitted by astronomers whose 
proposals have been approved by a peer review pro- 
cess. An exposure specification includes a potentially 
large number of configuration parameters describing 
how the data is to be taken. Johnston [6] outlines the 
problem: 

There are a variety of properties and re- 
lationships among these exposures that may 
be specified by the proposer [astronomer]. 
Their relative order and time separation may 
be important. Some exposures are designed 
as calibrations or target acquisitions for oth- 
ers. Some must be executed at specific times, 
or at specific phases in the case of periodic 
phenomena. Some are especially sensitive to 
stray or scattered light. Exposure durations 
may vary depending on background light in- 

tensity. Some exposures must be executed 
without interruption while others can be bro- 
ken up as needed. In some cases a specific 
orientation of an instrument aperture is re- 
quired. Some exposures are conditional on 
the results of other exposures. 

In addition to proposer-specified con- 
straints, there are a large number of other 
constraints that must be considered when 
scheduling HST operations. The range from 
"strict" constraints that cannot be violated 
under any circumstances, to "good operating 
practices" that represent scheduling goals. 
HST is not allowed to point closer than 50° to 
the sun and 15° to the bright moon. Slewing 
the telescope is relatively slow (90° in ~ 15 
minutes) so it is important to minimize the 
time spent in maneuvers. Many constraints 
are a direct result of HST's low orbital al- 
titude (500 km) and consequent 95 minute 
orbital period. A typical target is occulted 
by the earth for ~ 40 minutes of each or- 
bit. Up to half the orbits in a day are con- 
taminated for up to ~ 20 minutes by HST's 
passage through the South Atlantic Anomaly, 
a high particle density region during which 
data cannot be collected. Scattered earth- 
light changes dramatically over the course of 
an orbit... 

The scheduling team at the Space Telescope Sci- 
ence Institute made the problem considerably more 
tractable by breaking it into two parts: the long- 
term scheduling problem and the short-term schedul- 
ing problem. The long-term problem consists of tak- 
ing approximately one year's worth of exposures, and 
dividing them up into "bins" or time segments of a 
few days length. The short-term problem consists of 
coming up with a very detailed schedule for a time 
segment, which can be translated into commands that 
the telescope can then directly execute. As it turns 
out, SPIKE handles only the long-term problem. The 
short-term problem has a quite different nature, be- 
cause it involves both planning and scheduling. (We 
use the term planning to refer to the generation of a 
partially-ordered set of activities to achieve a set of 
goals, and the term scheduling to refer to the pro- 
cess of placing a set of activities on a time line.) The 
short-term problem requires planning because an ex- 
posure may require activities such as warming up or 
cooling down different instruments on the telescope, 
pointing maneuvers, communication of data, etc. Cur- 
rently, the short-term problem is handled by the orig- 
inal SPSS system, however, Muscettola et al. [13] are 
developing AI planning techniques that will hopefully 
do a better job. Another possibility is the extension of 
the SPIKE system so that it can generate a schedule 
for significantly smaller time buckets. The research re- 
ported here may contribute to this goal, by improving 
the speed of the SPIKE system. 

SPIKE operates by taking the exposure specifica- 
tions  prepared  by astronomers  and validating that 
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they are internally consistent. It then compiles the 
specifications into a set of constraints, represented as 
relative temporal relations and "suitability functions". 
The relative temporal relations specify the relative be- 
fore/after ordering of tasks, and the maximal/minimal 
amount of time between tasks. Each suitability func- 
tion is a function of time whose value represents the 
desirability of starting an activity at a specified time, 
as given by the constraint in question. For example, 
one suitability function may represent the constraint 
that the telescope should not point near the moon. 
Thus, the suitability of scheduling an exposure when 
the target is close to the moon will be low (perhaps 
zero). Suitability functions are represented internally 
as piecewise constant functions, enabling the product 
of multiple suitabilities to be calculated efficiently. 

Because of the uncertainty in calculating certain 
constraints, and also because the grain-size of the time 
segments may be relatively large, suitability functions 
are often used to represent the statistical or aggregate 
desirability of scheduling an exposure during a certain 
time segment. For example, a particular orbital con- 
straint might state that an exposure must be taken 
when the telescope is pointing more than 5° from the 
earth's limb and is in the earth's shadow. The result- 
ing suitability function might indicate, for each time 
segment, the average amount of time these conditions 
are satisfied over that segment (which could encompass 
many orbits). In other words, it would be preferable 
to schedule the exposure in a time segment in which a 
relatively high number of such viewing opportunities 
occur. 

Once SPIKE has compiled the astronomers pro- 
posals into a set of constraints, it must search for a 
good schedule. SPIKE employs a neural network to 
carry out this search, the Guarded Discrete Stochastic 
(GDS) networkfl; 7]. The GDS network is a modified 
Hopfield network[3]. The most significant modification 
is that the main network is coupled asymmetrically to 
an auxiliary network of guard neurons which restricts 
the configurations that the network can assume. This 
modification enables the network to rapidly find a so- 
lution for many problems, even when the network is 
simulated on a serial machine. The disadvantage is 
that convergence to a stable configuration is no longer 
guaranteed, in which case the network can fall into 
a local minimum involving a group of unstable states 
among which it will oscillate. In practice, however, if 
the network fails to converge after some number of neu- 
ron state transitions, it is simply stopped and started 
over. 

To illustrate the network architecture and updat- 
ing scheme, let us consider how the network is used 
to solve the HST scheduling problem. Each task to 
be scheduled (an exposure or block of exposures) is 
represented by a separate set of neurons, one neu- 
ron for each possible time segment in the schedule. 
Each neuron is either "on" or "off"; if a neuron is 
"on" it means the task is currently scheduled for that 
time segment. Inhibitory (i.e., negatively weighted) 
connections between the neurons are used to indicate 

hard constraints between tasks, where the suitability 
of placing two tasks in a certain configuration is zero. 
To insure that each task is eventually assigned a time 
segment there is a guard neuron for each set of neurons 
representing a task; if no neuron in the set is on, the 
guard neuron will provide an excitatory input that is 
large enough to turn one on. (Due to the way the con- 
nection weights are set up, it is unlikely that the guard 
neuron will turn on more than one neuron.) The net- 
work is updated on each cycle by randomly selecting 
a set of neurons that represents a task, and flipping 
the state of the neuron in that set whose input is most 
inconsistent with its current output (if any). When 
all neurons' states are consistent with their input, a 
solution is achieved. 

The network updating scheme roughly accomplishes 
the following: If the task is currently in conflict then 
it is removed from the schedule, and if the task is cur- 
rently unscheduled then the network schedules it for 
the time segment that has the fewest constraint vio- 
lations. Note that the network only represents hard 
constraints (i.e. it treats suitabilities as zero or one). 
Soft constraints (where the suitability is between zero 
and one) are only consulted when there are two or 
more "least conflicted" places to move a task. 

As discussed in [10], the min-conflicts algorithm ef- 
fectively mimics the behavior of the GDS network. In 
fact, the algorithm was developed from an analysis of 
the network's performance. (The two approaches can 
be parallelized in a similar manner, but currently both 
are run on serial machines.) In the HST application, 
the min-conflicts algorithm operates by constructing 
an initial schedule in a preprocessing phase, and itera- 
tively repairs the schedule until a conflict-free schedule 
is found (or the process is terminated by a preset itera- 
tion bound). Because our analysis of the min-conflicts 
algorithm showed that a good initial assignment could 
greatly improve the solution time, we use a greedy al- 
gorithm to create an initial schedule, rather than ran- 
domly assigning tasks.1 The greedy algorithm places 
each task on the schedule, at each point trying to min- 
imize the number of conflicts. 

One advantage in using the min-conflicts algorithm, 
as compared to the GDS network, is that much of 
the overhead of using the network can be eliminated 
(particularly the space overhead). The min-conflicts 
algorithm has been shown to be at least as effective 
as the GDS network on representative data sets pro- 
vided by the Space Telescope Sciences Institute. More- 
over, because the min-conflicts heuristic is so simple, 
the scheduling program could be quickly coded in C 
and is extremely efficient. (The scheduling program 
runs at least an order of magnitude faster than the 
network, although some of the improvement is due 
to factors such as programming language differences, 
which makes a precise comparison difficult.) While 
this may be regarded as just an implementation issue, 
we believe that the clear and simple formulation of the 

We discovered the importance of a good initial assign- 
ment by analyzing the min-conflicts algorithm, but it has 
also been shown to hold for the network as well. 
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method was a significant enabling factor. We are cur- 
rently experimenting with a variety of different search 
strategies that can be combined with the min-conflicts 
heuristic. Although this study is not yet complete, we 
expect that the improvements in speed we have ob- 
served will eventually translate into better schedules, 
since the search process can explore a larger number 
of acceptable schedules. 

Several minor issues arose when implementing the 
HST application. First, the algorithm, as specified 
in section 2, deals with binary constraints. The HST 
scheduling problem includes non-binary constraints, 
i.e., constraints that may involve several variables. For 
example, one constraint bounds the number of tasks 
that may be scheduled during a given time segment. 
For general CSPs, the exact method of counting the 
number of conflicts for an assignment may depend on 
the particular constraint in question. As it turned out, 
for the HST application it sufficed to count each vio- 
lated constraint as a single conflict, even though mul- 
tiple tasks might be involved in the violation. 

A second issue concerns a difference between the 
GDS network and the min-conflicts algorithm. As de- 
scribed earlier, the network will remove a conflicted 
task from the schedule and then reschedule the task 
in two separate steps, which may not occur consec- 
utively. In contrast, the min-conflicts algorithm re- 
arranges tasks on the schedule, rather than removing 
them and reinserting them later. It appears that this 
difference is not significant, except perhaps when the 
schedule is over-constrained (as discussed below). 

4    The Over-Subscription Problem 
The HST scheduling problem can be considered a con- 
straint optimization problem where we must maximize 
both the number and the importance of the constraints 
that are satisfied [2; 12]. We note that the telescope 
is expected to remain highly over-subscribed, in that 
many more proposals will be submitted than can be 
accommodated by any schedule. Unfortunately, one of 
the problems we have had is that no clear objective ex- 
ists for determining the best schedule in such cases. In 
particular, we would like to maximize both the overall 
suitability of the schedule and the number of proposals 
that can be accommodated - no clear policy for evalu- 
ating the tradeoff between these two goals has yet been 
established by the Space Telescope Science Institute. 

SPIKE handles the problem in a somewhat ad-hoc 
manner. There is, in effect, a pool of tasks that are 
either unscheduled or in conflict, and SPIKE's net- 
work updating scheme is equally likely to select any of 
these tasks. (Unscheduled tasks will be moved onto the 
schedule, and tasks that are in conflict will be moved 
off the schedule.) Thus, the number of unscheduled 
tasks to likely to remain approximately equal to the 
number of tasks in conflict. When the algorithm is 
eventually interrupted (assuming a conflict-free sched- 
ule has not been found) tasks that are in conflict can be 
removed. One of the advantages of the min-conflicts 
algorithm is that it is relatively easy to try a vari- 
ety of schemes for dealing with overconstrained prob- 

lems. We are currently experimenting with two ba- 
sic approaches. The first is to follow the approach 
taken by the network (where tasks are removed and 
later re-inserted), but vary the procedure for remov- 
ing and inserting tasks. For example, we can alter the 
probability of choosing an unscheduled task versus an 
already scheduled task, or bound the number of un- 
scheduled tasks. (If we set to the bound to zero, then 
tasks will never be removed from the schedule, but 
simply be moved from place to place on the schedule 
as in the normal case.) Another approach is to use a 
more principled method for removing conflicting tasks 
after coming up with an initial schedule, so that only 
the minimum number of conflicting tasks need to be 
removed. 

5 Evaluating the Algorithm 

There are two contributions of this research. First, we 
have analyzed a neural network that has been success- 
fully applied to a complex scheduling task and derived 
an easily understood symbolic algorithm that captures 
the network's behavior. Second, the algorithm's sim- 
plicity has lead to an implementation that is appar- 
ently much faster than the network's implementation. 
The algorithm has not yet been field-tested, but it has 
been tested on sample problems. 

Unfortunately, one problem in evaluating the per- 
formance of the algorithm is that it is difficult to com- 
pare against competing approaches. This, of course, 
is a common problem. In particular, many operations 
research algorithms make different assumptions about 
the problem. For example, the over-subscription issue 
introduces certain difficulties in evaluation and com- 
parison. Nevertheless, we do have plans to conduct 
such experiments. 

To show the generality of our approach, we have 
tested the min-conflicts approach on standard CSP 
problems such as n-queens problem, where it performs 
quite well [10]. The min-conflicts method has also been 
tested on data on the Space Shuttle Payload Schedul- 
ing problem, another complex, real-world scheduling 
problem. Preliminary results show that the method 
performs far better than a backtracking CSP pro- 
gram that was previously built for this task[l8]. Ad- 
ditional corroboration comes from a parallel study by 
Zweben[l7], who has investigated a related method for 
repairing schedules using simulated annealing. In gen- 
eral, it appears that repair-based methods fare quite 
well on this problem. An additional bonus, as Zweben 
has pointed out, is that repair-based methods can also 
be used for dynamic rescheduling. In many domains 
this capability is important because unexpected events 
may require frequent schedule revision. 

6 Related Work 
The heuristic method described in this paper can be 
characterized as a local search method[5], in that each 
repair minimizes the number of conflicts for an indi- 
vidual variable. Local search methods have been ap- 
plied to a variety of important problems, often with 
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impressive results. For example, the Kernighan-Lin 
method, perhaps the most successful algorithm for 
solving graph-partitioning problems, repeatedly im- 
proves a partitioning by swapping the two vertices 
that yield the greatest cost differential. The much- 
publicized simulated annealing method can also be 
characterized as a form of local search[4]. However, 
it is well-known that the effectiveness of local search 
methods depends greatly on the particular task. 

There is also a long history of AI programs that 
have used repair or debugging strategies to solve prob- 
lems (e.g., [15; 14]). These programs have gener- 
ally been successful, although the repair strategies 
they employ may be complex, or domain specific. 
In the area of scheduling, Kurtzman[9; 8] has de- 
veloped a class of iterative improvement algorithms 
that use a hill-climbing approach, similar to our algo- 
rithm. His approach is being used commercially for 
several space station scheduling applications. Kurtz- 
man's method for repairing schedules appears more 
"intelligent" than ours, and more complex as well. In 
the area of constraint-satisfaction problems, Morris[ll] 
has also recently developed an iterative improvement 
algorithm. His system uses an interesting technique 
called "breakout" to avoid being caught in local min- 
ima. We have not yet compared our algorithm to ei- 
ther Kurtzman's or Morris'. We suspect that their 
algorithms will perform better in certain domains due 
to their additional "intelligence", however, the advan- 
tage of the algorithm described here is that it is simple 
and relatively easy to analyze (see [10]). With this in 
mind, we are currently investigating the the possibility 
of adding a learning method to our algorithm so that 
more informed behavior is produced. 

7    Conclusions 

This paper has discussed a local search technique that 
has been successfully applied to the Hubble Space 
Telescope scheduling problem. The algorithm was de- 
rived from a neural network developed at the Space 
Telescope Science Institute. Our technique offers two 
main advantages. First, it is relatively easy to under- 
stand and analyze. Second, it requires less overhead 
than the network. The technique has been applied to 
other problems, and we are continuing to investigate 
and evaluate its computational properties. 
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Abstract 

In this paper, we describe HSTS, a system that constructs 
executable observation schedules for the Hubble Space 
Telescope (HST). HST observation scheduling is a complex 
task, requiring attendance to a myriad of constraints relating to 
orbit characteristics, power and thermal balance requirements, 
instrument capabilities, viewing conditions, guidance 
requirements, overall allocation objectives, and astronomer 
specific restrictions and preferences. HSTS provides a general 
framework for representing and solving such complex 
scheduling problems. Generally speaking, scheduling in 
HSTS is viewed as the process of constructing a prediction of 
the behavior of a physical system (e.g. the HST operating 
environment) that reflects specified goals and constraints. The 
HSTS architecture provides a domain description language for 
specifying the structure and dynamics of the physical system, 
a temporal data base for modeling possible system behaviors 
over time, and a scheduling/planning framework that flexibly 
integrates decision-making at different levels of abstraction to 
construct a system behavior (or set of behaviors) consistent 
with stated scheduling goals and constraints.1 

1. Introduction 
A fundamental goal of space mission scheduling is efficient 

use of complex systems with large operating costs. In many 
cases (e.g. communication satellites, orbiting observatories, 
manned space vehicles, manned space stations), the system of 
interest has been designed to provide a wide range of 
capabilities over an extended lifetime. Such space technology 
offers unique opportunities for scientific experimentation and 
information gathering, and, on a given mission, potential 
demands for system resources to accomplish specific 
objectives are virtually unlimited. To maximize mission cost- 
effectiveness, it is important to accommodate as many 
demands as possible. This, in turn, depends directly on an 
ability to construct schedules that efficiently allocate system 
resources to competing mission activities. 

Global optimization of resource usage in such domains is a 
very complex problem. Candidate mission objectives specify 

sets of activities to perform, each having a specific priority 
and designating specific resource requirements, temporal 
ordering constraints, allowable time windows, and scheduling 
preferences. Moreover, complex physical constraints relating 
to the behavior of various components of the system dictate 
the actual circumstances under which target activities can be 
performed. For example, successful execution of an onboard 
experiment may require minimal spacecraft vibration, which 
implies restrictions on parallel activity and the prior execution 
of any activities (e.g. stabilizing maneuvers) required to 
establish a vibration-free state. Satisfaction of physical 
constraints depends on the particular predicted state of the 
overall system, thus raising the additional issue of generating, 
synchronizing, and allocating resources to the activities 
required to support (enable) accomplishment of selected 
mission objectives. Over any given time frame, there are 
typically insufficient resources to satisfy all user demands, 
making it necessary to selectively relax problem requirements 
(e.g. drop mission objectives). Such decisions must balance 
the preferences of individual mission objectives with overall 
resource allocation goals. 

Space mission scheduling can be seen generally as the 
process of constructing a behavior (or set of behaviors) of a 
complex dynamical system that is consistent with specified 
goals and constraints [Muscettola 90]. It requires an 
integration of what have historically been distinguished as 
"scheduling" and "planning" techniques, as each offers 
specific strengths with respect to the required overall process.2 

Recent research in scheduling [Fox and Smith 84, Smith et al 
90, Sadeh 90] has emphasized the problem of efficiently 
allocating resources to competing activities over time in the 
presence of conflicting objectives and preferences, and has 
produced heuristic techniques that exploit the structure of the 
problem constraints (in particular, implied resource 
contention) to opportunistically focus solution development 
toward an acceptable global compromise. The power of these 
techniques vis a vis classical dispatch-based approaches has 
been demonstrated in large-scale manufacturing scheduling 
contexts [Ow and Smith 88]. At the same time, the ability to 
exploit    such    problem    structure    relies    on    specific 

'This work was sponsored in part by the National Aeronautics and Space 
Administration under contract # NCC 2-531 and the Robotics Institute 

2We in fact do not consider scheduling and planning to be fundamentally 
different processes and see this distinction more as a consequence of the 
capabilities of current techniques. 
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representational assumptions held in common with classical 
manufacturing scheduling research [Baker 74]. In particular, 
it is assumed that physical constraints are "pre-compilable" so 
that the complete set of activities requiring resources, as well 
as their ordering relationships and durations, are known in 
advance. This leaves resource availability as the only aspect of 
state that must be attended to over time, and permits a model 
of resource availability wherein a resource is considered 
unavailable during any interval that it is allocated to an 
activity and otherwise available. These representational 
assumptions are insufficient in domains like mission 
scheduling where the ability to execute a given target activity 
(e.g. a step in an onboard experiment) is a complex function of 
the state of the underlying physical system and variably 
implies different networks of supporting activities and 
resource requirements. In such domains, techniques based on 
these assumptions can at best provide guidance in focusing the 
development of an executable schedule. 

Research in planning, alternatively, has focused on the 
problem of "compiling" activity networks that bring about 
desired goal states from more basic representations of the 
effects of actions in the world. However, as with scheduling 
research, the techniques that have emerged do not fully 
address the requirements of the class of problems described 
above. The appropriateness of classical STREPS-style 
representational assumptions [Fikes et al. 72, Wilkins 88] is 
limited given the obvious need to deal explicitly with time (in 
both absolute and relative senses). More recently developed 
representational frameworks [Allen and Koomen 83, Dean et 
al. 88, Lansky 88, Vere 83] do provide these capabilities. 
However, with few exceptions (e.g., [Lansky 88]), these 
frameworks have not attempted to exploit the inherent 
structure of the underlying physical system. Given the 
complexity of the systems of interest in space mission 
scheduling, the ability to work with decomposable models of 
system behavior is fundamental to managing the 
combinatorics of search. More generally, current planning 
representations and frameworks do not provide a convenient 
basis for reasoning globally about efficient resource 
allocation. Interactions in resource requirements emerge only 
as the represented physical constraints are applied to achieve 
planning goals. Allocation conflicts can be avoided, but there 
is no leverage to anticipate resource contention, compromise 
among conflicting objectives and dynamically organize 
planning on this basis. 

In this paper we describe HSTS, a scheduling/planning 
architecture for solving problems that require efficient 
allocation of resources over time in the presence of complex 
physical constraints. HSTS is based on a unifying perspective 
of scheduling and planning as a process of predicting the 
behavior of a dynamical system. Accordingly, HSTS provides 

• a domain description language for modeling the 
structure and dynamics of complex systems at 
different levels of abstraction - Overall system 
dynamics is expressed in terms of interactions 
among structural components, providing a 
modularity       that       facilitates       incremental 

development      of      both       models       and 
scheduling/planning heuristics. 

• a temporal behavior data base for representing 
possible evolutions of the state of the system over 
time - System behaviors are represented as 
constraint networks, providing a basis for both 
analysis of current solution structure and 
incremental construction of consistent system 
behaviors (via successive posting of constraints 
and propagation of consequences). 

• a scheduling/planning framework that flexibly 
integrates decision-making at different levels of 
abstraction - Abstract models are used to globally 
focus the development of the final, executable 
schedule in accordance with overall resource 
allocation objectives and preferences. 

An initial version of the HSTS scheduling architecture has 
been implemented and applied to the complex problem of 
generating short-term, executable observation schedules for 
the Hubble Space Telescope. Preliminary experimental results 
have been obtained relative to a simplified but representative 
model of the telescope and its operating environment which 
indicate the potential of the architecture in solving large-scale 
mission scheduling problems. 

To provide a context for describing the HSTS scheduling 
architecture and its current implementation status, we first 
consider the nature of the space telescope observation 
scheduling problem and its constraints. 

2. The HST Observation Scheduling Problem 
The initial motivation and domain of focus for the HSTS 

project has been the development of executable observations 
schedules for the Hubble Space Telescope (HST). HST is a 
sophisticated orbiting astronomical observatory that was 
deployed in April 1990 and is expected to have an operating 
lifetime of 15 years. When fully operational, HST will allow 
the world astronomical community to observe celestial objects 
at distances 7 to 10 times further and with a resolution 10 
times higher than is possible from Earth-based observatories. 
HST is expected to provide insights into some fundamental 
questions about our Universe, such as its age, its density, how 
it began, and how it might end. 

The development of observation schedules for HST is a 
large and complex task. On an annual basis, an allocation 
committee at the Space Telescope Science Institute (STScI) 
selects, among the submitted observation program proposals, 
those to be considered for the coming year. In order to insure a 
very high utilization of the telescope, the number of proposal 
accepted exceeds those that can be actually executed by the 
telescope. The objective of the observation scheduler for HST 
is to accommodate as many observation programs as possible 
in a given scheduling horizon, taking into account assigned 
program and observation priorities, and satisfy all constraints 
relating to the physical operation of HST. The principal 
measure of scheduling effectiveness is the fraction of time 
spent actually recording data on any scientific instrument on 
HST. 
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Astronomers specify observation programs according to a 
specification language [STScI 86] that allows the 
representation of complex constraints on the execution of the 
component observations. The basic structure of each program 
is a partial ordering of observations, each specifying the 
collection of light from a celestial object with one of the 
telescope's six scientific instruments. A diverse set of 
temporal constraints can be imposed on the observations in a 
program, including precedences, windows of opportunity for 
groups of observations, minimum and maximum temporal 
separations, and coordinated parallel observations with 
different viewing instruments. It is possible to prioritize the 
observations specified in a given program, and to specify 
preferences with respect to observation completion levels 
(e.g., 25% completion is minimally acceptable, 50% 
completion would be desirable, 75% completion is the 
maximum required). Each program also has an associated 
priority, decided by the allocation committee, which specifies 
if the program has to be considered "required" (i.e., its 
execution has to be insured within the scheduling horizon) or 
"supplemental" (i.e., its execution is conditioned to the 
availability of time on HST). 

An observation program accurately describes the 
performance that the user requires from the telescope but 
leaves unspecified the operational constraints associated with 
actually executing the exposure. In fact, these constraints 
relate directly to the "physics" of picture-taking with the 
telescope, and are usually independent of the particular 
observations to be executed. 

In general, the execution of an observation requires the 
satisfaction of three main requirements: 

1. The telescope must be pointed at the target while 
the picture is being taken; 

2. The required scientific instrument must be 
operational (i.e., exposing) for the specified 
duration. 

3. The data collected by the scientific instrument 
must be communicated to Earth. 

Each of these conditions, in turn, places additional 
constraints on the required state of the telescope and/or of the 
surrounding environment with which the telescope interacts, 
which must be similarly established for the exposure to take 
place. 

If Condition 1 is not already satisfied, it can be achieved by 
rotating (or slewing) the telescope from the orientation 
required by the previous target to that of the required target. 
The duration of a slewing operation depends on the position of 
the previous target on the celestial sphere and can therefore be 
calculated only when an observation sequence has been 
determined. In addition to orienting the telescope in the 
direction of the target, it is necessary to lock the target in the 
center of the field of view of the required instrument, a 
process that requires the execution of additional operations. 
Both locking and picture taking require the target to be 
unocculted by the earth, the moon or the sun; these occultation 
periods can be deterministically known within a 1-2 month 
scheduling horizon, and can therefore be considered as data of 

the problem. If an observation is designated as "interruptible" 
it can continue after an occultation period; however, it is 
necessary to reestablish the target lock when the target 
becomes visible again. These aspect of telescope behavior are 
graphically illustrated in Figure 2-1. 

Slewing 

Unlocked 

„ - Locking 

- Locked 

Figure 2-1: A sequence of transitions to point HST 

The achievement of Condition 2 typically requires the 
execution of complex sequences of instrument setup 
operations. Some instruments are in fact composed of several 
independent detectors, possibly sharing some service devices 
(e.g., temperature control systems). Each detector and service 
device has an associated operating status, which can undergo 
warming up and cooling down transitions with several 
intermediate states; each state and transition typically has an 
associated range of possible durations. Limitations on the 
availability of electric power and structural characteristics the 
instruments require the satisfaction of parallelism and mutual 
exclusion constraints among the various warmup/cooldown 
processes. For example, a given detector might be required to 
be switched off while another is undergoing a warm-up or 
cool-down process. Similarly, while a detector is in an 
intermediate warmup state, the corresponding service base 
might be constrained to undergo only a well specified 
subsection of its warmup process. Figure 2-2 graphically 
illustrates one such constraint on the operating states of the 
Wide Field/Planetary Camera service base (WFPQ and one of 
its two detectors, the Wide Field Camera (WF). 

Finally, Condition 3 implies that satisfaction of 
communication constraints is a function of the specified 
instrument and viewing mode (e.g., the rate amount of data 
produced by an instrument requires the use of a IMbyte/sec 
channel through a TDRSS communication satellite), as well as 
various user-specified special requirements (e.g., criticality of 
an observation requires both immediate down-linking of data 
and local storage on the tape recorder). Transmission of data 
to earth requires both visibility of one of the two currently 
available TDRSS satellites and the availability of an 
appropriate communication link. Storage of collected data for 
later transmission requires sufficient on-board tape recorder 
capacity. 
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Figure 2-2: Constraint: WFPC must be on while WF is on 

3. Modeling the Dynamics of Telescope 
Operations 
As indicated at the outset of this paper, scheduling in HSTS 

is viewed as the process of constructing a behavior of a system 
that satisfies given constraints. Assuming this view, the first 
problem to address is that of describing the structure and 
dynamics of the system to be managed. Our approach reflects 
the following broad modeling requirements: 

• Representational adequacy: 
In-depth analysis of the HST scheduling problem 
has led to the identification of several 
representational requirements: 

1. the ability to model actions and states that 
have definite, and often context- 
dependent, durations (e.g., slewing time). 

2. the ability to deal with actions and events 
that depend on the occurrence of particular 
combinations of states as opposed to the 
execution of explicit actions (e.g., a lock 
on a target is lost if the visibility window 
closes) 

3. the ability to model not only sequence 
constraints among actions and states but 
also constraints on their parallel 
occurrence (e.g., constraints on WFPC 
reconfiguration). 

The HSTS modeling framework addresses all of 
these issues. 
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• Independence from the particular application: 
It is evident that the representational issues 
identified above are not unique to the HST 
domain, but are instead common to a wide range 
of scheduling problems. For example, a 
representation of context-dependent durations is 
fundamental to management of automated 
factories where mobile robots are used to move 
parts around, as optimization of paths and travel 
times would necessarily play an important role. 
The HSTS modeling framework provides a 
general approach to the representation of physical 
systems, which we have used to construct a 
specific model of the HST operating environment 

• Independence    from   the    problem    solving 
strategy: 
Use of an opportunistic scheduling methodology 
implies the need to variably adopt different 
problem solving strategies during the construction 
of system behaviors (e.g. backward chaining, 
forward simulation). Thus, the system description 
must truly encompass all possible behaviors of the 
system, and be decoupled from any assumptions 
about the nature of problem solving strategy to be 
applied. 
The HSTS modeling framework achieves such 
independence by clearly separating the 
description of the structure and the dynamics of 
the system, which is of general use, from any 
heuristics and preferences that might be added to 
the model to specialize it with respect to a specific 
problem solving strategy. 

In the following subsections, we describe the salient 
features of the HSTS modeling framework. We first consider 
the basic primitives for specifying system structure and 
dynamics, and then the extensions necessary to accommodate 
multiple levels of representation. 

3.1. The HSTS Domain Description Language 
Within the HSTS domain description language, a system is 

defined, at the basic structural level, as a collection of 
interacting parts or system components. Each component is 
characterized by a set of properties that are relevant to the 
scheduling problem. For example, one of the components of 
the current model of the HST operating environment is the 
HST optical system. For purposes of scheduling, the state of 
the optical system is fully specified once one knows what it is 
pointing at; thus, its sole property is POINTING STATUS. 
Another important class of components is that of fixed targets 
(stars, globular clusters, galaxies, etc.) (see Figure 3-1). One 
of their properties is the position on the the celestial sphere, 
identified by a <Right Ascension, Declination> coordinate 
pair; another is their visibility with respect to the space 
telescope. 

At any instant of time, each property of each component of 
the system has one and only one associated value. In general, 
a value of a property is a description of some relation existing 
among several components of the system.   Some properties 



{{fixed-target 
LOCATION: 

VISIBILITY: }} 

Figure 3-1: The class of fixed targets 

are static, i.e., their value does not change over time. Others 
are dynamic, i.e., their value might change over time; in the 
following we will also refer to these as state variables. 
Referring again to the example in Figure 3-1, a fixed target's 
LOCATION is a static property while its VISIBILITY is dynamic 
(i.e., some times it will be visible from HST while other times 
it will be occulted). Other examples of dynamic properties in 
the HST domain include the POINTING STATUS of the 
telescope's optical system and the OPERATING STATUS of an 
instrument 

It is important to note here that in order to determine a 
behavior of a system that achieves specified goals it is 
necessary to model not only the dynamical behavior of the 
system to be managed but also the dynamical behavior of 
those elements of the environment (in the HST case, the 
targets) whose behavior affects our capability to achieve those 
goals. Within the HSTS domain description language, both 
the environment and the system to be managed are represented 
uniformly with the same primitives, leaving to the problem 
solver the responsibility to decide what is to be considered 
accessible and modifiable and what has to be considered as 
given. 

The HSTS Domain Description Language requires explicit 
declaration of the set of possible values that can be assumed 
by each dynamic property in the model. Since a value 
represents the existence of a particular relationship among 
system components at a certain instant of time, a set of values 
is represented as a set of tuples belonging to one or more 
relations. Each set of tuples is represented as a set of predicate 
calculus assertions, with predicate names designating specific 
relations and arguments denoting variables or constants; by 
convention variable arguments are preceded by a question 
mark. Returning to our examples from the HST domain, the 
VISIBILITY state variable of a given fixed target ?r is defined 
to take on one of the two possible values at any point in time: 
VISIBLE (IT) or NOT-VISIBLE (IT). The set of possible 
values for the POINTING STATUS of the optical system of the 
telescope is given in Figure 3-2, where the variables IT, ?71 
and ?72 designate arbitrary targets. 

LOCKED (HST, IT) 
UNLOCKED (HST, IT) 
LOCKING (HST, IT) 
SLEWING (HST, 1T\, ?T2) 

Figure 3-2: Possible values of POINTING STATUS 

A behavior of the system is an evolution over time of the 
values of its state variables. A behavior of the system is 
completely specified once a value has been associated with 
each state variable for each instant of time. Scheduling is 
concerned with the construction of such behaviors, and we 
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will consider their representation in HSTS in Section 4. For 
now, we are concerned with specification of the possible 
behaviors that can be realized by the system. 

The HSTS domain description language allows the 
specification of the "laws" that govern the possible behaviors 
of the system, as constraints on the values that the state 
variables can assume over time. Each possible value of each 
state variable has an associated value descriptor, which 
collectively specify the legal patterns of values relative to the 
variables of the system that may occur over time. More 
precisely, in order for a value v to be present in a behavior B 
of the system, it must be possible to recognize in B one and 
only one of the patterns specified in the value descriptor of v. 
Value descriptors allow the specification of simultaneity and 
sequentialiry constraints on the occurrence of specific values. 

A value descriptor specifies two distinct pieces of 
information; the duration and the compatibility 
specification. 

The duration of a value is a constraint on the amount of 
time during which a value can appear continuously in a 
behavior of the system; it is represented as a pair of temporal 
distances [d,D], D > d > 0, where d and D are respectively 
the lower bound and the upper bound on the duration. For 
example, the pair [0, +<*>] denotes an indefinite duration; in 
this case the duration of the value is totally determined by the 
occurrence of other values that constrain its start and end time. 
On the other hand, [c,c], where c is a constant, denotes a 
definite duration for a value; in this case the duration of the 
value is totally independent of the rest of the behavior of the 
system. 

In general, both d and D may be functions of the parameters 
determining the associated value. The duration of 
SLEWING (HST, ?71,1T1), for example, is: 

[dsUw(HST, ?H, ?72), dsUw(HST, TT1, ?77)] 

This constraint returns a definite duration only when the 
both targets ?7T and ?72 are completely specified. 

The compatibility specification of a given value 
determines how the continuous occurrence of that value is 
constrained over time by the occurrence of other state values. 
A compatibility specification may consist of one or more sets 
of compatibilities (not necessarily disjoint). The meaning of a 
compatibility specification for a value v is the following: for 
each possible behavior b of the system, if the value v appears 
in b over an interval of time, then there is a compatibility set 
in the compatibility specification such that all the 
compatibilities in the set are satisfied in b. 

Each compatibility is expressed as a temporal relation 
between two values, indicating the existence of one or more 
temporal separation constraints between the start and/or end of 
the continuous occurrences of the two values. The temporal 
relations used in the HSTS domain description language are 
equivalent to those in [Allen and Koomen 83] but also allow 
the specification of temporal distances among the extremes of 
the intervals [Dean and McDermott 87]. For example, the fact 
that a target IT must be visible in order to take a picture of it 
with viewing instrument II in operational status IS, is 
expressed as: 



VISIBLE (IT) 

{contains, [0, +°°], [0, +°°]} 

EXPOSE (71, IS, IT) 

This indicates that, for any II, IS and ?r, if 
EXPOSE {V, IS, IT) appears in the behavior of the system, 
then the value VISIBLE (IT) has to appear continuously 
during an interval of time such that its start precedes the start 
of EXPOSE (II, IS, IT) by an indefinite amount of time and 
its end follows the end of EXPOSE (II,1S,1T) by an 
indefinite amount of time. Another temporal relation available 
in the domain description language is {before, [d, D]}, which 
specifies that the end of the constraining value must precede 
the start of the constrained value, and the time interval 
separating the two events is constrained by [d,D]; The 
relation {before, [0,0]}, for example, requires the 
simultaneity of the two events. 

Figure 3-3 illustrates the sole compatibility set in the 
compatibility specification of EXPOSE (WF, An, IT), which 
corresponds to taking a picture of a given target with the WF 
in operational state An. 

POINTING-STATUS (HST-frame) 
LOCKED (?tgt) 

Comp-relation: { contains, [0, + ~/, [0, + «°/j  

Property 
Value: 

Property: OPERATING-STATUS (WF) 
Value: TRANSITION (3n,4n) 
Comp-relation: {before, [0, 0]} 

Property: OPERATING-STATUS (WF) 
Value: TRANSITION (4n,3n) 
Comp-relation: { after, [0, 0]} 

OPERATING-STATUS (PC) 
STATE (2s) 

Comp-relation: { contains, [0, + °°], [0, + *>]} 

Property: 
Value: 

OPERATING-STATUS (WFPC) 
STATE (4n) 

Comp-relation: { contains, [0, + °°], [0, + °°]} 

Property: 
Value: 

Figure 3-3: Compatibility spec for EXPOSE (WF, An, ?7) 

3.2. Levels of Representation 
The complexity of large scale scheduling requires the 

analysis of the problem at an aggregate level, in order to focus 
the problem solving effort on the more pressing issues. While 
detailed models are fundamental to generate schedules that 
satisfy all the constraints imposed by the physics of system 
operation, abstract models can facilitate the focusing effort. 
The HSTS domain description language provides primitives 
for specifying models of a system at different levels of 
aggregation and establishing their correspondence. 

An abstract model consists of system components and state 
variables that aggregate several components and state 
variables of the detailed model. In the HST domain, for 
example, at the abstract level the telescope is modeled as a 
single capacity resource, with a single system component, the 
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HST itself, and a single property, HST OBSERVING STATE, 

which provide a summary of the state of all the components of 
the detailed model. 

Abstract values provide high level descriptions of entire 
segments of detailed behavior. In general, several detailed 
activities (e.g., the "setup" sequences) can be determined only 
with respect on the fully detailed system model. Therefore, 
the mapping between abstract and detailed representation is 
given through refinement descriptors that for each abstract 
value give the necessary conditions to be satisfied in the 
corresponding detailed behavior, i.e., a set of detailed state 
values, and a set of temporal relations constraining their 
occurrence over time. In the HST domain, one of the values 
of the abstract HST OBSERVING STATUS variable refers to 
specific "observations" (e.g., 0BSERVE(1P,V,7S,1T,...), 
where IP designates an observation program, ?/ designates a 
viewing instrument, ?5 designates the required operating state 
of ?/, and ?T designates a target); the corresponding 
refinement descriptor listed in Figure 3-4 requires the 
occurrence of two values, EXPOSE(V,7S,TT) and 
READOUT(\Mb-link,H) on the OPERATING STATUS state 
variables of the instrument and communication device 
respectively, such that the end time of the EXPOSE and the 
start time of the READOUT are within the duration of a single 
orbit. Furthermore, the start and end time of the EXPOSE 
coincide respectively with the start and end time of the 
abstract OBSERVE. These latter constraints provide a basis 
for downward imposition of time constraints, as well as 
upward propagation of detailed scheduling decisions. 

At the abstract level, the description language primitives 
allow the generation of rough estimates of the characteristics 
of the corresponding detailed behaviors before their complete 
expansion on the detailed model. For example, in order to 
account for the duration of the context-dependent "setup" 
activities associated to an 0BSERVE(7P,V,1S,7T,...), the 
lower and upper bounds of the duration of the abstract value 
are modeled as functions of the proximity of the previous and 
current targets, and of the previous and current configurations 
of the scientific instruments and communication devices. 

{{refine-desc-1 
VALUE: 

OBSERVE(7P, II, IS, IT,...) 
SUBVALUES: 

VI (OPERATING-STATUS EXPOSE(V, IS, 7T) ) 
V2 (OPERATING-STATUS READOUT(lMb-link,?I) ) 

ORDERTNG-CONSTRAINTS: 
V1    {before, [ 0, * orbit-duration* ])    V2 

SAME-START: VI 
SAME-END: VI    }} 

Figure 3-4: Refinement descriptor for OBSERVE 

4. Representing System Behaviors 
Given a description of the system to be managed, a second 

broad architectural issue concerns the manner in which 
specific system behaviors (i.e. schedules) constructed by the 



scheduler are represented. Within HSTS, this is accomplished 
through the use of an underlying temporal data base. The 
HSTS temporal data base has the following general 
characteristics: 

1. It stores behaviors of a system: In fact, the data 
base satisfies a stronger requirement, since its 
only legal states are those that satisfy the 
constraints on the dynamics of a pre-specified 
system model; 

2. It is a constraint network: Behaviors are 
represented implicitly by a series of constraints 
that have been either externally imposed (e.g. by 
requirements of the problem) or directly 
extracted from the system model. This provides 
a representation of a partial schedule as a state of 
the database where several aspects of the system 
behavior currently under construction are left 
underspecified. 

3. It supports opportunistic scheduling: At any 
point during scheduling, several parts of the data 
base might require refinement (through 
additional constraint posting) to produce a 
complete specification of the final schedule. 
The database leaves complete freedom as to the 
order in which these refinements are made. 

The HSTS temporal data base extends in several ways the 
philosophy of the time map formalism developed in [Dean and 
McDermott 87]. Perhaps the most fundamental departure in 
our approach is the tight connection that is established 
between the state of the data base and the model of a system 
This association provides a strong basis to support planning 
and enforce database consistency. 

The process of building a system behavior that satisfies a 
given set of scheduling goals involves the determination of 
sequences of values for system state variables that include 
these designated values and coordinate temporally in a manner 
consistent with the compatibility constraints specified in the 
system model. At any stage of this process, the HSTS 
Temporal Behavior Data Base represents the set of values, 
sequences and compatibility constraints that have been posted 
so far and the specifications of the compatibility constraints 
that are known to be needed but have not yet been posted. 

For each state variable, the scheduling horizon is subdivided 
into a sequence of intervals, or tokens, each being a triple 
<st,et,type>, where st and et represent respectively the 
token's start and end time and type is a set of values. 

We distinguish two distinct kinds of tokens: 
• value token: a value token indicates that the 

interval represents the occurrence of a single 
constant value; therefore, the type of a value 
token has cardinality one. A value token 
originates either from the external posting of a 
scheduling goal or from the direct implementation 
of a compatibility constraint For example, in the 
HST domain, value tokens of type 
EXP0SE(V,1S,1T) generally correspond to a 
proposer's request to take a picture, while tokens 
of type LOCKED (HST, IT) are typically 
justified     as     enabling     conditions     for     a 

226 

corresponding EXPOSE.   Notice, however, that 
the distinction between tokens that are scheduling 
goals and  tokens justified by compatibilities 
depends on the specific scheduling problem that is 
being solved and are not at all intrinsic to the 
system  model.  In  other words,  it could be 
perfectly reasonable to formulate problems that 
require as external goal the occurrence of a 
LOCKED token, e.g., during calibration and/or 
instrument maintenance routines. 

• constraint token: a constraint token denotes a 
segment of the evolution of a state variable that 
has not yet been constrained to any value token. 
Therefore, this token implicitly represents a set of 
sequences of values. No restriction is imposed on 
the length of the sequence, and it can possibly be 
empty. Each value of the sequence is constrained 
to belong to the set type, while st and et represent 
respectively the start of the first value and the end 
of the last value in the sequence. A constraint 
token can be considered as a "hole"  in the 
evolution of a state variable within which it is 
possible to find room for a new value. 

As mentioned earlier, any value posted in the temporal 
database must be consistent with the compatibility constraints 
in the corresponding system model. When a value token is 
introduced into the sequence of a state variable, it is connected 
with instances of the duration and compatibility specifications 
that are associated with its type in the system model. In order 
for the value token  to be justified,  there must be an 
implementation of these specifications such that the overall 
schedule is consistent.  Given a duration constraint [d,D] for 
the token TOK, its implementation implies the introduction of 
the following temporal separation constraint; 

d < et (TOK) - st (TOK) < D 
Given   a   token   TOKv   implementing   a   compatibility 

constraint of the kind: 

TEMPORAL RELATION:   {contains, [0, -H»], [0, +«.] ] 
TYPE: P 

corresponds to selecting or generating a token TOK2 of type 
P and introducing the temporal constraints; 

stfJOK^-stiJOK^ >0 

et{TOK^-et(JOK^tQ 
A fundamental aspect of the operation of the HSTS 

Temporal Behavior Data Base is that constraints can be posted 
irrespective of the existence of an overall consistent 
assignment of values to each variable. Consistency 
verification can be an expensive operation and it can be 
redundant if it is known that the addition of a constraint will 
not make the network inconsistent (even if a complete 
assignment of values to state variables is not yet known). 
Constraint propagation is decoupled from constraint posting to 
allow the scheduler to take advantage of such knowledge. 

One important consequence of representing a schedule as a 
network of temporal constraints is that it allows commitment 
to a specific assignment of start and end times for each 



scheduled value token to be avoided whenever possible. An 
HSTS schedule explicitly represents a window of opportunity 
for the occurrence of each event in a system behavior. 
Moreover, the explicit representation of the network of 
temporal constraints reduces the solution of some simple 
reactive scheduling problems to polynomial constraint 
satisfaction processes. For example, Figure 4-1 represents the 
network of reconfiguration activities needed on the WF/PC 
state variables and on the telescope pointing status in order to 
take a picture with the WF (the black value token corresponds 
to the EXPOSE value). The four temporal constraints 
connected to the target visibility correspond to the selection of 
the orbit during which the exposure is scheduled to be taken. 
If, after the development of a schedule, it becomes necessary 
to delay the exposure of one orbit (e.g., because the scheduler 
has been suddenly required to make room for a higher priority 
exposure), we would just need to redirect the four orbit 
selection links and repropagate through the resulting network 
of temporal constraints. 

NCC-2KK 
VI.SIIIIUTY: 

HSTFRAME 
raiNTING STATUS: 

PLANETARYCAMERA 
OI'EKATING-STATUS: 

WIDE-FIELD-CAMERA 
. OPERATING STATUS: 

WFPC-BASE 
OPERATING-STATUS: 

Figure 4-1: Network of temporal constraints for exposure. 

5. Integrating scheduling and planning 
The temporal behavior data base is partitioned into a series 

of layers, each corresponding to a level of abstraction of the 
system model, to reflect the current state of the solution during 
the schedule generation process. Within the current HST 
scheduler two layers are distinguished: 

• Abstract layer: This is a representation of the 
scheduling goals and temporal scheduling 
constraints that constitute the current scheduling 
problem (e.g., programs of observations) and of 
the abstract model of the HST. Initially no 
observations are scheduled and the OBSERVING 
STATUS of HST is AVAILABLE over the entire 
scheduling horizon. 

• Detailed layer: This represents a set of behaviors 
that are consistent with the refinements of the 
scheduling goals selected so far. Initially, the 
temporal data base reflects external events that are 
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deterministically known (e.g., periods of target 
visibility) and assumptions regarding the initial 
state of other system state variables (e.g., the 
initial state of each instrument, the initial pointing 
status, etc.) 

Generation  of a  schedule proceeds  incrementally,  by 
repeatedly selecting one or more as yet unachieved scheduling 
goals (or alternatively selecting one or more previously 
achieved goals to be retracted), inserting them into the abstract 
state variable sequence (or extracting them, if the goals have 
to be retracted), communicating the refined goals to the 
detailed layer, and constructing the detailed system behavior 
that extends the detailed layer to include the achievement of 
the newly posted goals (or desired retraction of previously 
achieved goals). This cycle is repeated until either all of the 
scheduling goals have been achieved or it has been determined 
that it is not possible to achieve those that remain. 

The different layers are suitable for different problem 
solving activities according to the level of detail of their 
constraint representation. At the abstract level, telescope 
reconfigurations needed to achieve a scheduling goal (e.g., 
telescope slewing, instrument warm ups and shut downs) are 
implicitly modeled as adjustments on the duration of each 
observation. Here, decision-making is concerned with 
allocating available slots of time on the telescope operating 
status to unscheduled observations. This level of abstraction 
is well suited for global focusing activities such as distributing 
observations over the scheduling horizon to minimize the 
possibility of resource contention (i.e., avoiding resource 
bottlenecks) and sequencing observations to minimize 
estimated telescope reconfiguration (setup) times. On the 
other hand, the detailed representation of the system supports 
the actual expansion of required setup activities and their 
mutual synchronization. Depending on the accuracy of the 
abstractions of the detailed constraints in the abstract model, it 
may not be possible to reliably make certain decisions (e.g., 
the selection of the orbit during which an exposure is taken) 
until all detailed constraints have been elaborated. In these 
cases, decision-making at the abstract layer will involve the 
communication of preferences (e.g., "schedule the observation 
in the earliest possible orbit within the imposed time 
constraints") to be implemented on the detailed layer. 

At any point during problem solving, there may be several 
value tokens in a given layer of the temporal data base whose 
occurrence is still incompletely justified. This is the case if 
there are value tokens in the temporal data base that do not 
have a compatibility set with all compatibilities implemented. 
To establish if the current temporal data base actually contains 
some consistent behavior of the system, it is necessary to 
select and implement additional compatibilities. This process 
is carried out through a heuristic search that combines two 
principal selection steps: 

1. Selection of an open compatibility to implement 
We refer to the value token to which the 
compatibility is connected as the the constrained 
token; 

2. Selection of a value token to be connected to the 
constrained token according to the directives of 



the selected compatibility. If a value token does 
not already exist in the current temporal data 
base, a constraint token whose type matches the 
value required by the compatibility is selected 
and a new value token is inserted into it. 

After some number of temporal constraints have been 
posted, a temporal constraint propagation process spreads the 
consequences to the rest of the temporal data base and 
possibly detects the inconsistency of the current state of the 
data base. In the latter case, backtracking is needed before the 
search process can continue. 

The architecture provides several mechanisms to encode 
heuristic knowledge to govern the search process. Such 
knowledge includes: 

1. selection among alternative value refinements 
during translation of scheduling goals at the 
abstract layer into networks of goals at the 
detailed layer. For example, in the current HST 
scheduler, direct communication of data to earth 
is preferred to local storage on the tape recorder 
when the choice exists, and these alternative 
refinements are explored in this order. 

2. decomposition of the overall search into 
subproblems. For example, in the current HST 
scheduler, the search to achieve an EXPOSE and 
READOUT goal pair that results from the 
refinement of an OBSERVE is partitioned into a 
search to achieve the EXPOSE, a search to 
achieve the READOUT and a final search to 
select the target and communication satellite 
visibility windows. Each of these subproblems 
can be further sub-divided into still smaller 
subproblems. For example, to achieve an 
EXPOSE requiring the WF detector, the planner 
first builds the network of values switching on 
the WF/PC and then that switching off the other 
instruments. To switch on the WF, the planner 
considers the reconfiguration of the state 
variables associated to the whole WF/PC 
instrument, first reconfiguring the WF, PC and 
WFPC state variables independently and then 
mutually synchronizing them. 

3. selection among mutually exclusive 
compatibilities that discriminate among different 
compatibility sets within an open compatibility 
specification; For example, in the current HST 
scheduler, communication of data to earth 
requires the visibility of either of the two 
TDRSS satellites, and a heuristic that exploits 
the degree of overlap with the viewing target's 
visibility is employed. 

4. selection of value or constraint tokens to 
implement the selected compatibility. For 
example, in the current HST scheduler, the goal 
of executing an observation as soon as possible 
translates into a preference for the earliest token 
in time (value or constraint) that locally satisfies 
the requirements of the current compatibility. 

5. execution of the temporal constraint 
propagation. It is possible to specify when the 
propagation is needed with respect to the current 
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decomposition of the problem into subproblems. 
Moreover, it is possible to specify different 
preferences with regard  to the  traversal of 
parallel propagation paths in the network of 
temporal constraints, with the intent of speeding 
up the propagation by  traversing  the most 
restrictive paths first. 

Heuristic knowledge is also required in order to relax the 
detailed layer of the temporal data base in situations where a 
revision to the constraints posted on the abstract layer requires 
the retraction of a network of detailed values (e.g., the 
insertion of a new observation between two observations 
previously  considered   to  be  consecutive   might  require 
substantial    changes    in    the    telescope    reconfiguration 
sequences). After the detailed values are retracted, constraint 
tokens take their places on the corresponding state variables, 
providing the "holes" into which the values required by the 
new reconfiguration networks can be placed. 

6. Current Status and Preliminary Results 
The development of a scheduling system for HST has been 

pursued by building and experimenting with increasingly 
realistic models of the operating environment The model of 
the Hubble Space Telescope over which the system is 
currently operational consists of 14 state variables: 1 in the 
abstract model and 13 in the detailed model. The state 
variables contained in the detailed model relate to the 
following system components: 

• 5 represent the operating status of the 2 
instruments that are currently modeled; 3 for the 
WF/PC and 2 for the Faint Object Spectrograph 
(FOS) 

• 1 represents the HST pointing status 
• 4 represent the status of instrument data buffers 
• 2 represent the status of the two data transmitters 
• 1 represents the status of local tape recorder. 

Additional state variables represent the visibility status of each 
target and of the two TDRSS satellites. 

The current automatic scheduler operates according to a 
"dispatching" strategy. At each cycle, an observation is 
selected among the current unscheduled tasks and appended to 
the current sequence of scheduled observations. The selection 
is made according to a dispatching rule that attempts to 
minimize "dead time" (i.e., an estimate taking into 
consideration instrument reconfiguration, telescope 
repositioning, and target and TDRSS visibility windows). 
Figure 6-1 describes some preliminary results on a scheduling 
problem consisting of 16 single observation programs, with 
requirements for all the 4 detectors of the two modeled 
instruments and all the communication links and the tape 
recorder. The cumulative viewing time required by this set of 
observation was 5 hours and 9 minutes. The system constructs 
a schedule that covers a scheduling horizon of 23 hours and 35 
minutes, with schedule efficiency (i.e., the ratio between the 
science time and the covered scheduling horizon) of about 22 
%. The schedule efficiency is artificially low with respect to 
the theoretically estimated upper bound of 30-35% [Johnston 



85] due to the fact that the model includes the requirement that 
the FOS (respectively WF/PC) must be switched off every 
time an exposure is performed on the WF/PC (FOS). 
Experiments conducted with a less restrictive (and more 
realistic) model allowing both the WF/PC and the FOS to be 
on in parallel yielded a schedule efficiency of 29.43 %. 

Notice that the temporal data base minimizes the number of 
time points needed in the temporal distance graph. When an 
equality constraint (i.e., [0,0] distance) is posted, the two 
connected time points are collapsed. Figure 4-1 gives an 
indication of the topology of the network of temporal 
constraints that need to be built for each scheduled 
observation. 

CPU time: 5 minutes 40 seconds 
Value tokens:  306 
Time points:  273 
Temporal distances:  1138 

Figure 6-1: Preliminary results 

The current HST scheduler can also be operated in an 
interactive mode. The user is allowed complete freedom in the 
development and revision of the overall observation sequence. 
The user need only specify, at each step, the unscheduled 
observations to be added, the position in the current sequence 
of scheduled observations where they should be inserted, 
which currently scheduled observations (if any) should be 
removed, and the preference with respect to the time of 
occurrence of the selected observations (e.g., as soon as 
possible, after a calendar date). The interactive scheduler 
provides the basic capabilities on which the development of a 
more flexible and opportunistic automatic scheduler will rely 
(see below). 

The modularity of the HSTS framework has allowed an 
incremental development of both the model and the 
scheduling and planning knowledge. This development took 
place in several stages, each consisting in the construction of a 
complete scheduler on increasingly more complex models. 
The first stage involved a model consisting only of the WF/PC 
and the HST pointing status; then the model was expanded to 
include the FOS; finally the rest of the state variables was 
added to account for the communication of data to earth. 

that flexibly integrates decision-making at different levels 
of abstraction to produce consistent system behaviors that 
attend to overall allocation objectives. 

An initial version of the HSTS architecture has been applied 
to the problem generating short-term observation schedules for 
the Hubble Space Telescope, and preliminary experimental 
results obtained relative to an incomplete but substantial 
model of the telescope and its operating environment indicate 
the utility of the architecture as a basis for effectively 
managing the combinatorics of large-scale problems. 

One area of current research concerns the development of 
more sophisticated, constraint-directed strategies for globally 
structuring the scheduling process. The currently 
implemented HST scheduler relies strictly on a local greedy 
heuristic for optimizing overall resource usage. While the 
schedule efficiency results given in Section 6 are respectable, 
the effectiveness of the local heuristic is due in part to the 
absence of many of the more complex temporal constraints 
that may be specified in observation programs in the 
scheduling problem that was solved. More importantly, 
schedule efficiency is not the sole objective in HST 
observation scheduling, it must ultimately be balanced against 
other allocation objectives (e.g. program and observation 
priorities). We believe that a key to better solutions to the full 
problem lies in the ability to dynamically direct problem 
solving according to the evolving structure of the underlying 
solution space. In fact, it was the desire to exploit such 
opportunistic problem structuring techniques that, in large 
part, originally motivated the HSTS scheduling 
architecture. [Muscettola et al. 89] We are currently 
investigating the use of previously developed preference 
representations [Muscettola and Smith 87, Johnston 90, Sadeh 
90] as a basis for more general characterizations of current 
solution constraints, and the development of problem 
decomposition heuristics that operate with respect to these 
representations. On a related note, we currently have hole 
insight into performance tradeoffs concerning the relative 
amount of problem solving effort expended at different levels 
of abstraction, and the relative amount of problem solving 
responsibility that should be apportioned to each level. 
Experimental analysis of this tradeoff is required. 

7. Concluding Remarks 
In this paper, we have presented HSTS, a problem-solving 

architecture aimed at the solution of complex problems, like 
space mission scheduling, that require efficient allocation of 
resources in the presence of complex physical constraints. The 
HSTS architecture is grounded in a uniform view of planning 
and scheduling as a process of constructing behaviors of a 
complex dynamical system. Following this view, the HSTS 
architecture provides a domain description language for 
modularly specifying the structure and dynamics of complex 
systems at different levels of abstraction, a temporal behavior 
data base that represents possible system behaviors over time 
and flexibly supports the incremental construction of 
solutions, and a scheduling/planning framework 
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Abstract 

Many   critical   decisions   involve 
the  solution  of  scheduling prob- 
lems  where  time  does   not  permit 
the   consideration  of   all   alter- 
natives.     Military     examples 
include   weapon-target   pairing 
and   evaluation   of   courses   of 
action.    Civilian   examples   are 
found    in    the    assignment    of 
computing  jobs  to  processors   and 
humans   to  tasks.   Often  the   size 
of   the   solution   space   grows 
exponentially with  the  number  of 
threats   and   a   schedule  must   be 
produced within  seconds.   The  new 
technigue   of  Tabu   Search  offers 
a   method    for   systematically 
searching  the   solution   space   to 
find   an  optimal   or  near  optimal 
solution   in   a   short   period   of 
time.      This  paper  combines   Tabu 
Search  with  parallel   processing 
to   increase  the  number  of  feasi- 
ble   schedules   that   can   be   con- 
sidered   in  a  short  time  period. 
The  technigue  also  overcomes  the 
problem   of   local   optimality.   A 
Naval   Anti-Air  Warfare   schedul- 
ing   problem   is   used   to   illus- 
trate the method. 

1.0   INTRODUCTION 

Most scheduling problems have 
extremely large solution spaces 
which cannot be searched by 
traditional methods in any 
reasonable amount of time. We 
give an example from the mili- 
tary  which   is   representative   of 

the   numerous   time   constrained 
scheduling problems. 

1.1   Illuminator   Scheduling   in 
Naval Anti-Air Warfare 

In    Naval    Anti-Air    Warfare, 
suppose  that  we  have  n   incoming 
threats    (missiles   or   planes). 
Surface   to   air   missiles    (SAMs) 
are   to   be   launched   against   the 
threats.    There   are   m   terminal 
illuminator's   (TIs)   which   serve 
as   terminal   homing   radars   for 
the   SAMs.   During   the   last   three 
to   fifteen   seconds   of   the   SAM's 
flyout,   one   of  the     TIs  must  be 
locked   onto    the    threat.    The 
reflected  beam   of   the   TI   guides 
the   SAM   into   the   threat   for   a 
certain  kill.   The  problem   is   to 
schedule   the   illuminators   so 
that  one   is  always  available   for 
each  SAM at  the  proper  time.   The 
objective   is   to   maximize   the 
depth  of   fire;   that   is,      to  get 
the  most   possible   shots   at   the 
incoming   threats.   The   illumina- 
tors   may   have   times   when   they 
are   unavailable   due   to   previous 
scheduling.    It   has   been   shown 
that  there  are  mn   *   n!   possible 
schedules   [Boyer,   et  al,   1990]. 
This  problem   is   an  example   of  a 
very   complex   assignment   problem 
called   the   time   constrained 
scheduling   problem.    In   non- 
military   terms   it   can   be   de- 
scribed  as  a  many-to-one  assign- 
ment  of  computing  jobs  to usable 
processors   where   the   cost   of 
assigning   job   i   to   processor   j 
is   time   dependent.       It   is   as- 
sumed   that   the   processors   may 
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already have a preset schedule 
that must be considered as new 
jobs are added. Furthermore, the 
assignments must be made by some 
deadline (the time constraint on 
processing) that prevents con- 
sideration of all the feasible 
schedules. It is therefore 
necessary to use an iterative 
method where the best schedule 
found to date is always avail- 
able in case processing is cut 
short. In this process, the 
initial feasible solution must 
be found quickly to insure 
availability of a solution. We 
must also overcome the problem 
of local optimality. The search 
through the solution space can 
become fixed on a locally opti- 
mal solution and completely miss 
the globally optimal one. 

The problem itself is a member 
of the set of problems known to 
be NP-Complete [Garry and John- 
son, 1979]. This means that no 
efficient algorithm has been 
developed which will always find 
the solution. However, several 
techniques have been found to 
yield an approximate solution in 
a reasonable amount of time 
[Glover, 1988, 1989 and Davis, 
1987]. We will extend Glover's 
Tabu Search technique to a 
particular form that is appro- 
priate for implementation on a 
parallel processor. We show the 
application of the general 
method to problems of the type 
described above. 

We now describe the Parallel 
Tabu Search method and then show 
its application to the example 
described above. A summary of 
the method and its wide applica- 
bility to other problems is 
described in the last section. 

2.0 PARALLEL TABU SEARCH 

Tabu Search has been successful- 
ly implemented in a wide range 

of settings as a metastrategy to 
guide other heuristics to over- 
come limitations of local opti- 
mality [Glover, 1988, 1989 & 
1990]. It utilizes a form of 
short term memory called a tabu 
list to assure the search will 
not revisit a previous solution 
except by a path not traveled 
before. Attributes of the solu- 
tion space are identified which, 
if prevented from recurring in a 
future move, will assure the 
present move cannot be reversed. 
These attributes are recorded on 
the tabu list, where they reside 
for a specified number of itera- 
tions before they are removed. 

In order to implement Tabu 
Search, we must have: 

tsl) a graph theoretic descrip- 
tion of the solution space; 
ts2) a characterization of a 
solution in the space; 
ts3) a heuristic method of 
generating a new solution from 
an old one in the solution 
space; and 
ts4) a way to compare one solu- 
tion against another to decide 
which is better. 

In the Parallel Tabu Search 
method, we divide the solution 
space into approximately equal 
size segments using a permanent 
tabu list. The number of seg- 
ments is determined by the 
number of processors that are 
available. One processor will 
search each segment thus assur- 
ing that all processors are 
doing useful and non-redundant 
work. Each processor does the 
following: 

pi) get a solution from my seg- 
ment of the solution space; 
p2) use ts3) to get a new solu- 
tion; put the old solution on 
the tabu list; the tabu list is 
used to make sure that we do not 
repeat solutions and the perma- 
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nent tabu list is used to make 
sure that we remain within our 
allocated segment; the tabu list 
also overcomes the problem of 
local optima [Glover, 1990]; 
p3) use ts4) to compare the new 
solution to the best one 
found to date; record the best 
solution found; 
go to ps2); 

This process continues until 
time expires. After the allot- 
ted time, each processor reports 
the best solution it found. 
These are compared and the best 
overall solution is returned. 

3.0 PARALLEL TABU SEARCH AND THE 
ILLUMINATOR SCHEDULING PROBLEM 

For an example, we turn now to 
the illuminator scheduling prob- 
lem. 

Assume we are given a set of n 
threats 

T = { t(l),...,t(n) } 

and a set of m terminal illumi- 
nators 

TI = { ilium(1),...,ilium(m) } 

For each of the threats t(i) we 
have a collection of p engage- 
ability intervals 

eng(i)  =  {  eng(i,1), 
eng(i,2), ... ,eng(i,m) } 

where 

eng(i,k) = { t: fe(i,k) <= t <= 
se(i,k) } 

indicates that t(i), can be 
engaged by a SAM using a termi- 
nal illuminator ilium(k) during 
the period of time between 
fe(i,k) and se(i,k). We use E 
for the union of the engageabil- 
ity intervals. 

The depth of fire, d(i) for a 
given threat t(i) based on a set 
of engageability intervals 
eng(i) is the maximum number of 
SAM'S that could be launched 
against this threat employing a 
specified  firing doctrine. 

Also, there is a plan function, 
P, such that for each threat i 
and each terminal illuminator j, 
we can determine whether or not 
the illuminator can be used for 
terminal guidance against the 
ith threat. The plan function 
is defined by 

P   :   TxTI   ->  BxRxRxRxIxI 

where B represents the set 
(TRUE, FALSE}, R represents the 
real numbers, and I is the 
integers. The first component 
of P(i,j) is TRUE if and only if 
threat t(i) can be intercepted 
using terminal illuminator 
ilium(j) to guide the SAM to the 
threat during the final seconds 
of flyout. When the first 
component is TRUE, the second 
component is set to the earliest 
available starting time (comput- 
ed from j's que of illumination 
intervals) that can be used to 
address threat t(i) (i.e., the 
earliest possible time for 
beginning illumination, bill(i), 
that is consistent with a feasi- 
ble launch time) while the third 
component of P(i,j) is set to 
the predicted intercept time, 
pint(i). Of course, pint(i) must 
be in eng(i, j). The fourth 
component of P(i,j) is set to 
the launch time, ltime(i), for 
the SAM while the fifth and 
sixth components of P(i,j) give 
the indices of the participating 
units that provide the launch 
and terminal illuminator respec- 
tively for the SAM. The launch 
time must be chosen so that a 
launch device is available on 
unit x at ltime(i). The inter- 
val 
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(  bill(i),   pint(i)   ) 

is called the illumination 
interval and it includes the 
time for slewing the terminal 
illumination device and locking 
onto the ith threat. We often 
write delta(i) = pint(i) 
bill(i).   Thus, 

P(i,j)    =    (TRUE,    bill(i), 
pint(i),   ltime(i),   x,   k) 

represents a plan for an engage- 
ment of the ith threat using the 
jth terminal illuminator on unit 
k. In this plan, the SAM is 
launched from participating unit 
x at time ltime(i), the jth 
illuminator provides terminal 
illumination in the time inter- 
val ( bill(i), pint(i) ). When 
there is only one ship involved, 
we can suppress the last two 
terms of P(i,j) because the 
source of the launch is readily 
apparent and there is only one 
participating unit. 

Also, there is a cost function 

c:TxTIxE -> R 

in which c(t(i), illum(j), 
pint(i)) gives the cost of 
engaging t(i) at time pint(i) 
using terminal illuminator 
illum(j). The cost function 
gives the method for evaluating 
one possible schedule for the 
terminal illuminators against 
another. This cost function 
together with the plan function 
provide much of the intelligence 
of the heuristic underlying our 
Tabu Search method. We note that 
the cost function can be any 
function of the threat, the 
terminal illuminator and the 
intercept time that accomplishes 
the desired objective. 

A  linear  cost   function   is   given 
by 

c(t(i), illum(j), pint(i)) = 
d(i) * (pint(i) - fe(i)) 

where fe(i) is the earliest 
possible intercept time for 
threat i, pint(i) is the pre- 
dicted intercept time for threat 
i and d(i) is the depth of fire 
for threat i. This cost func- 
tion will schedule the launches 
and terminal illuminators to 
maximize the depth of fire. 

A schedule for terminal illumi- 
nator illum(j) is a set 

S(j) = { (t(Ji), P(Ji, j)) 
l,2,...,n(j) } 

l = 

of threats paired with outputs 
of the plan function such that: 

aO) the first component of P(j-j_, 
j) is TRUE for all i; 
al)  t(j^)  is in T for i = 
l,..,n(j) ; 
a2) t(jj^) is different from 
tCjj.) when i is not equal k; 
a3) the illumination intervals 
are all mutually disjoint. 

Conditions al and a2 together 
guarantee that each threat in T 
ap p e a r s , 
schedule 
tor. 

at   most,    once    in   a 
for   the   jth   illumina- 

An  optimal   schedule   is  a  collec- 
tion of  schedules 

S  =   {S(j):   j   =  1,...,m} 

such that 

for schedule 
, . ,m; 
...   +n(m)   = n; 
of       c(t ( jj_) , 

bl)     S (] ) is    a 
illum(j), j   =  1,.. 
b2)   n(l)   +  n(2)   + 
b3)       The sum 
illum(j), pint(jjj)    is   minimal 
where  the sum   is   taken  over  all 
i  and j. 

A feasible schedule is a collec- 
tion of schedules satisfying 
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bl) and b2). 

Then in an optimal schedule, all 
threats in T are addressed and 
the total cost is minimal. In a 
feasible schedule, all threats 
are addressed but the total cost 
is not necessarily minimal. 

The problem is to produce an 
optimal schedule. If an optimal 
schedule is not possible in the 
allotted amount of processing 
time then we shall relax condi- 
tion b3 and produce a feasible 
schedule satisfying bl, b2, and 
with the double sum in b3 as 
small as possible. Such a sched- 
ule will be referred to as a 
best schedule. 

3.1 The Solution Space 

We describe the solution space 
via a directed acyclic graph 
[Bertsekas and Tsitsiklis, 
1989]. 

The problem can be formulated as 
a shortest route problem from a 
start node s to an end node t 
through a network. Each node in 
the network corresponds to a 
threat paired with a terminal 
illuminator, an output of the 
planning function and a cost for 
the engagement. Thus a node in 
the network can be thought of as 
a tuple of the form 

( t(i), illum(j), P(i,j), 
c(t(i), illum(j), pint(i)) ), 

where 

P(i,j) = (TRUE, bill(i), 
pint(i), ltime(i), x, z) . 

The network itself is a tree and 
also a directed acyclic graph 
if we disregard the end node. 
Each path from s to level n 
through the network will corre- 
spond to a feasible schedule. 
The totalcost of a path is 

simply the sum of the costs of 
the individual nodes on that 
path. The shortest path (accord- 
ing to cost) through the network 
from s to level n will satisfy 
b3 (above) and give us the 
optimal schedule that we want. 
The tree is made up of n levels 
(recall that n is the number of 
threats). Each of these levels 
correspond to the appending of 
an interval to the schedule for 
the terminal illuminators. 

From s (the start node), we 
build the nodes in level 1 of 
the network. The following 
actions are performed. 

For each i = l,2,...,n and for 
each j = 1,2,...,m we compute 
P(i,j). If the first component 
is TRUE then a node 

( t(i), illum(j), P(i,j), 
c(t(i), illum(j), pint(i) ) 

is placed into level 1. Other- 
wise,   no node  is constructed. 

Note that the cost for the node 
is computed only if the plan 
function is successful in plan- 
ning this engagement. Each path 
from s to t will pass though 
exactly one node in level 1. 
Hence each feasible schedule 
will include exactly one of 
these nodes. 

Now,   by   induction,   we   continue 
the   node   construction   process. 
Suppose  that   levels   l,...,k have 
been  constructed.     We  construct 
level  k+1 as  follows. 

1. For each node N at level k, 
we expand that node by connect- 
ing N to all of its children. 
These children constitute level 
n. They are found by the 
following action. 
2. For each i = 1,2,...,n, if 
t(i) occurs as a threat in a 
node   on   the  unique   path   from  N 
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to s we do nothing. If t(i) does 
not occur on this path then for 
each j = l,2,...,m we compute 
P(i,j).  If the first component 
is TRUE then the node 

( t(i), illum(j), P(i,j), c(t(i) 
illum(j), pint(i) ) 

is placed as  a child of N. 

The network is complete when n 
levels have been constructed. 
Each of the nodes in level n is 
connected to the end node t. The 
problem mathematically is to 
find the shortest path from s to 
t through the network. The fact 
the solution space (disregarding 
t) forms a tree allows us to 
generate feasible schedules 
easily. We start with any node 
in level 1 and find a child of 
that node. We continue finding 
children until we reach level n. 
Figure 1 below shows the genera- 
tion of solutions for a 2 illu- 
minator, 3 threat case. For 
simplicity, in this example, we 
assume that Plan always returns 
TRUE. Nodes are denoted by 
listing the illuminator, the 
threat and the level of the 
node. 

All   threats   are   placed   on 
illuminator   schedules   in 
order  shown by the  levels, 
is,   the   pairing   in   level 
formed   first,    followed   by 
pairing   from   level   2,    an 
forth.   In  Figure   1,   suppose 
the required  illumination    t 

the 
the 

That 
1   is 
the 

d   so 
that 
imes 

(1, 1.    1) (1, 3, 
1 

D 

(2, 2,    2, (2, 2, 
1 

1) 

(1, 3,    3) (1. 1, 3) 

Figure 1. Generation of schedules in a 2 illuminator, 
3 threat example. In the left hand schedule, threat 1 

is put on illuminator l's schedule at the earliest possible 
time, then threat 2 is put on illuminator 2's schedule 

and finally threat 3 is placed on the schedule for 
illuminator 1 at the earliest possible time assuming that 
threat 1 is already scheduled there. To generate the right 
hand schedule, va choose two of the nodes in the left hand 
schedule at random (the asterisks indicate the choices). 
Then the threats for these two are interchanged.  The 
illuminators are changed with probability 0.5.  In this 

example the illuminators remained the same. 

for the threats are given by 
delta(1) = 5, delta(2) = 10, and 
delta(3) = 4. Suppose further 
that illuminator 1 is already 
busy between the times of 5 and 
10 and illuminator 2 was previ- 
ously scheduled between times 0 
and 5. Then the left hand 
schedule from Figure 1 could be 
represented as shown in Figure 
2. 

illum(l)  ( t(l)  )xxxxxxx( t(3)) 

ilium(2}  xxxxxxxx(    t(2)      ) 
 > 

time     0      5 10 

Figure 2. Another representation of the left hand illuminator 
schedule from Figure 1.  Here the required illuminator times are 
taken as delta(l) = S, delta(2) = 10 and delta (3) = 4. It is 

also assumed that illuminator 1 was previously scheduled between 
times 5 and 10 as shown by the x's and illuminator 2 was busy 

between times 0 and 5. 

Threat 1, (shown as t(l)) is 
first inserted on the schedule 
for illuminator 1. The period 
from time 0 to time 5 just 
exactly gives us the required 5 
units of illumination time. 
Threat 2 (shown as t(2)) is then 
inserted from time 5 to time 15 
on illuminator 2. Threat 3 
(shown as t(3)) then must be 
placed on illuminator 1 from 10 
to  14. 

Figure 3 shows the right hand 
schedule in Figure 1 displayed 
on a time line using the same 
required illumination times. 
First threat 3 is placed on the 
schedule for illuminator 1. 
Since threat 3 requires 4 units 
of illumination, it can be 
placed in illuminator l's sched- 
ule prior to the busy period. 
Threat 2 is thus scheduled from 
5 to 15 on illuminator 2 and 
finally threat 1 is placed on 
illuminator  1   from  10  to  15. 

illum(l) ( t(3)) xxxxxxx( t(l) 

illum(2) xxxxxxxx(    t(2) 

time    0      5 i       5       10       15    20 

Figure 3.  The right hand schedule from Figure 1. The same 
deltas are used as in Figure 2. 
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Figure 1 also illustrates the 
method of generating new sched- 
ules from old ones. Two nodes 
on the old schedule are chosen 
at random. These choices are 
shown with asterisks in Figure 
1. The threats for the nodes are 
interchanged. Although the 
illuminators were not changed in 
Figure 1, they can also change 
in the creation process. A 
random number is generated and 
compared to a preset threshold 
which in this case is 0.5. If 
the random number is less than 
the threshold, the illuminator 
is changed to another legal 
value. This technique gives us 
a heuristic method of generating 
new schedules from old ones. 

3.2 Comparing Schedules 

We compare schedules using the 
minimum of a cost function. For 
example let us consider the 
linear cost function described 
in Section 3.0: 

c(t(i), illum(j), pint(i)) = 
d(i) * (pint(i) - fe(i)) 

where d(i) is the depth of fire 
and fe is the first possible 
time for engagement. Suppose, in 
Figure 2 & 3, that the engage- 
ability intervals are: 

eng(l) = (0, 20), eng(2) = (3, 
18) and eng(3) = (0, 15) 

while the depth of fire is given 
by: 

d(l) = 2, d(2) = 1, and d(3) = 3. 

Then the cost values for each of 
the schedules shown in Figures 
2&3 are computed by: 

totalcost = 2*(5 - 0) + 1*(15 - 
3) + 3*(14 - 0) = 64 

for Figure 2 and 

totalcost = 2*(15 - 0) + 1*(15 - 
3) + 3*(4 - 0) =54 

for Figure 3. Thus the schedule 
in Figure 3 is considered better 
than the one in Figure 2. The 
construction of the cost func- 
tion is an important part of 
this algorithm but is not perti- 
nent to the current discussion. 
It is described in other litera- 
ture [Boyer, et al, 1990]. 

3.3 Parallel Tabu Search for the 
Illuminator Scheduling Problem 

We can now use the Tabu Search 
technique to solve the Illumina- 
tor Scheduling Problem. First 
we partition the search space 
among the processors using the 
permanent tabu. This is done by 
restricting the level 1 nodes 
that each processor can use. 
For example, with 2 processors, 
the permanent tabu list for 
processor 1 could be { (2, 1, 
1) , (2, 2, 1), (2, 3, 1) } using 
the notation of Figure 1 in the 
2 illuminator and 3 threat 
example. This means that proc- 
essor 1 only considers schedules 
which use illuminator 1 in level 
1. Processor 2 would then have 
the permanent tabu list { (1, 1, 
1) , (1, 2, 1) , (1, 3, 1) ) . 
This assures that the processors 
are searching different areas of 
the solution space. The (tempo- 
rary) tabu list can be of any 
length but a length of 2 is good 
for the 2 illuminator, 3 threat 
example. As nodes are changed to 
get new schedules, the old nodes 
are put on the tabu list. 
Before any change is made, the 
prospective new nodes are com- 
pared to those on the tabu list 
and the permanent tabu list. 
The change is not completed if 
any of the new nodes would 
produce nodes on either tabu 
list unless that change produces 
a smaller cost than the best one 
to date. Glover [Glover, 1989] 
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has suggested the use of an 
aspiration list. This aspira- 
tion list contains conditions 
that can override the tabu list. 
A new schedule may be produced 
even if some of the nodes are on 
the tabu list (not the permanent 
tabu list) if the conditions in 
the aspiration list are satis- 
fied. In this case, our aspira- 
tion list contains only one 
condition. If the new schedule 
has a smaller totalcost than the 
best one to date, it is con- 
structed. 

In general, the algorithm pro- 
ceeds  as  follows: 

xO)    generate   any   solution   that 
does   not   violate   the   permanent 
tabu list;   record it as the 
best one  found to date; 
xl)   generate  a  new  solution   from 
the old one; 
x2) if the new solution has any 
nodes on the permanent tabu list 
then goto xl); 
x3) if the new solution has any 
nodes on the tabu list and the 
condition of the aspiration 
list is not satisfied then goto 
xl) ; 
x4) compare the new solution to 
the best old one; If the new 
solution is better record it as 
the best found to date; Put 
nodes that were changed on the 
tabu list; 
x5)   make   this   new   solution   the 
old one and goto xl). 

The algorithm terminates when 
time expires. Each processor re- 
ports the best solution that it 
found. The best of these is 
reported as the nearest to the 
optimal. In many cases it will 
be the global  optimal  solution. 

4.0   SUMMARY 

The example of Tabu Search which 
we presented illustrates the 
potential   usefulness   of   the 

approach, especially when com- 
bined with parallel processing. 
Glover [Glover, 1990] has de- 
scribed many more applications 
such as mixed integer program- 
ming and multi-variable decision 
problems. As the number of 
applications for this new search 
technique continues to grow, we 
learn more and better ways to 
apply it. This paper serves the 
purpose of introducing it to 
those that solve time con- 
strained scheduling problems. 
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Abstract 

We present an approach to perform asynchronous, 
opportunistic, constraint-directed search in multi-agent 
time-bound, and resource limited domains. Such domains 
are extremely complex because of the presence of temporal 
and resource constraints that give rise to tightly interacting 
subproblems. In a distributed environment lacking a global 
system view and global control, the complexity increases 
further. Our approach relies on a set of textures of the 
problem space being searched. Textures provide a 
probabilistic, graph theoretic definition of the complexity 
and importance of decisions in the local problem space of 
each agent. In other words, they provide sophisticated local 
control. In addition, textures provide good predictive 
measures of the impact of local decisions on system goals. 
As a result, textures can be used to make control decisions 
that significantly reduce the amount of search required to 
solve complex distributed problems. We explore the utility 
of the approach in the context of cooperative multi-agent 
job-shop scheduling. 

1. Introduction 
In this paper we present mechanisms to enable efficient 

distributed search for multi-agent, time-bound and 
resource-limited problems. Such problems are 
characterized by the presence of temporal precedence 
constraints and resource constraints. These constraints 
result in conflicts over the use of shared resources and 
make the local decisions of distributed agents highly 
interdependent and interacting. Our investigation is 
conducted in the domain of job-shop scheduling. Our work 
addresses concerns in three research areas: (1) managing 
resource allocation in multi-agent planning, (2) constraint 
satisfaction, and (3) job-shop scheduling. Research in 
multi-agent planning has primarily focused on problems 
where agents contend only for computational resources, 
such as computer time and communication bandwidth (e.g., 

'This research has been supported, in part, by the Defense Advance 
Research Projects Agency under contract #F30602-88-C-0001, and in part 
by grants from McDonnell Aircraft Company and Digital Equipment 
Corporation. 

[Cammarata 83, Durfee 87a]). In most real world 
situations, however, allocation of (non-computational) 
resources that are needed by a planner to carry out actions 
in a plan is of central concern. Conry [Conry 86] has 
investigated (non-computational) static resource allocation 
not involving temporal constraints. The constraint 
satisfaction research community has investigated the 
efficiency of heuristics for incrementally building a 
solution to a constraint satisfaction problem by instantiating 
one variable after another within a single agent setting 
[Haralick 80,Mackworth 85,Purdom 83,Dechter 88]. 

Job-shop scheduling has been the subject of intense 
investigation by both Operations Research and AI 
communities (e.g., [Smith 85, Ow eL al. 88, Baker 
74, French    82,Rinnooy    Kan     76]). With    few 
exceptions [Parunak 86, Smith&Hynynen 87], there has 
been almost no research in distributed scheduling. Prosser 
[Prosser 89] has investigated job-shop scheduling within a 

hierarchical distributed architecture where the high level 
agent has a global view and can act as conflict arbiter. In 
our system, the agents form a heterarchy, where no agent 
has a global view of the problem and actions of others. We 
provide mechanisms both for conflict avoidance and 
conflict resolution. 

Our model enables a set of agents to structure their 
individual agent problem space and focus their attention 
during search so as to optimize decisions in the global 
search space. The beneficial effects of sophisticated local 
control on the coordination of distributed problem solving 
have been recognized by prior research [Durfee 
87a, Durfee 87b]. Our approach, based on problem space 
textures [Fox 89], allows agents to make rapid, intelligent 
local decisions without the need of excessive information 
exchange or the availability of detailed models of each 
other's problem solving activities. Our hypothesis is that 
these textures provide good predictive measures of the 
impact of local decisions on system goals and constitute 
abstract information summaries of expectations concerning 
the decision making activities of other agents. Basing local 
decisions on such predictive measures is very important in 
distributed problem solving by opportunistic scheduling 
agents. Since the agents operate in an asynchronous and 
opportunistic   manner,  and  since  each  local  decision 
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interacts with subsequent decisions of other agents, each 
agent must predict and take into consideration in its local 
decision making the future resource needs and problem 
solving behavior of other agents. 

2. The Distributed Scheduling Problem 
The scheduling task can be described as assigning 

resources to the activities present in a plan over time in a 
consistent manner, i.e., so as to avoid the violation of 
resource and precedence constraints. In our model, a group 
of autonomous opportunistic schedulers build a schedule in 
order to synchronize their activities to avoid and resolve 
conflicts. The schedule is built in a cooperative fashion 
through local computation and communication. There is no 
single agent with a global system view, nor any agents 
whose role is coordination. In distributed job-shop 
scheduling, each agent has a set of orders to schedule on a 
given set of resources. Each order consists of a set of 
activities (operations) to be scheduled according to a 
process plan which specifies a partial ordering among these 
activities. Additionally, an order has a release date and a 
due date. Each activity also requires one or several 
resources, for each of which there may be one or several 
substitutable resources. There is a finite number of 
resources available in the system. Some resources are only 
required by one agent, and are said to be local to that agent. 
Other resources are shared, in the sense that they may be 
allocated to different agents at different times2. 

We distinguish between two types of constraints: 
activity precedence constraints and capacity constraints. 
The activity precedence constraints together with the order 
release dates and due dates restrict the set of acceptable 
start times of each activity. Capacity constraints restrict the 
number of activities that can be allocated to a resource at 
one time. Typically the limited capacity of the resources 
induces interactions between orders competing for the 
possession of the same resource at the same time. In such 
an environment, schedules are constructed in an 
incremental fashion. Agents make local decisions about 
assignments of resources to particular activities at 
particular time intervals and a complete schedule for an 
order is formed by incrementally merging partial schedules 
for the order. If the merging of partial schedules results in 
constraint violations, the resulting schedule is infeasible. 

Distributed scheduling has the following characteristics: 
• To achieve global solutions, agents must make 

2This model mirrors actual factory floor situations where the factory is 
divided into work areas that might share resources, such as machines, 
fixtures and operators in order to process orders. 

consistent allocations of resources needed to 
perform system activities. Conflicts in the 
system arise due to contention over optimal 
allocation of limited capacity shared resources. 

• Because of conflicts over shared resources it is 
impossible for each agent to optimize the 
scheduling of its assigned orders using only 
local information. 

• Due to limited communication bandwidth, it is 
not possible to exchange detailed constraint 
information during problem solving. 

• All the given orders have to be scheduled. In 
other words, agents cannot drop any local 
goals. In addition, constraints cannot be 
relaxed (e.g., precedence constraints among 
the operations of an order, resource capacity 
constraints, and due dates). 

• Because of the tightly interacting nature of 
scheduling decisions, an agent's problem 
solving context is rapidly changing. Moreover, 
an agent's decisions can produce constraint 
violations for other agents which may lead to 
backtracking. Backtracking can have major 
ripple effects on the multi-agent system since it 
may invalidate resource reservations that other 
agents have made. 

A consequence of the above characteristics is that agents 
need methods to deal efficiently with incomplete 
information and a rapidly changing problem solving 
context. In addition, agents must maintain coherent 
behavior [Durfee 87b] in a hierarchical setting. To 
address these requirements, our approach gives the agents 
mechanisms to enable them to accomplish the following: 
(1) predict and evaluate the impact of local decisions on 
global system goals, (2) develop and communicate in a 
concise form robust expectations and predictions about the 
resource needs and decision-making behavior of other 
agents, (3) avoid and resolve conflicts over resources and 
time intervals, and (4) help focus the attention of the agents 
opportunistically on parts of their search space where it is 
expected that good solutions, in terms both of schedule 
quality and minimal interactions, will be found. These 
mechanisms, based on problem textures, result in search 
and communication efficiency. 

3. Constrained Heuristic Search 
Our approach to scheduling relies on the combination of 

local constraint propagation techniques with texture-based 
heuristic search. We have developed a formal model of 
this search mechanism which we call Constrained Heuristic 
Search (CHS) [Fox 89]. CHS provides a methodology for 
solving   Constraint  Satisfaction   Problems   (CSPs)   and 
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Constrained Optimization Problem (COPs). A CSP is 
defined by a set of variables, each with a predefined 
domain of possible values, and a set of constraints 
restricting the values that can simultaneously be assigned to 
these variables [Montanari 71, Mackworth 77, Dechter 88]. 
A solution to a CSP is a complete set of assignments that 
satisfies all the problem constraints. COPs are CSPs with 
an objective function to be optimized. The general CSP is 
a well-known NP-complete problem [Garey 79]. There are 
however classes of CSPs and COPs that do not belong to 
NP, and for which efficient algorithms exist. The CHS 
methodology is meant for those CSPs/COPs for which 
there is no efficient algorithm. A general paradigm for 
solving these problems consists in using Backtrack Search 
(BT)[Golomb 65, Bitner 75]. BT is an enumerative 
technique that incrementally builds a solution by 
instantiating one variable after another. Each time a new 
variable is instantiated, a new search state is created that 
corresponds to a more complete partial solution. If, in the 
process of building a solution, BT generates a partial 
solution that it cannot complete (because of constraint 
incompatibility), it has to undo one or several earlier 
decisions. Partial solutions that cannot be completed are 
often referred to as deadend states (in the search space). 

Because the general CSP is NP-complete, BT may 
require exponential time in the worst-case. CHS provides a 
methodology to reduce the average complexity of BT by 
interleaving search with local constraint propagation and 
the computation of texture-based heuristics. Local 
constraint propagation techniques are used to prune the 
search space from alternatives that have become impossible 
due to earlier decisions made to reach the current search 
state. By propagating the effects of earlier commitments as 
soon as possible, CHS reduces the chances of making 
decisions that are incompatible with these earlier 
commitments [Mackworth 85]. Typically, pruning the 
search space can only be done efficiently on a local basis 
[Nadel 88]. Hence local constraint propagation techniques 

are not sufficient to guarantee backtrack-free search. In 
order to avoid backtracking as much as possible as well as 
reduce the impact of backtracking when it cannot be 
avoided, CHS analyzes the pruned problem space in order 
to determine critical variables, promising values for these 
variables, promising search states to backtrack to, etc. The 
results of this analysis are summarized in a set of textures 
that characterize different types of constraint interactions in 
the search space. These textures are operationalized by a 
set of heuristics to decide which variable to instantiate next 
(so-called variable ordering heuristics), which value to 
assign to a variable (so-called value ordering heuristics), 
which assignment to undo in order to recover from a 
deadend, etc. 

In the factory scheduling domain, variables are activities 
whose values are reservations consisting of a start time and 
a set of resources (e.g. a human operator, a milling 
machine, and a set of fixtures). Local constraint 
propagation techniques are used to identify reservations 
that have become unavailable for an unscheduled activity 
due to the scheduling of another activity (e.g. a resource 
that has been allocated to an activity over some time 
interval, or a start time that has become infeasible due to 
the scheduling of an earlier activity in a process plan). 
Within this context, texture-based heuristics are concerned 
with such decisions as which activity to schedule next, 
which reservation to assign to an activity, which 
reservation assignments to undo if the current partial 
schedule cannot be completed. 

4. Distributed CHS Scheduling 
The model concerns a set of scheduling agents, r={a, ß, 

...}. Each agent a is responsible for the scheduling of a set 
of orders 0<I={o1 ,...,oN }. Each order ol consists of a set 

a 

of activities A/a={A,a,...,A„a } to be scheduled according to 1 "la 
a process plan (i.e. process routing) which specifies a 

Id. partial ordering among these activities (e.g. A    BEFORE 

1°), Additionally an order has a release date and a latest 
acceptable completion date, which may actually be later 
than the ideal due date. Each activity Ak also requires one 

or several resources RJ* (1 < i ^P^), for each of which 
there may be one or several alternatives (i.e. substitutable 
resources) R^- (1 < jf < q£). There is a finite number of 
resources available in the system. Some resources are only 
required by one agent, and are said to be local to that agent. 
Other resources are shared, in the sense that they may be 
allocated to different agents at different times. 

We distinguish between two types of constraints: 
activity precedence constraints and capacity constraints. 
The activity precedence constraints together with the order 
release dates and latest acceptable completion dates restrict 
the set of acceptable start times of each activity. The 
capacity constraints restrict the number of activities that a 
resource can be allocated to at any moment in time to the 
capacity of that resource. For the sake of simplicity, we 
only consider resources with unary capacity in this paper. 
Typically the limited capacity of the resources induces 
interactions between orders competing for the possession of 
the same resource at the same time. These interactions can 
take place either between the order of a same agent or 
between the orders of different agents. 

With each activity, we associate preference functions 
that map each possible start time and each possible 
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resource alternative onto a preference. These preferences 
[Fox 83, Sadeh 88] arise from global organizational goals 

such as reducing order tardiness (i.e. meeting due dates), 
reducing order earliness (i.e. finished goods inventory), 
reducing order flowtime (i.e. in-process inventory), using 
accurate machines, performing some activities during some 
shifts rather than others, etc. In the cooperative setting 
assumed in this paper, the sum of these preferences over all 
the agents in the system and over all the activities to be 
scheduled by each of these agents defines a common 
objective function to be optimized. The sum of these 
preferences over all the activities under the responsibility 
of a single agent can be seen as the agent's local view of 
the global objective function. In other words, the global 
objective function is not known by any single agent. 
Furthermore, because they compete for a set of shared 
resources, it is not sufficient for an agent to try to optimize 
his own local preferences. Instead, agents need to consider 
the preferences of other agents when they schedule their 
activities. This is accomplished via a communication 
protocol described in section 6. 

Ja 
4.1. Activity-based Scheduling 

In our model we view each activity A'k as an aggregate 
variable (or vector of variables). A value is a reservation 
for an activity. It consists of a start time and a set of 
resources for that activity (i.e. one resource Rki- for each 

resource requirement Rki of Ak , 1 < i ^pk). 

Each agent asynchronously builds a schedule for the 
orders he has been assigned. This is done incrementally by 
iteratively selecting an activity to be scheduled and a 
reservation for that activity. Each time a new activity is 
scheduled, new constraints are added to the agent's initial 
scheduling constraints that reflect the new activity 
reservation. These new constraints are then propagated 
(local constraint propagation step). If an inconsistency (i.e. 
constraint violation) is detected during propagation, the 
system backtracks. Otherwise the scheduler moves on and 
looks for a new activity to schedule and a reservation for 
that activity. The process goes on until all activities have 
been successfully scheduled. 

If an agent could always make sure that the reservation 
that he is going to assign to an activity will not result in 
some constraint violation forcing him or other agents to 
undo earlier decisions, scheduling could be performed 
without backtracking. Because scheduling is NP-hard, it is 
commonly believed that such look-ahead cannot be 
performed efficiently. The most efficient constraint 
propagation techniques developed so far [LePape&Smith 
87] for scheduling do not guarantee total consistency. In 
other words the reservation assigned by an agent to an 

activity may force other agents or the agent himself to 
backtrack later on3. Consequently it is important to focus 
search in a way that reduces the chances of having to 
backtrack and minimizes the work to be undone when 
backtracking occurs. This is accomplished via two 
techniques, known as variable (i.e. activity) and value (i.e. 
reservation) ordering heuristics. 

The variable ordering heuristic assigns a criticality 
measure to each unscheduled activity; the activity with the 
highest criticality is scheduled first. The criticality 
measure approximates the likelihood that the activity will 
be involved in a conflict The only conflicts that are 
accounted for in this measure are the ones that cannot be 
prevented by the constraint propagation mechanism. By 
scheduling his most critical activity first, an agent reduces 
his chances of wasting time building partial schedules that 
cannot be completed (i.e. it will reduce both the frequency 
and the damage of backtracking). The value ordering 
heuristic attempts to leave enough options open to the 
activities that have not yet been scheduled in order to 
reduce the chances of backtracking. This is done by 
assigning a goodness measure to each possible reservation 
of the activity to be scheduled. Both activity criticality and 
value goodness are examples of texture measures. The 
next two paragraphs briefly describe both of these 
measures4. 

4.1.1. Variable Ordering 
Each agent's constraint propagation mechanism is based 

on the technique described in [LePape&Smith 87]. It 
always ensures that unscheduled activities within an order 
can be scheduled without violating activity precedence 
constraints. This is not the case however for capacity 
constraints: there are situations with insufficient capacity 
that may go undetected by this constraint propagation 
technique. Accordingly a critical activity is one whose 
resource requirements are likely to conflict with the 
resource requirements of other activities. [Sadeh 88, Sadeh 
89] describes a technique to identify such activities. The 
technique starts by building for each unscheduled activity a 
probabilistic activity demand. An activity Ak 's demand for 

a resource Ä,™ at time t is determined by the ratio of l*y 
la reservations that remain possible for Ak and require using 

la Rkr at time t over the total number of reservations that 

3This is already the case in the centralized version of the scheduling 
problem. Because of the additional cost of communication it is even more 
so in the distributed case. 

4For a more complete description of these measures, the reader is 
referred to [Sadeh 90]. 
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remain possible for A*. Clearly activities with many 
possible start times and resource reservations tend to have 
smaller demands at any moment in time, while activities 
with fewer possible reservations tend to have higher ones. 
In a second step, each agent aggregates his activity 
demands as a function of time, thereby obtaining his agent 
demand. This demand reflects the need of the agent for a 
resource as a function of time, given the activities that he 
still needs to schedule5. Finally, for each shared resource, 
agent demands are aggregated for the whole system thereby 
producing aggregate demands that indicate the degree of 
contention among agents for each of the (shared) resources 
in the system as a function of time. Time intervals over 
which a resource's aggregate demand is very high 
correspond to violations of capacity constraints that are 
likely to go undetected by the constraint propagation 
mechanism. The contribution of an activity's demand to the 
aggregate demand for a resource over a highly contended- 
for time interval reflects the reliance of the activity on the 
possession of that resource/ time interval. It is taken to be 
the criticality of the activity. 

To choose the next activity to schedule, each agent looks 
among the resource/ time intervals that he may need and 
selects the one with highest aggregate demand. He then 
picks his activity with the highest contribution (i.e. highest 
criticality) to the aggregate demand for that resource/time 
interval. In other words, each agent looks for the 
resource/time interval over which he has some demand that 
is the most likely to be involved in a capacity constraint 
violation. He then picks his activity with the highest 
probability of being involved in the conflict. 

4.1.2. Value Ordering 
Once an agent has selected an activity to schedule next, 

it must decide which reservation to assign to that activity. 
Here several strategies can be considered. In particular, we 
distinguish between two extreme strategies: (1) a least 
constraining value ordering strategy (LCV) and (2) a 
greedy value ordering strategy (GV). Under LCV an agent 
will select the reservation that will be the least constraining 
both to itself and to other agents. LCV is a mechanism for 
avoiding conflicts over resources and over time intervals. 
This heuristic can be viewed as resulting in altruistic 
behavior on the part of an agent. Under the GV strategy, 
an agent can select reservations based solely on its local 
preferences, irrespectively of its own future needs as well 
as   those  of other  agents.     This  heuristic  results  in 

Notice that, an agent's demand at some time t for a resource is 
obtained by simply summing the demand of all his unscheduled activities 
at time /. Because these probabilities do not account for limited capacity, 
their sum may actually be larger than 1 

egotistic/myopic behavior on the part of the agent. In this 
paper, we report experimental results obtained using the 
LCV value ordering strategy. 

5. Using Textures for Decentralized 
Scheduling 
This section describes additional theoretical concerns 

and new mechanisms that arose in our application of the 
texture approach to decentralized, multiagent, resource- 
constrained scheduling. The issues that we addressed 
include: 

• scheduling with incomplete information about 
the intentions and future behavior of other 
agents. 

• scheduling with uncertain/changing 
information (i.e. even when detailed 
information regarding other agents' intentions 
is communicated, this information is not stable 
over time, since agents are scheduling 
asynchronously), and 

• scheduling without the help of coordinating 
agents for avoiding conflicts and achieving 
global goals. 

The following subsections describe our approach to 
addressing these issues. 

5.1. Incomplete information 
In a multi-agent system, complete information is 

unavailable to each agent about the constraints, partial 
plans/schedules and heuristic analyses of other agents. 
Incomplete information results because of limitations in the 
amount of inter-agent communication that can reasonably 
occur. Hence, some level of summarization and abstraction 
is needed. In our approach, summarization information is 
expressed in terms of the texture measures that have been 
effective for centralized problems. Specifically, we 
represent an agent's intentions with respect to resource use 
in terms of that agent's demand density for the resource for 
different time intervals. All agent densities are further 
abstracted to produce an aggregate density, which 
represents the system-wide expectation for resource 
utilization over time. 

An important outcome of this approach is the ability to 
efficiently communicate those aspects of an agent's partial 
schedules which are most relevant to each of the other 
agents in a system, without the need to explicitly determine 
relevance. An element of a partial schedule is relevant to 
another agent if it influences the agent's expectations 
regarding the demand for resources the agent requires. 
Since the effects of most scheduling decisions indirectly 
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influence the computation of an agent's expected demand 
for shared resources, these implicitly include an abstraction 
of all relevant decision making elements. 

5.2. Rapidly changing information 
The continuous, asynchronous behavior of agents can 

reduce the validity of information they exchange, 
regardless of how complete that information may be. 
Therefore, an agent cannot depend on the certainty of 
information when it elects to use it, because other agents' 
decisions interact with its already constructed partial 
schedules as well as with its future scheduling decisions 
thus producing new expectations. In addition, because of 
the associated communication costs, agents cannot afford 
to communicate, update and evaluate information with 
every change that occurs. Hence the information 
communicated must remain predictive robustly in the face 
of communication lags. 

There are several aspects of the texture approach that 
address the problem of rapid information obsolescence in 
asynchronous, multi-agent systems: First, texture measures 
produce relatively accurate early predictions of agent 
behavior, as long as expectations are communicated by all 
agents at the initiation of scheduling and constraints remain 
constant. Second, the uniform representation of 
expectations as densities and the incremental nature of 
activity scheduling allows changes in expectations to be 
incorporated as soon as they are received. Third, agents can 
monitor their current expectations to determine when these 
have changed significanüy from those that were last 
communicated. 

In the multi-agent system, other agents can make 
reservations throughout an agent's search, making it 
difficult to determine which set of previous reservations 
were responsible for a constraint violation when it is 
eventually detected. The task facing an agent at this point 
is to find the last set of reservations it made which, together 
with those made by other agents, does not violate 
constraints. A simple backtracking procedure will 
eventually find this state, but is extremely inefficient. 

In order to deal with this problem, we have developed a 
variation of backjumping [Dechter 89] for uncertain, multi- 
agent environments. In our approach, backjumping 
involves iteratively undoing each activity's scheduled 
reservation and determining whether constraint violations 
remain, until the set of acceptable activity reservations has 
been partitioned. No alternative values are tried for any one 
activity until this set has been determined. This procedure 
avoids the inefficient testing of alternate values for 
variables when, in fact, violations already exist for values 

assigned to previously addressed variables. Our version of 
backjumping locates the appropriate search point with 
computation that is just a linear function of the number of 
variables traversed, a tremendous saving over 
chronological backtracking. 

53. Absence of explicit coordination 
Coordination within the texture approach to multi-agent 

scheduling is achieved through mutual acceptance and 
adherence to shared policies of decision-making. In our 
system, the goal of supporting other agents' attempts to 
achieve a solution to their portions of the global scheduling 
problem is realized through three policies. First, agents use 
information about other agents' expectations to avoid over- 
constraining them through the application of LCV value 
ordering heuristics. Second, reservations for resources are 
granted without contest when requested by an agent (i.e. 
reservations granted on a first-come, first served basis). 
Reservations are also surrendered promptly by agents if 
they decide not to use them as a result of local constraint 
violations. Third, once an agent has made a reservation, it 
is not required to surrender it i.e., no provision is made for 
one agent to request another to backtrack. An important 
principle is that all agents assume that the global good is 
best realized through the application of these policies and 
therefore, do not depart from them to maximize local 
objective functions. 

6. A Communication Protocol for Distributed 
Scheduling 
The agents make decisions using local available 

knowledge as well as information communicated by the 
other agents. In our model, resources are passive objects 
that are monitored by active agents. Each resource has a 
monitoring agent and each agent monitors one or more 
resources. Thus, monitoring responsibility is distributed 
among many agents. Monitoring resources does not give 
an agent either a global view or preferential treatment 
concerning the allocation of the monitored resources but is 
simply a mechanism that enables agents to perform load 
balancing in bookeeping efforts and efficient detection of 
capacity constraint violations. Since there is no single 
agent that has a global system view, the allocation of the 
shared resources must be done by collaboration of the 
agents that require these resources (one of which is the 
monitoring agent). 

The multi-agent communication protocol is as follows: 
1. Each agent determines required resources by 

checking the process plans for the orders it has to 
schedule. It sends a message to each monitoring agent 
informing it that it will be using shared resources. 
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2. Each agent calculates its demand profile for the 
resources (local and shared) that it needs. 

3. Each agent determines whether its new demand 
profiles differ significantly from the ones it sent 
previously for shared resources. If its demand has 
changed, an agent will send it to the monitoring agent. 

4. The monitoring agent for each resource combines 
all agent demands when they are received and 
communicates the aggregate demand to all agents 
which share the resource6. 

5. Each agent uses the most recent aggregate demand 
it has received to find its most critical resource/time- 
interval pair and its most critical activity (the one with 
the greatest demand on this resource for this time 
interval). Since agents in general need to use a resource 
for different time intervals, the most critical activity and 
time interval for a resource will in general be different 
for different agents. The agent communicates this 
reservation request to the resource's monitoring agent 
and awaits a response. 

6. The monitoring agent, upon receiving these 
reservation requests, checks the calendar of the resource 
it is monitoring to find out whether the requested 
intervals are available. There are two cases: 

• If the resource is available for a requested time 
interval, the monitoring agent of the resource (a) 
communicates "Reservation OK" to the 
requesting agent, (b) marks the reservation on 
the resource calendar, and (c) communicates the 
reservation to all concerned agents (i.e. the 
agents that had sent positive demands on the 
resource). 

• If the resource had already been reserved for the 
requested interval, the request is denied. The 
agent whose request was denied will then 
attempt to substitute another reservation, if any 
others are feasible, or otherwise perform 
backjumping. 

7. Upon receipt of a message indicating its request 
was granted, an agent will perform consistency 
checking to determine whether any constraint violations 
have occurred. If none are detected, the agent proceeds 
to step 2. Otherwise, backjumping occurs with undoing 
of reservations until a search state is reached which does 
not cause constraint violations. Any reservations which 
were undone during this phase are communicated to the 
monitor for distribution to other agents. After a 
consistent state is reached, the agent proceeds to step 2. 

The system terminates when all activities of all agents 
have been scheduled i.e. when all demands on resources 
become zero.   In this version of the protocol we assume 

'With the exception of the first time demands arc exchanged, agents do not wait 
for aggregate demands to be computed and returned prior to continuing their 
scheduling operations (although they can postpone further scheduling if desired). 

that reservations are not changed because of backtracking. 

7. Experimental Results 
The main goal of our experiments was to determine the 

feasibility of the texture approach to multi-agent scheduling 
across a number of different scheduling experiments and 
across a variety of system configurations. We have 
developed a testbed and performed experiments with 1-, 2- 
and 3-agent configurations. The experiments were run 
asynchronously on a number of machines corresponding to 
each of the agent configurations. In addition, we wanted to 
test particular mechanisms and parameters that influence 
system performance. In particular, our experiments 
considered: 

• the effects of agents' incomplete knowledge of 
each other's plans (i.e. the robustness of 
texture measures when aggregated across 
multiple agents and with the resulting loss of 
detailed information), 

• the effects of rapidly changing expectations on 
performance (i.e. the robustness of these 
measures with respect to delays in the 
communication of densities), 

• the consequences of asynchronous scheduling 
(e.g., asynchronous use of variable-ordering 
strategies) without external coordination. 

The experiments summarized here were created from 
problems found to be difficult in previous research on 
centralized scheduling [Sadeh 89] and they reflect system 
performance with respect to search efficiency rather than 
schedule optimality. We selected problems on which more 
traditional constraint satisfaction approaches performed 
poorly (e.g. Purdom's dynamic search rearrangement 
technique [Sadeh 89, Purdom 83]). The problems were also 
selected and distributed across the agents in a way that 
maximized resource coupling within orders and across 
agents. The problems were constructed so that a change in 
reservation for any activity or resource would influence 
expectations for every other. 

All experimental problems were selected so that orders 
could be distributed evenly between two agents, all 
resources were shared by the two agents (high inter-agent 
resource coupling), every order used all resources (high 
intra-order resource coupling), and problems ranged from 
40-100 activities. 

Over 100 experiments were run in order to vary several 
properties of each problem. The asynchrony in the system 
prevents exact replication of experiments. So, we repeated 
each experimental run a minimum of three times. If 
different runs of the same experiment produced wide 
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variations in the results, we repeated the experiment five 
times. The reported results (see figure) are the average of 
these runs. In each case, the dependent variable was the 
efficiency with which the scheduling system found a 
solution. Efficiency is expressed in terms of the total 
number of states needed to reach a solution. For example, 
for a problem with 40 activities, the minimum number of 
states needed to assign a reservation to each activity is 40. 
Every reservation that needed to be redone added an 
additional state to the total. This allowed comparing a 
40-activity 1-agent problem to a pair of 20-activity 
problems solved simultaneously by 2 agents, or a 10,15,15 
split of the 40 activities among three agents. There were 5 
resources (all shared among all the agents). These 
resources were used by 8 orders, each having 5 activities. 

Problem versions differed in several ways. First, to 
establish a baseline, we created a 1-agent system, which 
was similar to the 2-agent and 3-agent systems in every 
way, except that the aggregate densities were constructed 
from a single agent. This was still different from the 
original centralized system in that decisions were based on 
an abstract aggregate demand profile that did not include 
detailed information about the number of activities which 
contributed to the densities. Furthermore, we varied the 
frequency with which the aggregate was computed, thereby 
isolating the effect of uncertain expectations caused by 
infrequent and delayed communication of densities in the 
2-agent and 3-agent systems. 

Specifically, we implemented several simplified versions 
of the heuristic used by agents to determine when to 
communicate their changed densities. In the minimum 
delay condition, a single reservation on any resource by 
any agent initiated the exchange of densities for all 
resources. In the increased delay conditions, densities 
were exchanged for each resource independently, 
whenever N reservations were made on it, where N = 1, 3, 
and 5. This provided a way to observe the effects of wide 
ranges in communication bandwidth in the 2-agent and 3- 
agent systems and comparable conditions in a 1-agent 
system. 

Another version of the 1-agent system was created which 
used a semi-random version of the variable-ordering 
heuristic. The goal was to isolate and assess the effects of 
less accurate variable ordering that might occur in a multi- 
agent system. Recall that variable ordering is performed in 
parallel in a multi-agent system (each agent selects the best 
activity to schedule from its subset of all activities which 
require a critical resource). Agents do not coordinate the 
selection of activities to schedule to ensure that the globally 
most critical ones are scheduled first As a result, variable 
ordering is probably less effective than in a 1-agent system. 

The semi-random heuristic still selects activities to 
schedule from those which require the most critical 
resource/time-interval (which narrows the selection to a 
maximum of 20% of the activities in these problems). 
However, it then randomly selects from this subset, instead 
of selecting the activity with the greatest demand for the 
critical resource. Relative to completely random variable 
ordering, the semi-random condition is still highly selective 
in that only activities which use the most critical 
resource/time interval are considered. In fact, we found that 
random variable ordering resulted in terrible performance, 
even in the 1-agent case. Solutions were not found in over 
500 states. 

Two system versions were created to compare the use of 
backtracking and backjumping search techniques. As 
expected, the use of a backjumping strategy substantially 
reduced the search in the 2- and 3-agent systems. The 
results presented in the Figure are results of the 
backjumping version. The reported results are for a 
representative group of 40-activity experiments (8 orders, 5 
activites per order, and 5 shared resources). The four 
curves represent the effects of increasing the delay (from 0 
to 5) prior to initiating creation of aggregate demand 
densities for 1-, 2- and 3-agent configurations and for a 
1-agent case with a semi-random variable ordering strategy 
(labelled 1-agent SR variable ordering in the figure). 

- or 
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Problem 

80-1 

70 

60- 

50 

40 - 

1-agent, SR 
variable 
ordering 

2-agents 
3-agents 

1-agent 

0 13 5 

Communication Delay 

Figure 7-1: Experimental Comparisons of Distributed 
Scheduling Systems 

The first important observation is that the use of 
abstracted texture measures was sufficient to allow near 
perfect performance (solving the problem in 40 states) 
when the texture information was updated frequently 
(minimum delay conditions, expressed as 0 on the x-axis) 
in all experimental configurations. This matches 
performance obtained in the original centralized scheduling 
system [Sadeh 89]. Thus, despite the incompleteness of 
information available in the 2- and 3-agent systems, texture 
measures provide satisfactory summarizations. Second, as 
expected, performance of the 2- and 3-agent systems does 
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deteriorate as the communication of changing texture 
information is delayed. Since current texture information is 
used to perform both variable and value ordering, it is 
likely that both these processes deteriorate. An interesting 
observation is that in this set of experiments, the 3-agent 
system did better in terms of search efficiency than the 
2-agent system7. 

The effect of delaying communication/computation of 
demand densities is greater for the 2- and 3-agent systems 
than the 1-agent system. This interaction may reflect the 
compensatory relation between variable and value ordering 
observed in [Sadeh 89]. Note that 2- and 3-agent 
performance is still better than the semi-random condition, 
suggesting that variable ordering strategy is robust with 
respect to the conditions of the multi-agent environment 
(incomplete, changeable information and asynchronous 
behavior without external coordination). 

8. Concluding Remarks 
In this paper we have presented mechanisms to guide 

distributed search. The domain of investigation is 
distributed job-shop scheduling. In particular, we have 
presented measures of characteristics of a search space, 
called textures, that are used to focus the attention of agents 
during search and allow them to efficiently find scheduling 
solutions that satisfy all constraints. In addition, the 
textures express the impact of local decisions on system 
goals and allow agents to form expectations about the 
needs of others. This ability is critical in multi-agent 
complex environments, such as the factory floor, where 
agents have to plan under considerable uncertainty. We 
have presented two types of textures (activity criticality and 
value goodness), their operationalization into variable and 
value ordering heuristics and their use in distributed 
problem solving. In addition, a communication protocol 
that enables the agents to coordinate their decisions has 
been presented. 

A testbed has been implemented that allows for 
experimentation with a variety of distributed protocols that 
use variable and value ordering heuristics. The testbed also 
provides unique opportunities to compare closely matched 
single- and multi-agent scheduling systems. This 
comparison helps establish baseline performance measures 
and isolate conditions that influence performance in multi- 

This was true in the majority of comparisons between the 2- and 
3-agent systems. No easy generalization can be made, however, since in 
some of the experimental groupings, the 3-agent system performance was 
very bad in the increased delay conditions, whereas the 2-agent system 
performed with graceful deterioration for the corresponding increased 
delay conditions. 

agent systems. 

Our results demonstrated that a texture approach to 
multi-agent scheduling can produce search efficiency that 
approximates that of a centralized system, even for 
problems that are difficult for traditional approaches to 
constraint satisfaction. Furthermore, the texture approach 
proved to be robust in the face of decreasing 
communication frequency, thus substantially decreasing 
communication overhead. 
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Abstract 

This paper discusses an anytime rescheduling 
algorithm based upon constraint-based simu- 
lated annealing. Rescheduling is the process of 
resolving conflicts in a modified schedule. The 
algorithm has been implemented and tested 
upon a NASA scheduling problem and has per- 
formed well. We describe the algorithm in 
terms of its speed, its optimization criteria, and 
its disruption to the original schedule. Finally, 
we step through a simple example of the algo- 
rithm. 

1 Introduction 

This paper describes an anytime [Dea88] rescheduling al- 
gorithm based upon constraint-based simulated anneal- 
ing [Zwe90a]. In an anytime algorithm, the search pro- 
cess can be halted at virtually any point and return a 
useful solution. Our rescheduling algorithm iteratively 
improves a complete but flawed schedule until a satisfac- 
tory schedule is found, an arbitrary bound on the num- 
ber of search iterations is reached, or the user terminates 
the search. The algorithm is heuristic and not complete, 
but it converges quickly to a solution when tested on the 
NASA Kennedy Space Center (KSC) space shuttle pro- 
cessing problem and is expected to be used operationally 
at KSC. For more information on the application of the 
system please refer to [Zwe90b]. 

In this paper, we first formulate the general schedul- 
ing problem and present our iterative improvement al- 
gorithm used for rescheduling. Then, we step through 
a small example of the algorithm. Finally, we describe 
various perturbations to our approach in order to handle 
real-time and over-constrained problems. 

2 Problem Formulation 

Scheduling systems typically model temporal precedence 
between relations and the resource requirements between 
tasks. In contrast, planning systems typically reason 
about more general forms of information, but usually 
with respect to partial orderings of tasks, ignoring metric 
times. Few systems have been developed that can reason 
about arbitrary information with respect to metric time. 
Some notable exceptions include [Dru90, Dea85, Mil88]. 

In addition to modeling resource availability, our 
scheduling system has been extended to model state vari- 
ables. State variables represent attributes of domain ob- 
jects that change state over time. Examples from the 
domain include the position of switches, doors, landing 
gear, elevons, or flaps, the configuration of a system such 
as whether it is hazardous or clear and finally the loca- 
tion of an object. Tasks can be constrained by these 
state variables (i.e., they may require certain state vari- 
ables to have certain values, ranges, or properties during 
some time interval) and tasks can also change state vari- 
ables (i.e, once scheduled, they can force some state vari- 
ables to take on certain values with a given persistence). 
These constraints and effects are analogous to the action 
schemata of traditional planning systems [Fik72]. Con- 
straints on resources combined with constraints on state- 
variables, allow us to represent goals of maintenance and 
goals of achievement. 

We formulate scheduling as a constraint satisfaction 
problem. Variables represent the assignments required 
to complete a schedule as well as any a priori fixed in- 
formation affecting the schedule. Constraints are used 
to represent the desired relationships between these vari- 
ables and scheduling is the process of instantiating the 
unassigned variable subject to the constraints. Variables 
represent the attributes of tasks, the attributes of re- 
sources, and the attributes of domain objects such as 
the Space Shuttle. The attributes of tasks include start 
times, end times and durations, calendars of legal times 
that account for work schedules, and resource require- 
ments. The calendar indicates whether the task can be 
active during the first, second, and third shift of the day, 
as well as, whether the task is active on weekends and 
on holidays. Resource requirements are specified by a 
resource type, a quantity, and a particular pool 1. For 
example, an inspection task could require six technicians 
that can be drawn from one of ten different technician 
pools. The attributes of resources include their type, 
their users, and their availability over time. The at- 
tributes of domain objects are largely dependent upon 
the type of objects. For example, a space shuttle has 
elevons (left and right), landing gear (nose and main), 
flaps, power, hydraulics and numerous other parts. 

1A pool is an indistinguishable collection of resources. A 
resource requirement also indicates whether the resource is 
replenishable. 
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Variables are either static or functions of time. The 
domain of possible values for each static variable is ei- 
ther a time2, a real number, an integer, or a discrete 
set of values. Some variables, such as the availability 
of resources and attributes of domain objects, are prop- 
erly viewed as functions over time. These variables are 
represented as histories [Wil86] or time lines, which are 
lists of tuples. The first element of the tuple represents 
a time interval and the second represents a value. For 
example, 

(   ([0 100]   open)   ([200   :pos-infinity]   closed)) 

represents the value of a door status. From time 0 to 100, 
the door is open and in the absence of any other infor- 
mation it persists until time 200 when it is permanently 
shut. Other variables such as a task's time variables and 
resource requirement variables are static and do not re- 
quire a timeline representation. 

The following constraints relate variables to each 
other: 

1. less-than(?x ?y): The value of variable ?x must be 
less than the value of variable ?y. 

2. less-than-or-equals(?x ?y): The value of variable ?x 
must be less than or equal to the value of variable 

?y- 
3. equals(?x ?y): The value of variable ?x must equal 

the value of variable ?y. 

4. not-equals(?x ?y): The value of variable ?x must 
not equal the value of variable ?y. 

5. plus(?x ?y ?z): The sum of the value of variable ?x 
and the value of variable ?y must equal the value of 
variable ?z. 

6. capacity(?start ?end ?resource): The values of vari- 
ables ?start and ?end are times. The value of vari- 
able ?resource is a resource pool. In the time in- 
terval spanning from ?start to ?end, ?resource must 
not exceed its maximum capacity.. 

7. temporal-equals(?tl ?t2 ?a ?v): ?a must equal ?v 
during the interval ranging from ?tl to ?t2. 

8. temporal-less-than(?tl ?t2 ?a ?v): ?a must be less 
than ?v during the interval ranging from ?tl to ?t2. 

9. calendar-point(?st ?et ?calendar): The ?st and ?et 
must be legal with respect to the ?calendar. 

10. calendar-extend(?st ?et ?workduration ?calendar) 
There must be at least ?workduration amount of 
active time with respect to ?calendar during the in- 
terval ?st through ?et 

Other constraints can be added easily to the default 
set above. 

As stated previously, tasks consist of variables (denot- 
ing resource and temporal information), and constraints 
that relate this information to other tasks and other do- 
main objects. Additionally, tasks have effects which rep- 
resent the changes made to domain objects. In particu- 
lar, tasks can set or increment a state-variable, and can 

initiate these changes either at the start or end of the 
task.3 These task effects can persist indefinitely, only 
for the duration of the task, or until they are clipped by 
some other effect [Dea85]. 

The input to a CSP scheduling problem is a set of tasks 
and objects that are related by constraints. A solution 
to the problem is an assignment to all unassigned vari- 
ables such that after all tasks have their resource usages 
and changes to state variables asserted, all constraints 
are satisfied. The input to a rescheduling problem is a 
complete legal schedule and a schedule modification. We 
define a schedule modification as any combination of the 
following changes: 

1. The shift of a task (the start and end times of a task 
are displaced by some positive or negative constant). 

2. A change in duration (either an extension or a re- 
striction) 

3. A change in some resource capacity. 

4. A change in the value of some attribute of a domain 
object. 

5. A temporary delay and projected resumption of a 
task. 

6. The addition/removal of a task. 

7. The addition/removal of a constraint. 

A solution to a rescheduling problem is a reassignment 
of variable values, such that after all modifications are 
made, and all tasks have their resource usages and 
changes to state variables asserted, all constraints are 
satisfied. 

3    Rescheduling 

Our approach to rescheduling is based upon the general 
iterative improvement algorithm described in [Zwe90a]. 
We now describe the algorithm used to respond to task 
changes, which is similar to that used to respond to re- 
source and object state changes. The basic algorithm 
consists of a two phase process. The first phase is a 
systematic repair of all violated temporal constraints. 
This results in a temporally consistent schedule, but with 
outstanding resource and state-variable constraint viola- 
tions. This schedule is then input to the second phase - 
constraint-based simulated annealing. Here the schedule 
is incrementally improved by repairing violated resource 
and state-variable constraints. It is important to note 
that whenever the annealing process must shift a task, 
it employs the temporal shift algorithm used for the first 
phase of the rescheduling process. We now describe each 
phase in detail. 

3.1     Phase One: Temporal Shift 

The temporal shift is a heuristic procedure that takes 
as input a desired change in the start and end of a 
task and creates a temporally consistent schedule as out- 
put.    It achieves this by systematically shifting tasks 

2Time is represented as the number of minutes since some 
anchor point. 

3 Our implementation will be extended to allow arbitrary 
functional changes. We will also allow these effects to be 
anchored with some delay. 

252 



Solve(T){ 
Old = Cost(T); 
Repeat until Old <= -»THRESHOLD* { 

Next = Find_New_Solution(T); 
New = Cost(Next); 
If New < Old 

Then { Old = New; 
T = Next; 

} 
Else { With probability P 

do 
{ Old = New; 

T = Next; 
> 

} 
SaveBestSolutionlfNecessary; 

Figure 1: Constraint-based Simulated Annealing. 

that are involved in temporal constraint violations, in 
a fashion similar to the techniques used in OPIS [Ow 
88]. The algorithm begins by rescheduling the changed 
task; that is, it shifts it by some displacement that is 
sufficient to resolve all temporal constraints. This pro- 
cess is equivalent to achieving arc-consistency using the 
Waltz algorithm on temporal constraints [Fre82, Wal75, 
Dav87].4 Following the achievement of arc-consistency, 
the system assigns the earliest legal start time for each 
activity (or the latest if the initial task was moved ear- 
lier). The advantage of this approach is that it rapidly 
synthesizes viable schedules with minimal changes to the 
original schedule; only those tasks with constraint vio- 
lations are shifted. More radical changes to the original 
schedule are unrealistic and unacceptable in many real- 
world scheduling domains, including shuttle processing. 

Before a task is shifted, its resources are deallocated, 
and state effects are removed. After the task is shifted, 
the resources are reallocated and effects reasserted with 
new start and end times. Remaining resource violations 
are removed in phase two. 

It is important to note that the requested move is not 
guaranteed to be carried out. If the temporal shift at- 
tempts to move a task that is marked as permanent (such 
as a natural event like the sunrise) then the the move 
is deemed implausible. The algorithm then reverts all 
changed variables back to their original state 

3.2     Phase Two: Constraint-based Simulated 
Annealing 

The second phase is based on simulated annealing 
[Kir83]. It begins with the scheduling assignment that 
results from phase one of rescheduling and then evaluates 
a "cost" of the assignment. The cost function for our ex- 
periments is a weighted sum of violated constraints for 

4 Our algorithm also considers calendar constraints but 
only in a limited manner. It applies these constraints only to 
the extrema of the intervals found by propagating temporal 
constraints. 

the given assignment. The system then suggests a new 
solution by repairing constraints. If the new cost is an 
improvement, it adopts the new assignment and contin- 
ues. If the new solution is more costly, the algorithm will 
adopt it according to a probabilistic measure described 
later. This last step allows the algorithm to escape lo- 
cal minima. We have customized this general approach 
to constraint satisfaction problems which is described in 
more detail elsewhere [Zwe90a]. Figure 1 illustrates the 
basic algorithm (where T is a set of tasks with assign- 
ments made in phase one). 

In over-constrained problems, when it is impossible 
to converge to a solution below the desired threshold, 
the system terminates after some bound on the number 
of iterations. The threshold used for our rescheduling 
experiments was zero - all constraints must be satisfied. 
If the algorithm is interrupted, the best solution found 
prior to the interruption is returned. 

3.2.1     Systematic Repairs: Finding a New 
Schedule 

The system synthesizes a new schedule by repairing 
a subset of the violated constraints. In our KSC do- 
main, we require fast rescheduling with a heuristic bias 
against schedules with excessive work-in-process (WIP) 
time, and against schedules that require radical pertur- 
bations to the original schedule. This bias is enforced by 
the repair strategies. For example, tasks are not moved 
drastically and are only moved if they are involved in 
constraint violations. 

Our repair strategy exploits the knowledge that any 
task move is likely to violate temporal constraints. As a 
result, after any constraint repair causes a task to move, 
the temporal constraint violations are resolved first by 
executing the temporal shift algorithm given above. 

Figure 2 illustrates the repair strategy for the capacity 
constraint. The constant c is a small, fixed time unit (an 
8 hour shift in the KSC processing domain) and d is a 
direction (1 or —1 ) that is set randomly. The strategy 
attempts to substitute a new resource pool, but if this 
is impossible, it moves a task back or forward in time. 
After the task is moved, the temporal shift algorithm of 
phase one is executed - this systematically propagates 
the change caused by the repair to all temporal depen- 
dents. 

The computational overhead of the repair is propor- 
tional to the complexity of the choice of what task to 
move. One can simply move the task associated with 
the constraint or move another task that is also using the 
resource during the interval specified by the constraint. 
Any heuristic used for this choice can draw upon the 
following criteria: 

Fitness: Move the task that is using an amount closest 
to the amount that is overallocated. A task using a 
smaller amount is not likely to have a large enough 
impact and a task using a far greater amount is 
likely to be in violation wherever it is moved. 

Temporal Slack: Any task that is highly constrained 
temporally is likely to cause temporal constraint vi- 
olations and therefore could result in large pertur- 
bations to the schedule. 
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Temporal Dependents: Similar to temporal slack, a 
task with many dependents is likely to cause tem- 
poral constraint violations, if moved. 

Severity of Bottleneck: Prefer tasks that do not need 
to be moved drastically to avoid conflict. 

Priority: The system should avoid delaying important 
tasks, conversely it should prefer moving them ear- 
lier. 

In-Process: A task that has already begun should be 
completed as soon as possible, rather than tem- 
porarily stopping it, and then continuing later. 

Chronological Proximity: It is better to move activ- 
ities that start later in the schedule than those that 
are about to begin. 

Cycles: It is better to avoid moving tasks that have 
been moved frequently in previous iterations be- 
cause the iterative improvement algorithm can po- 
tentially cycle. 

In our initial implementation of this repair strategy, 
the system moves the task associated with the con- 
straint, but our expectation is that an informed choice is 
likely to be more effective without introducing substan- 
tial overhead. We are currently performing experiments 
that address this hypothesis. 

Figure 3 illustrates the repair strategy for the 
temporal-equals constraint that maintains arbitrary tem- 
poral conditions on state variables. This repair is anal- 
ogous to the modal truth criterion of non-linear plan- 
ning [Cha87] but without the flexibility of adding ac- 
tions. The preferred repair is to move a task that sets the 
state-variable appropriately to a time interval preceding 
the task with the requirement. If this is impossible, the 
task with the requirement is moved to a point in time 
when the state variable is set appropriately. 

In either case, to perform a move, the temporal shift 
of phase one is employed, which results in a temporally 
consistent schedule. 

It should be noted that schedule modifications may 
require planning, that is, the addition of new tasks into 
the schedule may be required. For example, if a task 
opens a door in support of a later task, and then the door 
is mysteriously closed, it could be impossible to find a 
new door open task to shift back in time. In this case, a 
new door open task must be added to the schedule. We 
intend to augment our scheduler with repair strategies 
similar to those in the GEMPLAN planner [Lan88] that 
enables new tasks to be added to the schedule. Whenever 
a repair is impossible because of the need to add a task, 
the repair is rejected. 

During each iteration, a subset of the outstanding vi- 
olations is retrieved and then repaired. Currently, we 
repair ten availability constraints and all the violated 
state-variable constraints. A more informed strategy is 
also possible and is discussed below. 

3.2.2     Noise: Escaping Local Minima 
In the algorithm presented above, we accept "worse" 

solutions with some probability P. This allows the al- 
gorithm to jump out of local minimum in its search. 

Additionally, allowing the system to temporarily follow 
paths that extend into the space of poor solutions ap- 
pears to help the search converge to a solution quicker. 
The probability P is defined as follows: P — e_A/T; 
A = NewCost — OldCost] T is a temperature parame- 
ter 5 that controls the likelihood that poor solutions will 
be accepted; higher temperatures are more aggressive. 

We have adopted a schedule of temperature reductions 
that begins with a relatively high temperature which is 
later reduced. As a result, it commences by jumping 
around the search space frequently but then makes more 
careful repairs. Currently, we begin with a temperature 
of 100 and reduce it after several iterations to 75. When 
the cost is low, we then reduce the temperature to 25. 

As stated previously, we introduce noise in the search 
process to escape local minima. One explanation for this 
is that the cost function does not accurately reflect how 
"close" a candidate solution is to the actual solution; it 
is only a measure of the number of flaws in a candidate 
solution. For example, a logical assumption is that if 
only one availability constraint is violated, the algorithm 
is quite close to a solution, however this is incorrect. 
It may take over 20 repairs to achieve the overall goal 
of zero constraint violations, because 20 tasks must be 
moved back in time. Thus we allow the algorithm to 
jump out of local minimum in a conservative manner. 
It should be noted that this is the distinguishing factor 
between simulated annealing and classical hill-climbing 
search. 

4    Anytime Characteristics 
When searching for a solution, the annealing algorithm 
saves its best solution to date and returns it when the 
algorithm is interrupted. This approach meets the cri- 
teria put forth in [Dea88] to be classified as an anytime 
algorithm. Their criteria classifies anytime algorithms 
as those that: 

1. lend themselves to preemptive scheduling (i.e. can 
be stopped and restarted) 

2. can be terminated at any time and will output an 
answer 

3. return answers that improve in a well-behaved man- 
ner over time. 

An additional consideration is that the solution output 
must be useful to the user. It makes no sense to be 
anytime if the solution can not be utilized effectively. 

Our algorithm is interruptible, restartable, and out- 
puts a solution when terminated. The solution qual- 
ity increases as a step-function of time. These solu- 
tions are useful in our domains because human sched- 
ulers can manually resolve conflicts in the schedule, es- 
pecially when there are few conflicts that tend to be 
over-allocations of resources. Typically, the humans will 
multiplex or share resources between two tasks that are 
physically proximate. The system does not handle this 
sharing capability and we believe this would be very diffi- 
cult to model. A system that can quickly converge to an 

5 The name of this parameter is reminiscent of the algo- 
rithm's chemistry origin. 
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capacity(?start ?end ?resource): 

1. Deallocate this  current resource. 
2. Try to find a pool that  is  available from ?start to ?end. 
3. If one exists,  change ?resource to be that pool and reallocate. 
4. Otherwise task = ChooseTaskToHove(constraint); 

new-start =  ?start + random(l   ..   10)   * c * d; 
new-end = new-start + duration(task); 
TemporalShift(task,  new-start,  new-end); 

Figure 2: The repair strategy for the capacity constraint. 

tempofal-equals(?tl  ?t2 ?a ?v): 

First  strategy: 

1. supporter = the first task 
after ?tl that    sets  ?a =  ?v; 

2. task = the task associated with this  constraint; 
3. new-end = start(task)  - c; 
4. new-start = new-end - duration(supporter); 
5. TemporalShift(supporter,  new-start,  new-end); 

If unsuccessful: 

1. task = the task associated with this  constraint; 
2. new-start  = the first  time  of a state transition,  t, 

(away from ?tl  in the direction of d) where ?a is  set to ?v; 
3. new-end = new-start + duration(task); 
4. TemporalShift(task, new-start,  new-end); 

Figure 3: The repair strategy for the temporal-equals constraint. 
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acceptable schedule with few resource problems is a very 
useful tool for the human schedulers at Kennedy Space 
Center (KSC). In fact, they rarely work with schedules 
that do not have violated constraints. 

5    Example 

We now step through an example of rescheduling. The 
initial schedule shown in Figure 4 contains 7 activities. 
Task T\ has one effect which is to change the state of Si 
to the "on" position. Tasks T2, T3, T4, T5, and T6 all 
require Si to be in the on position. Task Tj changes the 
state of S\ back to the off position. T~i is also tied to a 
milestone meaning that it should end before this point 
in time. The only temporal constraints in the example 
are after constraints that exist between the end time of 
T2 and the start time of T3 and between the end time 
of T4 and the start time of T5. Tasks T2, T4, and T6 

each request resources Ri and R2. Tasks T3 and T5 each 
request resource R2. Finally, we will assume that both 
resources (Ri and R2) have capacities of 2. 

The top portion of Figure 4 displays the initial sched- 
ule. Just below the timeline for the initial schedule are 
two histograms depicting the allocation of Ri and R2. 
Gray bars indicate the positions of activities before the 
system rescheduled them. 

The user reschedules task T2 one shift (i.e., 8 hours) 
later, so that it is in parallel with task T4. The temporal 
shift algorithm then shifts T3 eight hours also, resulting 
in the second schedule in the diagram. As a result of 
these moves, there are now three constraint violations in 
the corresponding R2 histogram (based on requests by 
T3, T5, and Te). The cost of this new solution is three 
(assuming all constraint violations cost the same). 

The last two portions of Figure 4 illustrate two iter- 
ations of annealing. In the first iteration, the system 
decides to move T^ earlier in time by one shift. After 
checking for temporal constraint violations (there were 
none) the first iteration completes having resolved the 
three constraint violations. As shown in the third graph 
in Figure 4, the first iteration actually results in more 
constraints violations (6) then there were previously but 
nevertheless, the annealing algorithm has chosen to take 
this "worse" solution probabilistically. Now tasks T2, 
T4, and TO all have resource constraint violations for re- 
sources Ri and R2. 

During the second annealing iteration, the system 
again chooses to advance T6 by a shift. This change 
causes all constraints to be satisfied completing the 
rescheduling process. The final schedule is shown at the 
bottom of Figure 4. 

In our example, if the system initially moved T6 later 
in time, then it would eventually discover violations in- 
volving the state of Si; specifically T6 requires Si in the 
on position while T7 changes it to the off position. In 
repairing this constraint, the system could have tried to 
delay the start time of T7, possibly missing the milestone. 
Since milestone constraints have a large weight (we al- 
ways want to achieve milestones on schedule), the system 
would repair them, effectively "backtracking" through 
its previous actions, returning the schedule back to the 
state shown in the second graph in Figure 4. 

5.1     Relevance to Real World Problems 

While we simplified certain aspects of the example de- 
scribed above, it corresponds to scenarios within the 
Space Shuttle ground operations domain. In the main 
processing facility, the rear of the orbiter is often sup- 
ported by large hydraulic jacks and at other times it 
rests upon its own main landing gear. Certain activities 
require the jacks with the landing gear raised. These 
requirements are typically represented as constraints on 
state variables such as Si in the example. Given the state 
of the landing gear and hydraulic jacks, many indepen- 
dent sets of activities can be now be performed (our ex- 
ample depicted 3 such independent processes). Changes 
in the schedule occur frequently because: 1) many unan- 
ticipated technical problems arise, 2) resources become 
unavailable when they are broken, sick, or performing 
unexpected duties, or finally 3) because of unpredicted 
bad weather. When these changes occur, our system 
will reschedule activities with respect to state variables, 
resource availability, and temporal constraints. 

6    Heuristic Bias 

In [Ow 88], three criteria were stated for evaluating the 
utility of various reactive revisions to a schedule: 

• Attendance to scheduling objective: what is the 
quality of the revision with respect to the desired 
optimization criteria? 

• Amount of disruption: how many changes to the 
original schedule are made? 

• Efficiency of reaction: how quick is the reaction pro- 
cess? 

These criteria must be balanced and are usually in- 
versely related. In our domain, we sacrifice optimality of 
the schedule to reduce response time and disruption. We 
balance these criteria by biasing the initial solution, the 
cost function, the temperature reduction strategy, and 
the repair strategies. We bias the initial annealing solu- 
tion to be temporally consistent with a one pass propaga- 
tion of constraints and temporal shifts. To minimize the 
disruption of the existing schedule, the algorithm only 
modifies tasks that affect constraint violations. We min- 
imize WIP by finding a proximate time for any constraint 
repair. Unfortunately, the optimality of the schedule is 
sacrificed because repairs could be more global and thus 
more informed; they could suggest global changes in the 
schedule that would reduce total WIP time. However, 
such an approach is likely to be too expensive and overly 
disruptive, but this remains to be proven. 

In other domains, other criteria might be dominant, 
requiring different biases. Below, we present two exam- 
ples of such domains and discuss the strategies that our 
system would adopt to address these criteria. 

6.1     Over-constrained Problems 

In many scientific domains, the problem is over- 
constrained; there are more tasks than can be success- 
fully scheduled given the domain constraints. Exam- 
ples of these domains are telescope science observation 
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scheduling and Space Shuttle and Space Station Free- 
dom crew activity scheduling. In these domains, low 
priority tasks must often be dropped from the sched- 
ule. We would address this is two main ways. First, 
we would order repairs so that the higher priority tasks 
are addressed first. Second, we would penalize schedules 
(via the cost function) that have a large proportion of 
high priority tasks with constraint violations. Using this 
scheme, the execution time will rely heavily on the cost 
threshold for an acceptable solution and the iteration 
bound. 

6.2     Real-Time Problems 

In many real-time problems, priority must be given to 
those tasks that are about to take place. We could use 
the same strategy as given above, where the constraints 
associated with imminent tasks are repaired first and the 
cost function penalizes schedules with flawed tasks close 
to the event horizon. We could also augment the repair 
phase with a bound on its execution time. As soon as 
this time bound expires, no new constraints would be 
repaired until the next iteration. 

7 Relation to Other Work 
Our work was heavily influenced by the criteria put forth 
in the OPIS scheduler [Ow 88]. We have introduced 
a new simulated annealing search framework to these 
criteria that compares favorably with systematic search 
[Zwe90a] and corroborates with a parallel study [Min90]. 
The work is also related to that of Miller et. al. [Mil88] in 
that deadline and resource requirements are addressed, 
but it differs in that our representations and search tech- 
niques are quite different. They represent time-changing 
information as propositions maintained by the TMM - 
Time Map Manager [Dea85] and use traditional graph 
search algorithms to maintain consistency among these 
propositions. We also have similar goals as Drummond 
and Bresina [Dru90]. They are developing an anytime 
agent architecture based upon beam search that explic- 
itly represents uncertainty. They are also developing 
more complex criteria to judge the anytime character- 
istics of an algorithm. 

8 Summary 
This paper reports a rescheduling algorithm based upon 
Constraint-based Simulated Annealing. The system can 
respond to schedule modifications and can quickly re- 
solve problems with temporally dependent conditions. It 
meets the criteria put forth by Dean et. al. to be classi- 
fied as anytime; in addition, we have addressed the qual- 
ity of the rescheduling according to the criteria presented 
by Ow et. al. in [Ow 88]. We plan to experiment further 
with the technique concentrating on overconstrained and 
real-time problems. The system we have developed will 
be evaluated by the Kennedy Space Center as an opera- 
tional tool for streamlining Space Shuttle Processing. 
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Abstract 

An intelligent agent must identify and perform logically 
correct actions in response to external events, and it must 
perform them at appropriate times. The top-level objective 
of such an agent would be to maximize (or ensure a lower 
bound on) the value of some global utility function that 
integrates the values of its responses to events, weighted 
by the importance of those events, over time. In this 
paper, we focus on four properties that might facilitate an 
agent's achievement of its global utility objective: 
selectivity, responsiveness, robustness, and scalability. 
We assume a very general agent architecture, and we focus 
on its reasoning component. As opposed to a best-next 
control model we propose a satisficing control model for 
the reasoning process. We have conducted preliminary 
experiments to test the following hypotheses: the 
satisficing model provides good selectivity, 
responsiveness, robustness, and scalability (both when 
measured against the best-next model and when measured 
in absolute terms); therefore, the satisficing model 
provides a high global utility for the agent's performance. 
The results of our experiments confirm our hypotheses. 

1. The problem 

In many situations, an intelligent agent must coordinate its 
actions with the behavior of other agents or processes over 
which it has no direct control. The agent must identify and 
perform logically correct actions in response to external 
events, and it must perform them at appropriate times. 

Given limited computational resources and a complex 
environment, an agent generally cannot identify and perform 
optimal actions in response to all environmental events in a 
timely fashion. Instead, to guarantee satisfactory responses 
to important events, it must compromise its responses to 
other events. It might reduce the value of its response 
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gratefully acknowledge contributions by the Guardian project 
members. Rich Washington provided helpful comments on 
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(precision, completeness, correctness, certainty, or 
timeliness) to some events. It might not respond to some 
unimportant events at all. The top-level objective of such 
an agent would be to maximize (or ensure a lower bound 
on) the value of some global utility function that integrates 
the values of its responses to events, weighted by the 
importance of those events, over time. The exact form of 
this function might vary among agents or circumstances and 
need not concern us here. 

There are many behavioral properties that might be 
hypothesized to facilitate an agent's achievement of its 
global utility objective [Dodhiawala, 1989, Hayes-Roth 
1990]. In this paper, we focus on four properties: 
selectivity, responsiveness, robustness, and scalability. 
Selectivity refers to differential responses to events based on 
importance. Other things being equal, the agent should 
respond more reliably and more quickly to more important 
events than to less important events. Responsiveness refers 
to modulation of response latency based on urgency. Other 
things being equal, the agent should respond more quickly 
to more urgent events than to less urgent events. The agent 
should maintain selectivity and responsiveness under a 
variety of conditions. Robustness refers to the maintenance 
of these properties despite increases in environmental 
complexity. Other things being equal, the agent's behavior 
should degrade gradually, if at all, with increases in the rate 
or variability of environmental events. Scalability refers to 
the maintenance of these properties despite increases in 
knowledge. Other things being equal, the agent's behavior 
should degrade gradually, if at all, with increases in its own 
knowledge. In fact, in many situations, the agent's behavior 
should improve with increases in knowledge. 

We assume a very general agent architecture with 
component processes for perception, to obtain information 
about environmental events, reasoning, to interpret 
perceived events, solve problems, and plan actions, and 
action, to influence the environment [Hayes-Roth, 1987, 
Hayes-Roth, 1990]. Because reasoning mediates perception 
and action, the reasoning process must have the properties 
of selectivity, responsiveness, robustness, and scalability—if 
the agent's overall behavior is to have those properties. 

Thus, we have two questions. First, what kind of control 
model will give an agent's reasoning the properties of 
selectivity, responsiveness, robustness, and scalability? 
Second, will a control model that provides these properties 
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facilitate the agent's achievement of its global utility 
objective? 

2. Alternative Control models 

We assume an agent architecture in which independent 
perception, reasoning, and action processes communicate 
via globally accessible I/O buffers. Perception processes 
deliver continuous streams of perceived events, with each 
event labeled by its type, value, importance, and deadline 
[Washington and Hayes-Roth, 1989, Washington et al., 
1990], to input buffers in the reasoning process. Action 
processes retrieve and execute intended actions from output 
buffers in the reasoning process. The scope of our 
investigation into alternative control models for the 
reasoning process will be bounded by the entry of perceptual 
events into input buffers and their exit from output buffers. 

We assume a cyclic reasoning process in which the agent 
repeatedly: (1) identifies and rates potential reasoning 
operations given the current state and recent "triggering" 
events (both perceptual and cognitive events), (2) chooses 
one identified operation based on the ratings, and (3) 
executes the chosen operation. This view of reasoning is 
quite general and is instantiated in a range of specific AI 
system models. Many of these more specific models 
emphasize the need for intelligence in the cycle, so that the 
agent chooses to execute a "good" or "correct" operation on 
each cycle. Such models are variously called "conflict 
resolution" [Newell, 1973, McDermott and Forgy, 1978, 
Forgy, 1982], "intelligent control" [Hayes-Roth and Hayes- 
Roth, 1979, Hayes-Roth, 1985], "meta-reasoning" 
[Genesereth and Smith, 1982, Russell and Wefald, 1989] or 
"deliberation scheduling" [Dean and Boddy, 1988]. In our 
model, scheduling criteria are, themselves, dynamically 
established and modified through base-level reasoning 
operations [Hayes-Roth et al, 1986, Johnson and Hayes- 
Roth, 1987]. 

By definition, intelligent control of reasoning allows an 
agent to reason about and control its own reasoning 
behavior. For example, the agent can achieve a degree of 
selectivity by choosing operations based on the importance 
of their triggering events. It can achieve a degree of 
responsiveness by choosing operations whose 
computational demands are compatible with current 
deadlines. It can achieve a degree of robustness in the face of 
increasing event rates by choosing operations that respond 
to a smaller percentage of more important events and make 
smaller computational demands. It can achieve a degree of 
scalability over a growing knowledge base by choosing 
only operations that apply the most appropriate knowledge, 
given task demands and real-time constraints. 

However, these claims are limited by the fact that the 
basic reasoning cycle, including the use of intelligent 
control, entails a computational overhead. Most formal 
analyses assume that the time spent on the cycle itself is 
insignificant, but this assumption probably is not valid in 
general [Dean, 1989]. Experimental evaluations [Durfee and 
Lesser, 1986, Garvey et al, 1987] typically conclude that 
time spent on the cycle is more than balanced by the time 
saved in reasoning. Again, these observations probably are 
not valid in general. 

In fact, the computations underlying the basic reasoning 
cycle are inherently complex. Let us illustrate this point 
with an informal complexity analysis of step (1) of the 
basic control cycle: the identification and rating of potential 
reasoning operations. An instantiation of an operation 
results from triggering a particular type of operation for a 
particular event. A particular event can trigger different 
types of operations and a particular operation can be 
triggered by many different events. We consider three 
complexity parameters: n is the number of events (both 
perceptual and cognitive events) the agent processes during 
step (1); k is the number of possible types of operations the 
agent knows; r is the number of scheduling criteria used in 
the rating process. In the worst case, the time spent 
identifying potential reasoning operations is O(nk). If m is 
the number of identified operations, then the time spent 
rating these operations is 0(mr). In addition, the pattern- 
matching process involved in triggering an operation for a 
given event, as well as in rating an instantiated operation 
against a scheduling criterion, is itself a complex process. 
Although the details of this complexity factor need not 
concern us here, it is important to emphasize that this factor 
increases the complexity of both terms O(nk) and O(mr). 
Therefore, if an agent is to achieve selectivity, 
responsiveness, robustness, and scalability in its reasoning 
behavior, it must control the reasoning cycle, as well as its 
reasoning operations. In this paper, we compare two models 
for controlling the reasoning cycle, a best-next model and a 
satisficing model. 

First consider the best-next control model. In step (1) of 
the reasoning cycle, the agent identifies all possible 
reasoning operations and rates each one against the current 
scheduling criteria. Scheduling criteria are determined 
dynamically by reasoning. Step (1) terminates when all 
operations triggered by all recent events have been 
identified. Therefore, given real-time constraints on 
performance, the algorithm for this process must be highly 
efficient. Our best-next algorithm appears in Figure 1. It 
assumes unlimited-capacity buffers for perceptual and 
cognitive events and for possible reasoning operations. In 
step (2), the agent chooses the highest-rated identified 
operation. In step (3), the agent executes the chosen 
operation. Thus, on each cycle, the agent invariably 
executes the best possible operation, but it may do so 
following an unbounded delay since the occurrence of the 
associated triggering events. 

For each event present in the Event Buffer at the time 
the agent enters step (1), 

For each possible type of reasoning operation O, 
If all the triggering conditions of O are true, 

Then record a potential reasoning operation 
in the Agenda (operation buffer). 

For each potential operation P recorded in the Agenda, 
Compute and record the ratings of P against the 
current scheduling criteria. 

Figure 1. Algorithm for the Best-Next Control Model 
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Now consider the satisficing control model. In step (1) of 
the reasoning cycle, the agent identifies and rates a 
promising subset of possible operations, based on the 
current scheduling criteria. Again, scheduling criteria are 
determined dynamically by reasoning. Step (1) terminates 
when either: (a) an operation with a criterial rating has been 
identified; (b) a deadline has occurred; or (c) all possible 
operations have been identified. Both criterial ratings and 
deadlines are determined dynamically through reasoning. 
Given real-time constraints on performance and the 
possibility of an interrupt, the step (1) algorithm should 
identify possible operations in descending order of ratings, 
to the extent that is possible. Our satisficing algorithm 
appears in Figure 2. It assumes limited-capacity buffers for 
perceptual and cognitive events and for possible reasoning 
operations. In our experiments, event buffers had capacities 
of 7 items each and the operation buffer (agenda) had a 
capacity of 10 items. In step (2), the agent chooses the 
highest-rated identified operation. In step (3), it executes the 
chosen operation. Thus, on a given cycle, the agent may 
execute the first satisfactory operation, the best available 
operation within the given deadline, or the best possible 
operation-depending upon the interrupt condition. 

Until 
- either an operation with a criterial rating has been 
identified, 

-or a deadline has occurred, 
- or there are no more events to process 

Select the best available event in the limited- 
capacity Event Buffers, 
Until 

- either an operation with a criterial rating has 
been identified, 

- or a deadline has occurred, 
- or there are no more possible types of 
operations to consider 

Select the best possible type of reasoning 
operation O, 
If all the triggering conditions of O are true, 

Then 
Compute and record the ratings of P 
against the current scheduling criteria, 
Record and order P in descending order 
of  ratings   in   the   limited-capacity 

Agenda. 

Figure 2. Algorithm for the Satisficing Control Model 

Let us summarize the strengths and weaknesses of the 
best-next and satisficing control models. The best-next 
model guarantees execution of the best possible operation 
on each cycle and provides a very efficient algorithm for 
identifying that operation. On the other hand, it entails 
unbounded cycle times. The satisficing model conserves 
cycle time by executing satisfactory operations as soon as 
possible and guaranteeing execution of some operation by 
deadline. On the other hand, it explicitly allows the 
possibility of executing sub-optimal—costly or ineffective 
or even undesirable-operations. Moreover, in the worst 

case, where there is no deadline and no criterial operation is 
identified, the satisficing model must identify all possible 
operations, but with an algorithm that is not optimized for 
that purpose. 

The remainder of this paper presents the results of initial 
experiments we conducted to compare the performance of 
the best-next and satisficing models with respect to the 
behavioral properties discussed above. In fact, the two 
models are not simply equal contenders in this evaluation. 
We have been working with the best-next cycle for several 
years in the BB1 architecture and used it for static problem- 
solving applications, where its performance has been largely 
satisfactory [Hayes-Roth et al., 1986, Tommelein et al., 
1987, Darwiche et al., 1988]. Its main weakness has been 
speed. However, for static applications, speed is only a 
pragmatic issue and we assume that the best-next algorithm 
could be optimized to provide satisfactory speed for 
particular applications. However, we believe that more 
radical changes are required to meet the requirements of the 
real-time problem-solving applications that we have been 
studying more recently. The satisficing cycle was designed 
in an effort to meet those requirements [Hayes-Roth, 1987]. 
Thus, in the conventional terms of experimental science, it 
is appropriate to view the best-next cycle as the "control 
condition" against which we will measure the effects of the 
"experimental treatment", which is the satisficing cycle. 
Accordingly, we conducted the experiments described below 
to test the following hypotheses: 
(a) The satisficing model provides good selectivity, 
responsiveness, robustness, and scalability-both when 
measured against the best-next model and when measured in 
absolute terms; 
(b) Therefore, the satisficing model provides a high global 
utility for the agent's performance-again, both when 
measured against the best-next model and when measured in 
absolute terms. 

3. Overview of the Experiments 

We tested our hypotheses in the context of the Guardian 
system for intensive care monitoring [Hayes-Roth et al., 
1989]. Guardian originally was implemented on top of the 
BB1 architecture [Hayes-Roth, 1985], with the best-next 
control cycle. For these experiments, we made a new 
version of Guardian in which the satisficing cycle replaces 
the best-next cycle. Thus, the two versions of Guardian 
differ only in whether they use the best-next cycle or the 
satisficing cycle. As Figures 1 and 2 show, the two 
algorithms share many of the same component functions. 
We tried to make distinctive elements of both algorithms 
reasonably efficient. However, because we have been 
working with the best-next algorithm for several years, it is 
reasonable to assume that any efficiency advantage due to 
the implementation per se would favor it over the 
satisficing algorithm. 

To test our hypotheses, we measured the performance of 
each version of Guardian on a set of monitoring scenarios 
that require the targeted behavioral properties and compared 
the results. The following sections describe the Guardian 
system and the experimental scenarios, manipulations, and 
measurements. 
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3.1 The Guardian System 

Functioning in a simulated intensive-care environment, 
Guardian monitors ventilator-supported patients and 
consults with physicians and nurses. The current version of 
Guardian monitors about sixteen automatically sensed 
variables (e.g., pressures, temperature) and a few irregularly 
sensed variables (e.g., lab results). It performs several tasks, 
such as interpreting sensed data, noticing and diagnosing 
exceptional events, predicting future states and events, 
planning therapy actions, explaining its reasoning, and 
carrying out actions in closed-loop control of the simulated 
patient. To perform these tasks, Guardian uses several kinds 
of knowledge: heuristic knowledge related to common 
respiratory problems; structure/function knowledge of the 
respiratory, circulatory, metabolic, and mechanical 
ventilator systems; and structure/function knowledge of 
generic flow, diffusion, and metabolic systems. In some 
cases, Guardian is capable of performing a given task in 
alternative ways. For example, given an exceptional event, 
it can diagnose the cause of that event relatively quickly, 
using probabilistic associations between disease conditions 
and observable signs and symptoms. Alternatively, it can 
take more time to identify plausible diagnoses based on a 
model of the relevant organ systems and the underlying 
physical principles. In such situations, Guardian makes 
smart choices in order to meet real-time (or other) 
constraints on its reasoning. 

3.2 The  Monitoring  Scenario 

In our experiments, the simulated patient has just returned 
from the operating room. Ventilator settings (i.e., the 
number of breaths delivered to the patient per minute and 
the volume of air blown into the patient's lungs on each 
breath) plus a set of sixteen parameters (e.g. temperature, 
heart rate, inspiratory peak pressure) are continually and 
automatically sensed. In addition, Guardian perceives 
irregularly reported lab results and asynchronous user 
requests. Several display drivers manage Guardian's 
communication with human users. These communications 
include dynamic graphical displays of: the patient's history; 
ongoing reasoning and results related to Guardian's 
reasoning tasks; and structure/function explanations of the 
patient's conditions. Each of these displays is interactive, 
permitting the user to pose particular kinds of questions. 
Therapeutic actions include changing the ventilator settings 
(e.g. decrease the number of breaths delivered to the patient 
per minute), adjusting the ventilator tube, and other sorts of 
interventions. 

We distinguish key events and context events in the 
scenario. A key event requires a response. A context event 
could produce a response, but does not require one. 

Four key events occur in the experimental scenario. The 
first key event occurs at the beginning of the scenario, when 
the patient has a low body temperature. Although this 
condition is not life-threatening, it can have undesirable 
consequences for the patient and requires a response. 
Guardian should predict the undesirable consequences (low 
arterial C02, a condition called hypocapnia) and that the 
temperature will naturally return to normal over a period of 
hours. The prediction of hypocapnia is the second key event 

requiring a response. Guardian should adjust the patient's 
breathing rate in accordance with the low temperature to 
correct the hypocapnia and maintain the arterial C02 within 
normal ranges as the patient's temperature rises. The third 
key event requiring a response is a user request for 
explanation of hypocapnia and the associated breathing rate 
adjustments. Guardian should give an appropriate 
explanation. The fourth key event, which occurs during 
Guardian's explanation, is an observation that the patient's 
peak inspiratory pressure (PIP) is very high, a potentially 
life-threatening situation. Guardian should diagnose the 
problem as a pneumothorax (hole in the lung) and 
immediately (within eight minutes) take an appropriate 
action, inserting a chest tube to release accumulated air in 
the chest cavity and reduce the PIP, thereby permitting 
normal ventilation. 

There are also many context events in the scenario, which 
permit a response but do not require one. For example, there 
are many minor deviations of observed patient data from 
expected patient data. For any of these deviations, Guardian 
could predict present and future consequences. However, 
these events are much less important than the key events 
mentioned above and Guardian ordinarily would not have 
time to attend to them. 

3.3   Manipulations 

Variables manipulated in the experiments are summarized in 
Table 1. Criticality of events is defined by the importance 
and urgency of sensed data. In our scenario, the high PIP is 
both very important and very urgent and, therefore, of high 
criticality. The other three key events are moderately 
important and not very urgent and, therefore, of low 
criticality. Environmental complexity is defined by the 
number of sensed parameters and the resulting range of 
global event rates. High environmental complexity involves 
16 parameters and 4-83 events every ten minutes, while low 
environmental complexity involves 8 parameters and 4-42 
events every ten minutes. Amount of knowledge is defined 
by the number of different types of reasoning operations 
known to Guardian. High knowledge involves reasoning 
operations for diagnosis, reaction, prediction, explanation, 
planning, and global control, while low knowledge involves 
all of these except planning. Table 2 shows how four 
versions of the experimental scenario are defined in terms of 
these variables. 

In all scenarios, Guardian used the same control decisions 
to guide its scheduling of possible reasoning operations and, 
in the case of the satisficing cycle, to guide its identification 
of possible reasoning operations. Several of these decisions 
were active throughout the scenario: (dl) favor operations 
depending on their type of reasoning (by default, global 
control is preferred to planning, which is preferred to 
prediction and explanation, which are preferred to diagnosis 
and reaction); (d2) favor operations that respond to a user 
request; (d3) favor operations that respond to important or 
abnormal signs. The decisions dl, d2 and d3 were weighted 
100, 50 and 1, respectively. The following decision was 
active only during the critical period of high PIP: (d4) favor 
operations that respond quickly to high PIP. This decision 
resulted from the execution of a global control operation 
triggered by the critical event, high PIP, and remained active 
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until there are no more executable operations responding to 
this critical event. The weight of decision d4 was 1000. 

Criticality 
of Events 

Patient 
Condition 

Yes 
No 

High PIP 
No High PIP 

Amount 
of Knowledge 

# of Types 
of Operations 

High 
Low 

39 
28 

Environmental 
Complexity 

# of Sensed 
Parameters 

Global 
Event Rate 

High 
Low 

16 
8 

[4, 83] 
[4,42] 

Table 1. Manipulations of Scenario Variables 

Experimental 
Conditions 

Criticality 
of Events 

Environmental 
Complexity 

Amount 
of Knowledge 

Base Scenario 
Non Critical 
Low Complexity 
Low Knowledge 

Yes 
No 
Yes 
Yes 

High 
High 
Low 
High 

High 
High 
High 
Low 

Table 2. Definition of Experimental Conditions 

3.4  Measurements 

To make the appropriate measurements, we instrumented 
BB1 for the following variables. Response value is the 
value of a response given by Guardian to a key event. Speed 
of response to the critical event, high PIP, is a difference 
measure: the deadline for responding to the critical event 
minus the total time Guardian took to respond to it. 
Number of critical cycles is the number of reasoning cycles 
Guardian executed in order to respond to the critical event. 
Average agenda time per critical cycle is the average time 
used for agenda management during critical cycles. For the 
non-critical scenario, we measured agenda management time 
during cycles at a corresponding time during the run. 
Average priority of executed operations is the average 
priority for executed operations across all reasoning cycles. 
Average cycle time is similarly computed across all 
reasoning cycles, and average agenda time is that part of the 
cycle used in agenda management. Average number of new 
operations per cycle is the average number of possible 
reasoning operations identified on each reasoning cycle. All 
times are given in seconds. 

4.  Results 

The results are summarized in Table 3. In the following 
sections, we evaluate each of our four hypotheses by 
comparing numbers from particular cells of the table. 

4.1 Selectivity 

We measure selectivity as: (a) correct vs. incorrect (or no) 
response to the critical event, high PIP; and (b) speed of the 
correct response to the critical event. With the best-next 
cycle, Guardian produced the correct response (insert chest 
tube) in the low complexity and low knowledge scenarios, 
but not in the base scenario. With the satisficing cycle, it 
produced the correct response in all three scenarios. 
Moreover, in the two scenarios where both cycles produced 
the correct response, the satisficing cycle produced lower 
response latencies than the best-next cycle. Thus, in this 
experiment, the satisficing cycle produced better selectivity 
than the best-next cycle, enabling Guardian to respond more 
reliably and more quickly to critical events. As we shall see 
later, the satisficing cycle achieved high selectivity of 
critical events by allowing Guardian to miss some less 
important events. 

4.2 Responsiveness 

We measure responsiveness as the difference in response 
latency for critical and non-critical events. As shown in 
Chart 1, with the best-next cycle, Guardian actually spends 
more time on agenda management and, therefore, on the 
entire cycle, during critical cycles than during non-critical 
cycles. By contrast, with the satisficing cycle, Guardian 
spends much less time on agenda management during 
critical cycles than during non-critical cycles. Thus, in this 
experiment, the satisficing cycle provides better 
responsiveness, allowing Guardian to reason more quickly 
when faced with a critical event than when faced with only 
non-critical events. 

Average 
Agenda 
Time 

■ Yes 

Criticality 
of Events 

B-N S 

Chart 1. Responsiveness 

Experimental Response Value Speed of # of Critical Average Agenda Time 
Conditions to the Critical Event Resi jonse Cycles per Critical Cycle 

Base Scenario 
B-N S B-N S B-N S B-N S 

Not Most Specific Most Specific -242 199 16 21 23 5.3 
Non Critical Sc. — — — — 16 21 11.5 12.8 

Low Complexity Sc. Most Specific Most Specific 165 221 21 21 7.4 5.2 
Low Knowledge Sc. Most Specific Most Specific 15 165 21 21 15.3 6.4 

Table 3. Results of the Experiments 
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4.3   Robustness 

We measure robustness as the difference in response latency 
for critical events in low and high complexity scenarios. As 
shown in Chart 2, with the best-next cycle, Guardian spends 
much more time on agenda management and, therefore, on 
the entire cycle, in the high complexity scenario than in the 
low complexity scenario. This result is consistent with 
complexity analysis of Section 2, where the complexity of 
agenda management increases with event rate. By contrast, 
with the satisficing cycle, Guardian maintains stable agenda 
management times in both complexity conditions. 
Presumably, it does so by selectively responding to critical 
events, ignoring non-critical events regardless of their 
number. Thus, in this experiment, the satisficing cycle 
provides better robustness, allowing Guardian to respond 
quickly to critical events regardless of environmental 
complexity. 

Average 
Agenda 
Time 

Environmental 
Complexity 

■ High 

B-N S 

Chart 2. Robustness 

4.4   Scalability 

We measure scalability as the difference in response latency 
for critical events in low and high knowledge scenarios. As 
shown in Chart 3, with the best-next cycle, Guardian spends 
more time on agenda management and, therefore, on the 
entire cycle, in the high knowledge scenario than in the low 
knowledge scenario. This result is compatible with 
complexity analysis of Section 2, where the complexity of 
agenda management increases with the number of types of 
operations. By contrast, with the satisficing cycle, Guardian 
maintains stable agenda management times in both 
scenarios. Presumably, it does so by selectively applying 
the most important knowledge and ignoring irrelevant 
knowledge regardless of quantity. Thus, in this experiment, 
the satisficing cycle provides better scalability, allowing 
Guardian to maintain stable response times despite increases 
in knowledge. 

Sa Low 
■ High 

Amount of 
Knowledge 

B-N S 

Chart 3. Scalability 

4.5   Global   Utility 

We propose two classes of global utility functions: 

Ul =  Sum of (Response Value * Event Importance) for 
Key Events, 

U2 = If Satisfactory Response to Critical Events, 
Then Ul Else 0. 

Table 4 gives additional information necessary to 
characterize the global utility of Guardian's performance 
under each control cycle, with respect to these two classes 
of functions. Response correctness, 1 if correct and 0 
otherwise, is given for the four key events for each scenario. 
For the critical event, Table 4 also gives the speed of 
response. We assume that at least for critical events, 
response value is a function of correctness and speed. In the 
experimental scenario, the critical event, high PIP, signals a 
Pneumothorax, a life-threatening condition. Without 
specifying a combining function, we can see that the 
numbers in Table 4 clearly favor the satisficing cycle for the 
critical event, where the response is always correct and the 
latencies are always shorter (i.e., the speed of response is 
always higher) than those for the best-next cycle. Therefore, 
the U2 class of utility functions would generally favor the 
satisficing cycle over the best-next cycle, and with a wide 
range of combining functions, the Ul class of functions 
would favor it as well. 

On the other hand, the best-next cycle produces responses 
to more non-critical key events than the satisficing cycle. 
Especially in the non-critical scenario, where no high PIP 
and pneumothorax occurred, the best-next cycle would 
produce higher global utility values in this experiment. 
However, we would not extend this conclusion to the 
general class of scenarios involving no critical events. In 
the present experiments, the control plans (i.e., the sets of 
control decisions) used by the satisficing cycle referred only 
to the critical events and provided no guidance at all in how 
to reason about non-critical events. With more 
comprehensive control plans, the satisficing cycle probably 
would have performed better on those events as well. 

5. Interpretation of Results 

We can analyze the performance of the satisficing cycle in 
terms of underlying variables. As shown in Table 5, the 
average priority of executed operation is comparable for the 
satisficing and best-next cycles, except in the base scenario, 
where the priority is higher for the satisficing cycle. Except 
in the non-critical scenario, the average cycle time and 
agenda time are shorter for the satisficing cycle than for the 
best-next cycle. The average number of newly identified 
possible reasoning operations is always smaller for the 
satisficing cycle. Because of this and the limited-capacity 
agenda buffer, the satisficing cycle always has a shorter total 
agenda than the best-next cycle. Thus, the satisficing cycle 
provides the desired behavioral properties by identifying a 
smaller number of high-priority reasoning operations in less 
time than the best-next cycle can identify all reasoning 
operations. Two factors allow it to do this: a good 
satisficing algorithm and an effective control plan. 
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Experimental 
Conditions 

Best-Next Control Model Satisficing Control Model 

Base Scenario 
Non Critical Sc. 
Low Complexity Sc. 
Low Knowledge Sc. 

Non Critical Events Critical Evt Non Critical Events Critical Evt 
Low 
Temp. 

Hypocapnia 
Prediction 

User 
Request 

High PIP Low 
Temp. 

Hypocapnia 
Prediction 

User 
Request 

High PIP 

1 
1 
1 
1 

1 
1 
1 

1 
1 
1 
1 

f(0, -242) 

f(l, 165) 
f(l, 15) 

0 
0 
0 
0 

1 
1 
1 

0 
1 
0 
0 

f(l, 199) 

f(l, 221) 
f(l, 165) 

Table 4. Response Values to Key Events 

Experimental Average Priority Average Average Average # of 
Conditions of Executed Cycle Agenda New Operations 

Operations Time Time per Cycle 

Base Scenario 
B-N S B-N S B-N S B-N        S 
25 36.3 22.1 14 12.1 7.1 4.6 2.5 

Non Critical Sc. 3.8 3.9 10.5 15.4 6.5 10 3.6 3.1 
Low Complexity Sc. 27 27.3 10.4 9.7 5.3 4.6 2.4 1.9 
Low Knowledge Sc. 29.1 33.2 13.8 13.3 8.6 7.2 3.4 2.3 

Table 5. Results for Interpretation 

6. Future Work 

The experiments reported in this paper are the first of a 
program of experiments we plan to conduct. We need to 
replicate the present results in a variety of monitoring 
scenarios and with a wider variation of experimental 
variables (e.g., number of critical events, environmental 
complexity, amount of knowledge). We are particularly 
interested in further substantiating our findings regarding 
robustness and scalability, key properties of a truly general 
approach. In addition, we wish to evaluate other desirable 
properties of real-time reasoning, such as coherence and 
flexibility [Hayes-Roth, 1990]. 

We also wish to analyze the roles of different parts of the 
satisficing cycle in allowing it to achieve the desired 
behavioral properties, in particular, the limited-capacity 
buffers and agenda, the knowledge-based heuristic search for 
possible operations, and interruptability of the cycle. Some 
other preliminary experiments show that limited-capacity 
buffers and agenda greatly reduce agenda management time. 
However, with only these design features in the cycle, 
Guardian fails to respond to important events. 

Finally, we believe that the quality of the control plan 
plays a crucial role in the effectiveness of the satisficing 
cycle. Very good control plans allow the agent to find the 
best operations quickly. But what if the agent does not have 
a good control plan? One possibility is for the agent to 
recognize that its control plan will not help it identify good 
reasoning operations. In that case, rather than exhaustively 
identifying all reasoning operations in a vain search for a 
good one, the agent can choose to execute an arbitrary 
operation early. In an intermediate situation, with a 
moderately good control plan, the satisficing cycle should 
behave like an "anytime algorithm" [Dean and Boddy, 
1988], trading the amount of time it spends identifying new 
operations for the expected value of the "best-so-far" 
operation identified. In sum, much of our future work will 

be directed toward understanding the nature of good and bad 
control plans and understanding how an agent can adapt its 
performance to control plan quality in order to maintain a 
satisfactorily high global utility. 

References 

[Darwiche et al, 1988] A. Darwiche, R. E. Levitt, and B. 
Hayes-Roth. Oarplan: generating project plans by 
reasoning about objects, actions and resources. AI 
EDAM, 2(3):169-181, 1988. 

[Dean and Boddy, 1988] T. Dean and M. Boddy. An analysis 
of time-dependent planning. In Proceedings of the 
Seventh National Conference on Artificial Intelligence, 
pages 49-54, Saint Paul, Minnesota, 1988. 

[Dean, 1989] T. Dean. Decision-theoretic control of 
inference for time-critical applications. Technical Report 
CS-89-44, Brown University, 1989. 

[Dodhiawala et al., 1989] R. Dodhiawala, N. S. Sridharan, 
P. Raulefs, and C. Pickering. Real-time AI systems: a 
definition and an architecture. In Proceedings of the 
Eleventh International Joint Conference on Artificial 
Intelligence, pages 256-261, Detroit, Michigan, 1989. 

[Durfee and Lesser, 1986] E. Durfee and V. R. Lesser. 
Incremental planning to control a blackboard-based 
problem-solver. In Proceedings of the Fifth National 
Conference on Artificial Intelligence, pages 58-64, 
Philadelphia, Pennsylvania, 1986. 

[Forgy, 1982] C. L. Forgy. RETE: A fast algorithm for the 
many pattern/many object pattern matching problem. 
Artificial Intelligence, 19:17-32, 1982. 

269 



[Genesereth and Smith, 1982] M. R. Genesereth and D. E. 
Smith. Meta-level architecture. Technical Report HPP- 
81-6, Stanford University, 1982. 

[Garvey et al, 1987] A. Garvey, C. Cornelius, and B. 
Hayes-Roth. Computational costs versus benefits of 
control reasoning. In Proceedings of the Sixth National 
Conference on Artificial Intelligence, pages 110-115, 
Seattle, Washington, 1987. 

[Hayes-Roth and Hayes-Roth, 1979] B. Hayes-Roth and F. 
Hayes-Roth. A cognitive model of planning. Cognitive 
Science, 3:275-310, 1979. 

[Hayes-Roth, 1985] B. Hayes-Roth. A Blackboard 
architecture for control. Artificial Intelligence, 26(3):251- 
321, 1985. 

[Hayes-Roth et al, 1986] B. Hayes-Roth, B. G. Buchanan, 
O. Lichtarge, M. Hewett, R. Altman, J. Brinkley, C. 
Cornelius, B. Duncan, and O. Jardetzky. Protean: 
Deriving protein structure from constraints. In 
Proceedings of the Fifth National Conference on Artificial 
Intelligence, pages 904-909, Philadelphia, Pennsylvania, 
1986. 

[Hayes-Roth, 1987] B. Hayes-Roth. A multi-processor 
interrupt-driven architecture for adaptive intelligent 
systems. Technical Report KSL-87-31, Stanford 
University, 1987. 

[Hayes-Roth et al, 1989] B. Hayes-Roth, R. Washington, 
R. Hewett, M. Hewett, and A. Seiver. Intelligent real- 
time monitoring and control. In Proceedings of the 
Eleventh International Joint Conference on Artificial 
Intelligence, pages 243-249, Detroit, Michigan, 1989. 

[Hayes-Roth, 1990] B. Hayes-Roth. Architectural 
foundations for real-time performance in intelligent 
agents. Real-Time Systems, pages 99-125, 1990. 

[Johnson and Hayes-Roth, 1987] M. V. Johnson and B. 
Hayes-Roth. Integrating diverse reasoning methods in the 
BB1 blackboard control architecture. In Proceedings of the 
Sixth National Conference on Artificial Intelligence, 
pages 30-35, Seattle, Washington, 1987. 

[McDermott and Forgy, 1978] J. McDermott and C. L. 
Forgy. Production system conflict resolution strategies. 
In Waterman, D.A., and Hayes-Roth, F. (eds), Pattern- 
Directed Inference Systems, Academic Press, 1978. 

[Newell, 1973] A. Newell. Production systems: models of 
control structures. In Chase W.G. (ed), Visual 
Information Processing, Academic Press, 1973. 

[Rüssel and Wefald, 1989] S. J. Rüssel and E. H. Wefald. 
Principles of Metareasoning. In Brachman et al. (eds), 
Proceedings of the First International Conference on 
Principles of Knowledge Representation and Reasoning, 
Morgan Kaufman, 1989. 

[Tommelein et al, 1987] I. D. Tommelein, M. V. 
Johnson, R. E. Levitt, and B. Hayes-Roth. SightPlan: a 
blackboard expert system for the layout of temporary 
facilities on construction site. In Proceedings of the IFIP 
WG5.2 Working Conference on Expert Systems in 
Computer-Aided Design, 1987. 

[Washington and Hayes-Roth, 1989] R. Washington and B. 
Hayes-Roth. Managing input data in real-time AI 
systems. In Proceedings of the Eleventh International 
Joint Conference on Artificial Intelligence, pages 250- 
255, Detroit, Michigan, 1989. 

[Washington et al., 1990] R. Washington, L. Boureau, and 
B. Hayes-Roth. Using knowledge for real-time input data 
management. Technical Report KSL-90-14, Stanford 
University, 1990. 

270 



Planning and Active Perception 

Thomas Dean*      Kenneth Basye       Moises Lejter 
Department of Computer Science 

Brown University, Box 1910, Providence, RI 02912 

Abstract 

We present an approach to building planning and con- 
trol systems that integrates sensor fusion, prediction, 
and sequential decision making. The approach is based 
on Bayesian decision theory, and involves encoding the 
underlying planning and control problem in terms of a 
compact probabilistic model for which evaluation is well 
understood. The computational cost of evaluating such 
a probabilistic model can be accurately estimated by 
inspecting the structure of the graph used to represent 
the model. We illustrate our approach using a robotics 
problem that requires spatial and temporal reasoning 
under uncertainty and time pressure. We use the esti- 
mated computational cost of evaluation to justify repre- 
sentational tradeoffs required for practical application. 

Introduction 

In this paper, we view planning in terms of enumerating 
a set of possible courses of action, evaluating the conse- 
quences of those courses of action, and selecting a course 
of action whose consequences maximize a particular 
performance (or value) function. We adopt Bayesian 
decision theory [Raiffa and Schlaifer, 1961] as the theo- 
retical framework for our discussion, since it provides a 
convenient basis for dealing with decision making under 
uncertainty.1 

One interesting thing about most planning problems 
is that the results of actions can increase our knowl- 
edge, potentially improving our ability to make deci- 
sions. From a decision theoretic perspective, there is 
no difference between actions that involve sensing or 
movement to facilitate sensing and any other actions; a 
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IRI-8957601 with matching funds from IBM, and by the 
Advanced Research Projects Agency of the Department of 
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entific Research under Contract No. F49620-88-C-0132. 

^ee Dean and Wellman [1989] for a discussion concern- 
ing the use of goals in artificial intelligence and the use of 
value functions in decision theory. 

decision maker simply tries to choose actions that max- 
imize expected value. In the approach described in this 
paper, an agent engaged in a particular perceptual task 
selects a set of sensor views by physically moving about 
[Bajcsy, 1988, Ballard, 1989]. 

Having committed to a decision theoretic approach, 
there are specific problems that we have to deal with. 
The most difficult concern representing the problem and 
obtaining the necessary statistics to quantify the under- 
lying decision model. In the robotics problems we are 
working on, the latter is relatively straightforward, and 
so we will concern ourselves primarily with the former. 

In building a decision model for control purposes, it 
is not enough to write down all of your preferences and 
expectations; this information might provide the basis 
for constructing some decision model, but it will likely 
be impractical from a computational standpoint. It is 
frustrating when you know what you want to compute 
but cannot afford the time to do so. Some researchers 
respond by saying that eventually computing machin- 
ery will be up to the task and ignore the computational 
difficulties. It is our contention, however, that the com- 
binatorics inherent in sequential decision making will 
continue to outstrip computing technologies. 

In the following, we describe a concrete problem to 
ground our discussion, present the general sequential 
decision making model and its application to the con- 
crete problem, show how to estimate the computational 
costs associated with using the model, and, finally, de- 
scribe how to reduce those costs to manageable levels 
by making various representational tradeoffs. 

Mobile Target Localization 
The application that we have chosen to illustrate our 
approach involves a mobile robot navigating and track- 
ing moving targets in a cluttered environment. The 
robot is provided with sonar and rudimentary vision. 
The moving target could be a person or another mobile 
robot. The mobile base consists of a holonomic (turn- 
in-place) synchro-drive robot equipped with a CCD 
camera mounted on a pan-and-tilt head, and 8 fixed 
Polaroid sonar sensors arranged in pairs directed for- 
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ward, backward, right, and left. 
The robot's task is to detect and track moving ob- 

jects, reporting their location in the coordinate system 
of a global map. The environment consists of one floor 
of an office building. The robot is supplied with a 
floor plan of the office showing the position cf perma- 
nent walls and major pieces of furniture such as desks 
and tables. Smaller pieces of furniture, potted plants 
and other assorted clutter constitute obstacles that the 
robot has to detect and avoid. 

We assume that there is error in the robot's move- 
ment requiring it to continually estimate its position 
with respect to the floor plan so as not to become lost. 
Position estimation (localization) is performed by hav- 
ing the robot track beacons corresponding to walls and 
corners and then use these beacons to reduce error in 
its position estimate. 

Localization and tracking are frequently at odds with 
one another. A particular localization strategy may 
reduce position errors while making tracking difficult, 
or improve tracking while losing registration with the 
global map. The trick is to balance the demands of 
localization against the demands of tracking. The mo- 
bile target localization (MTL) problem is particularly 
appropriate for planning research as it requires consid- 
erable complexity in terms of temporal and spatial rep- 
resentation, and involves time pressure and uncertainty 
in sensing and action. 

Model for Time and Action 
In this section, we provide a decision model for the MTL 
problem. To specify the model, we quantize the space 
in which the robot and its target are embedded. A 
natural quantization can be derived from the robot's 
sensory capabilities. 

The robot's sonar sensors enable it to recognize par- 
ticular patterns of free space corresponding to various 
configurations of walls and other permanent objects in 
its environment (e.g., corridors, L junctions and T junc- 
tions). We tessellate the area of the global map into 
regions such that the same pattern is detectable any- 
where within a given region. This tessellation provides 
a set of locations C corresponding to the regions that 
are used to encode the location of both the robot and 
its target. 

Our decision model includes two variables 5T and 
SR, where ST represents the location of the target and 
ranges over £, and SR represents the location and ori- 
entation of the robot and ranges over an extension of £ 
including orientation information specific to each type 
of location. For any particular instance of the MTL 
problem, we assume that a geometric description of the 
environment is provided in the form of a CAD model. 
Given this geometric description and a model for the 
robot's sensors, we generate C, SR, and ST. 

We encode our decision models as a Bayesian net- 
works [Pearl, 1988].  A Bayesian network is a directed 

Figure 1: Probabilistic model for the MTL problem 

graph G = (V, E). The vertices in V correspond to ran- 
dom variables and are often called chance nodes. The 
edges in E define the causal and informational depen- 
dencies between the random variables. In the model 
described in this paper, chance nodes are discrete val- 
ued variables that encode states of knowledge about 
the world. Let Qc denote the set of possible values 
(state space) of the chance node C. There is a proba- 
bility distribution Pr(C = u),w G Qc) for each node. 
If the chance node has no predecessors then this is 
its marginal probability distribution; otherwise, it is a 
conditional probability distribution dependent on the 
states of the immediate predecessors of C in G. 

The model described here involves a specialisation of 
Bayesian networks called temporal belief networks [Dean 
and Kanazawa, 1989]. Given a set of discrete variables, 
X, and a finite ordered set of time points, T, we con- 
struct a set of chance nodes, C — X x T, where each 
element of C corresponds to the value of some particular 
x e X at some t g T. Let Ct correspond to the subset 
of C restricted to t. The temporal belief networks dis- 
cussed in this paper are distinguished by the following 
Markov property: 

Pr(Ct|Ct_llC(_3l...) = Pr(Ct|C«_1). 

Let SR and ST be variables ranging over the possible 
locations of the robot and the target respectively. Let 
AR be a variable ranging over the actions available to 
the robot. At any given point in time, the robot can 
make observations regarding its position with respect 
to nearby walls and corners and the target's position 
with respect to the robot. Let OR and OT be variables 
ranging these observations with respect to the robot's 
surroundings and the target's relative location. 
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Figure 2: Evidence and action sequences 

Figure 1 shows a temporal belief network for X — 
{SR,ST,AR,0R,0T} and T = {TUT3,T7,T4}. To 
quantify the model shown in Figure 1, we have to pro- 
vide distributions for each of the variables in X x T. 
We assume that the model does not depend on time, 
and, hence, we need only provide one probability dis- 
tribution for each x € X. For instance, the conditional 
probability distribution for ST, 

PT((ST,t)\(ST,t-l),(0T,t),(SR,t)), 

is the same for any t ET. The numbers for the proba- 
bility distributions can be obtained by experimentation 
without regard to any particular global map. 

In a practical model consisting of more than just the 
four time points shown in Figure 1, some points will re- 
fer to the past and some to the future. One particular 
point is designated the current time or Now. Repre- 
senting the past and present will allow us to incorpo- 
rate evidence into the model. By convention, the nodes 
corresponding to observations are meant to indicate ob- 
servations completed at the associated time point, and 
nodes corresponding to actions are meant to indicate 
actions initiated at the associated time point. The ac- 
tions of the robot at past time points and the observa- 
tions of the robot at past and present time points serve 
as evidence to provide conditioning events for comput- 
ing a posterior distribution. For instance, having ob- 
served a at T, denoted (OR=ZT,T), and initiated a at 
T—l, denoted (AR^CC, T— 1), we will want to compute the 
posterior distribution for SR at T given the evidence: 

PT((SR^j,T),u1enSR\{0R=a,T),(AR=a,T-l)). 
To update the model as time passes, all of the ev- 

idence nodes are shifted into the past, discarding the 
oldest evidence in the process. Figure 2 shows a net- 
work with nine time points. The lighter shaded nodes 
correspond to evidence. As new actions are initiated 
and observations are made, the appropriate nodes are 
instantiated as conditioning nodes, and all of the evi- 
dence is shifted to the left by one time point. 

The darker shaded nodes shown in Figure 2 indicate 
nodes that are instantiated in the process of evaluating 
possible sequences of actions. For evaluation purposes 
we employ a simple time-separable value function.  By 

time separable, we mean that the total value is a (per- 
haps weighted) sum of the value at the different time 
points. If Vt is the value function at time t, then the 
total value, V, is defined as 

where 7 : T -* {zjO < 1 < 1} is a decreasing function 
of time used to discount the impact of future conse- 
quences. Since our model assumes a finite T, we al- 
ready discount some future consequences by ignoring 
them altogether; 7 just gives us a little more control 
over the immediate future. For Vt, we use the following 
function 

V* = -EPr((5'^-t))Pr((5T=W;Ii})Dist(Wi)a»;-), 

where Dist : QST X QST -* 3? determines the relative 
Euclidean distance between pairs of locations. The Vt 

function reflects how much uncertainty there is in the 
expected location for the target. For instance, if the 
distribution for (Sr,£) is strongly weighted toward one 
possible location in tlsT, then Vt will be close to zero. 
The more places the target could be and the further 
their relative distance, the more negative Vt. 

The actions in QAR consist of tracking and localiza- 
tion routines (e.g., move along the wall on your left 
until you reach a corner). Each action has its own ter- 
mination criteria (e.g., reaching a corner). We assume 
that the robot has a set of strategies, S, consisting of 
sequences of such actions, where the length of sequences 
in <S is limited by the number of present and future time 
points. For the network shown in Figure 2, we have 

S C VAR x VAR x QAR x QAR. 

The size of S is rather important, since we propose to 
evaluate the network \S\ times at every decision point. 
The strategy with the highest expected value is that 
strategy, <p — a0,ai, or2, a3, for which V is a maxi- 
mum, conditioning on (Ar=a0, Now), {Ar=ai, NowH), 
(Ar=a2,NovH-2), and (Ar=a3, JVowf3). The best strat- 
egy to pursue is reevaluated every time that an action 
terminates. 

We use Jensen's [1989] variation on Lauritzen and 
Spiegelhalter's [1988] algorithm to evaluate the deci- 
sion network. Jensen's algorithm involves constructing 
a hyper graph (called a clique tree) whose vertices cor- 
respond to the (maximal) cliques of the chordal graph 
formed by triangulating the undirected graph obtained 
by first connecting the parents of each node in the net- 
work and then eliminating the directions on all of the 
edges. The cost of evaluating a Bayesian network using 
this algorithm is largely determined by the sizes of the 
state spaces formed by taking the cross product of the 
state spaces of the nodes in each vertex (clique) of the 
clique tree. 
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Following Kanazawa [Forthcoming], we can obtain an 
accurate estimate of the cost of evaluating a Bayesian 
network, G = (V,E), using Jensen's algorithm. Let 
C = {Ct} be the set of (maximal) cliques in the chordal 
graph described in the previous paragraph, where each 
cl'.qn?. represents a subset of V. We define the function, 
cam : C -+ {1,...,|C| - 1}, so that card(Q) is the 
rank of the highest ranked node in d, where rank is 
determined by the maximal cardinality ordering of V 
(see [Pearl, 1988]). We define the function, adj : C — 
2C, by: 

adj(Ci) = {Cj\{Cj ± d) A (d O Cj ± 0)}. 

The clique tree for G is constructed as follows. Each 
clique C, € C is connected to the clique Cj in adj(C,) 
that has lower rank by card(.) and has the highest num- 
ber of nodes in common with d (ties are broken arbi- 
trarily). Whenever we connect two cliques Q and C, 
we create the separation set S,-;- = d n Cj. The set of 
separation sets S is all the 5^'s. We define the function, 
sep : C — 2s, by: 

in. 

sep(C{) = {Sjk\Sjk e S, (j = i)v(k = »)}. 

Finally, we define the weight of d, Wi = Ylnec \i 

where fin is the state space of node n. The cost of 
computation is proportional to Ylc ec wi\seP{Ci)\- We 
refer to this cost estimate as the clique-tree cost. 

The approach described in this section allows us to 
integrate prediction, observation, and control in a single 
model. It also allows us to handle uncertainty in sens- 
ing, movement, and modeling. Behavioral properties 
emerge as a consequence of the probabilistic model and 
the value function provided, not as a consequence of 
explicitly programming specific behaviors. The main 
drawback of the approach is that, while the model 
is quite compact, the computational costs involved in 
evaluating the model can easily get out of hand. For 
instance, in our model for the MTL problem, the clique- 
tree cost is bounded from below by the product of \T\. 
QsTj2, and |nSR|

s. In the next section, we provide sev- 
eral methods that, taken together, allow us to reduce 
computational costs to practical levels. 

Coping with Complexity 
To reduce the cost of evaluating the MTL decision 
model, we use the following three methods: (i) carefully 
tailor the spatial representation to the robot's sensory 
capabilities, reducing the size of the state space for the 
spatial variables in the decision model, (ii) enable the 
robot to dynamically narrow the range of the spatial 
variables using heuristics to further reduce the size of 
the state space for the spatial variables, and (iii) con- 
sider only a few candidate action sequences from a fixed 
library of tracking strategies by taking into account the 
reduced state space of the spatial variables. In the rest 
of this section, we consider each of these three methods. 

Figure 3: Sonar data entering a T junction 

The use of a high-resolution representation of space 
has disadvantages in the model proposed here: increas- 
ing the resolution of the representation of space results 
in an increase in the sizes of fiSR and QsT, and thus 
raises the cost of evaluating the network. Keeping the 
sizes of ns„ and QST small makes the task of evaluating 
the model we propose feasible. 

A further consideration arises from the real-world 
sensory and data processing systems available to our 
robot. Finer-resolution representations of space place 
larger demands on the robot's on-board system in terms 
of both run-time processing time and sensor accuracy. 
To allow our robot to achieve (near) real-time perfor- 
mance, it seems appropriate to limit the representation 
to that level of detail that can be obtained economically 
from the hardware available. 

In our current implementation, we have 8 sonar trans- 
ducers positioned on a square platform, two to a side, 
spaced about 25 cm. apart. We take distance readings 
from each transducer, and threshold the values at about 
1 meter. Anything above the threshold is "long," any- 
thing below is "short." The readings along each side 
are then combined by voting, with ties going to "long." 
In this way, the data from the sonar is reduced to 4 bits. 
Figure 3 shows the result of this scheme on entering a 
T junction. In addition, we use the shaft encoders on 
our platform to provide very rough metric information 
for the decision model. Currently, 2 additional bits are 
used for this purpose, but only when the robot is posi- 
tioned in a hallway, which corresponds to only one sonar 
configuration. So the total number of possible states for 
OR is 19, 15 for various kinds of hallway junctions and 
4 more for corridors. 

This technique results in a tessellation of space like 
that shown in Figure 4. Our experiments have shown 
that this tessellation is quite robust in the sense that the 
readings are consistent anywhere in a given tile. The ex- 
ception to this occurs when the robot is not well-aligned 
with the surrounding walls. In these cases, reflections 
frequently make the data unreliable. One of the tasks 
of the controllers that underlie the actions described in 
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Figure 4: Tessellation of office layout 

the previous sections is to maintain good alignment, or 
achieve it if it is lost. 

In addition to reducing the size of the overall spatial 
representation, we can restrict the range of particular 
spatial variables on the basis of evidence not explicitly 
accounted for in the decision model (e.g., odometry and 
compass information). For instance, if we know that the 
robot is in one of two locations at time 1 and the robot 
can move at most a single location during a given time 
step, then (SR, 1} ranges over the two locations, and, 
for i > 1, (SR,i) need only range over the locations in 
or adjacent to those in (SR,i-l). Similar restrictions 
can be obtained for ST. For models with limited looka- 
head (i.e., small |T|), these restrictions can result in 
significant computational savings. 

Consider a temporal Bayesian network of the form 
shown in Figure 1 with n steps of lookahead. Let 
(X, i) represent an element of {SR, ST,AR, OR, OT} x 
{l,...,n}. The largest cliques in one possible2 clique 
tree for this network consist of sets of variables of the 
form: 

{{SRli)t(SR,-H-l),{ST,i),(ST,*-l)} 

for i = 1 to 7i— 1, and the size of the corresponding cross 
product space is the product of |n(sR,i)|, l^(sR,ifi)|, 

!^(ST,.)I. and |ft(sT,»fi)l- F°r fixed state spaces, this 
product is just |n5„ j2|fi5T j2. However, if we restrict 
the state spaces for the spatial variables on the basis of 
some initial location estimate and some bounds on how 
quickly the robot and the target can move about, we 
can do considerably better. 

Table 1 shows the clique-tree costs for three MTL 
decision model networks of size n = 3, 5, and 8 time 
points. For each size of model, we consider cases in 
which n/sR,t) and fi(sT)t) are constant for all 1 > i > n, 
and cases in which |f2(s«,i)| = l^(5T,i)| = 1 and the 
sizes of the state spaces for subsequent spatial vari- 
ables,  n(sR,i)  and ft(sTli),  for  1   >   i   >   n grow by 

2 The triangulation algorithm attempts to minimize the 
size of the largest clique in the resulting chordal graph. 
There may be more than one way to triangulate a graph 
so as to minimize the clique size. 

State space size 

Constant (6) 

Constant (16) 

Constant (30) 

Linear (2f + 1) 

Quadratic (t2 + 1) 

Exponential (2') 

Number of time points 
3 5 8 

40914 
(0.58) 

78066 
(1.111 

624944     1232176 
(8.87)       (17.49) 

133794 

(1-90) 

3846330     7669530 
(54.60)     (108.86) 

2143024 
(30.42) 

5844 
(0.08) 

3691 
(0.05) 

55088 
(0.78) 

13404330 
(190.26) 

2875 
(0.05) 

160701 
(2.28) 

433759 
_[6J6J) 

107515 
(1.53) 

3756559 
(53.32) 

4131611 
(58.64) 

Table 1: Clique-tree costs for sample networks 

linear, quadratic, and exponential factors bounded by 
|QsT| = \ttSR| = 30. For these evaluations, \£1AR\ = 6, 
i^cvl = 32, and |fioR| = 19 in keeping with the sen- 
sory and movement routines of our current robot. The 
number in brackets underneath the clique tree cost is 
the time in cpu seconds required for evaluation. 

Our current idea for restricting the present location of 
the robot and the target involves using a fixed threshold 
and the most up-to-date estimates for these locations to 
eliminate unlikely possibilities. Occasionally, the actual 
locations will be mistakenly eliminated, and robot will 
fail to track the target. There will have to be a recovery 
strategy and a criterion for invoking it to deal with such 
failures. 

There are certain costs involved with evaluating 
Bayesian networks that we have ignored so far. These 
costs involve triangulating the graph, constructing the 
clique tree, and performing the storage allocation for 
building the necessary data structures. For our ap- 
proach of dynamically restricting the range of spatial 
variables, the state spaces for the random variables 
change, but the sizes of these state spaces and the topol- 
ogy of the Bayesian network remain constant. As a 
consequence, these ignored costs are incurred once, and 
the associated computational tasks can be carried out 
at design time. Dynamically adjusting the state spaces 
for the spatial variables is straightforward and compu- 
tationally inexpensive. 

The third method for reducing the cost of decision 
making involves reducing the size of S, the set of se- 
quences of actions corresponding to tracking and lo- 
calization strategies. For an n step lookahead, the set 
of useful strategies of length n or less is a very small 
subset of ÜAR

n- Still, given that we have to evaluate 
the network |5| times, even a relatively small S can 
cause problems. To reduce S to an acceptable siie, we 
only evaluate the network for strategies that are pos- 
sible given the current restrictions on the spatial vari- 
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ables. For instance, if the robot knows that it is moving 
down a corridor toward a left-pointing L junction, it can 
eliminate from consideration any strategy that involves 
it moving to the end of the corridor and turning right. 
With appropriate preprocessing, it is computationally 
simple to dynamically reduce S to just a few possible 
strategies in most cases. 

Related Work 
Probabilistic decision models of the sort explored in 
this paper are just beginning to see use in planning 
and control. Agogino and Ramamurthi [1988] describe 
the use of probabilistic models for controlling machine 
tools. Dean et al [1990] show how to use Bayesian 
networks for building maps and reasoning about the 
costs and benefits of exploration. Kanazawa and Dean 
[Kanazawa and Dean, 1989] extend temporal Bayesian 
networks to handle sequential decision making tasks. 
Levitt et al [1988] describe an approach to implement- 
ing object recognition using Bayesian networks that ac- 
counts for the cost of sensor movement and inference. 
Wellman [1987] shows how to integrate qualitative 
knowledge in probabilistic network models. For some 
previous approaches to using decision and probability 
theory in planning, see [Feldman and Sproull, 1977, 
Langlotz et al., 1987]. For some recent work on 
temporal reasoning under uncertainty, see [Cooper et 
al., 1988, Dean and Kanazawa, 1988, Hanks, 1988, 
Weber, 1989]. 
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Abstract 

Research into combining real-time control with 
AI planning has typically involved attempt- 
ing to embed "intelligence" in a real-time sys- 
tem or "reactivity" in an AI system. We 
argue in favor of an alternative approach in 
which distinct real-time and AI systems per- 
form the functions each is suitable for and 
cooperate to achieve overall real-time intelli- 
gent behavior. The real-time system guaran- 
tees the performance of some schedulable sub- 
set of important actions—a subset judiciously 
chosen by the asynchronously running AI sys- 
tem. We describe a preliminary implementa- 
tion of our cooperative approach for planning 
routes and controlling the behavior of a hall- 
following robot. We conclude by outlining im- 
portant open issues, including building faster 
AI systems, real-time communication, and ties 
between real-time AI and distributed problem 
solving. 

1    Introduction 

In dynamically changing worlds, intelligent decision 
making cannot be divorced from time. The best decision 
can result in failure if the world has changed substan- 
tially by the time the decision is enacted. For example, 
if I see no cars coming, I might decide to cross the street. 
Although this decision might be correct given the initial 
situation, if I spend too much time making the decision 
or putting it into action, I might still get hit. A fast 
and simple rule such as "If you see no cars coming then 
cross the street" can reduce decision-making time, but 
it also might lead to disaster on a foggy day or near a 
blind turn. Hence, an important challenge in building 
autonomous systems for dynamic worlds is in combin- 
ing mechanisms for making rapid "reactive" decisions in 
time-critical situations with AI techniques for planning 
and anticipating outcomes given more time to reason. 

We have developed a new approach to real-time AI 
that combines intelligent planning and real-time control. 
Our approach is based on a premise that is fundamen- 

°This research was sponsored, in part, by the University 
of Michigan under a Rackham Faculty Research Grant. 

tally different from previous work: We view AI and real- 
time computing to be incompatible by nature, and hence 
attempts to build an integrated, real-time AI system will 
never fully succeed. Instead, we propose a cooperative 
approach, where distinct real-time and AI systems co- 
operatively solve problems requiring high-level planning 
and reactive control. 

In this paper, we briefly survey previous work on in- 
telligent planning and real-time control to illustrate how 
our perspective differs (Section 2). We then discuss our 
approach in general terms (Section 3), and contrast it in 
more depth with other approaches (Section 4). Then we 
describe our prototype implementation for controlling a 
robot in an uncertain and dynamic environment (Sec- 
tion 5). Using our prototype as a starting point, we dis- 
cuss the promises and pitfalls of our new approach (Sec- 
tion 6). Finally, we conclude by summarizing the current 
status of this work and our ongoing research (Section 7). 

2     Intelligent Real-Time Systems 

Intelligent real-time systems are critically important in 
most real-world tasks where it is not enough for a system 
to eventually respond to a situation; situations change 
over time, so a timely response to the current situation 
is useful while a late response is useless. By real-time, 
therefore, we mean that a system must carry out its ac- 
tions before the environment has a chance to change sub- 
stantially. Put another way, a system must act on its 
environment more quickly than its environment can un- 
predictably act on it. If we can measure the expected (or 
minimum) amount of time that the environment needs 
to change substantially, then we can place hard real-time 
deadlines on a system [Stankovic and Ramamritham, 
1987]. 

2.1    Real-Time AI: A Contradiction? 

Intelligent real-time systems are elusive for several rea- 
sons. One reason stems from the fact that both AI 
and real-time computing are relatively young disciplines 
without established, broadly-based principles to act as a 
foundation for developing intelligent real-time systems. 
A second reason is that the philosophies of the two com- 
munities are widely divergent. While the AI commu- 
nity looks to continually blur the limits of what com- 
puters can do, the real-time community attempts to set 
clearly-defined limits on computing capabilities and re- 
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quirements in order to guarantee a desired level of per- 
formance. 

A third reason that building intelligent real-time sys- 
tems is hard is the different, essentially incompatible, 
objectives of researchers in the two communities. A long- 
standing goal of AI research is to build systems that can 
change based on new experiences and that thus could in 
time develop better but possibly unexpected solutions 
to problems. By gathering more knowledge, the system 
becomes capable of new chains of inference and must re- 
trieve appropriate knowledge from a growing knowledge 
base. If its knowledge base could potentially grow with- 
out any clearly defined bounds (especially if it has access 
to effectively unlimited archival memory), then it is un- 
likely that a system could guarantee a known, bounded 
retrieval and response time. Meanwhile, a goal of real- 
time computing research is to clearly define the system's 
capabilities and resources in order to predictably guar- 
antee that important deadlines and timing constraints 
will be met. Thus, while intelligence appears to imply 
inherent unpredictability, real-time computing demands 
worst-case predictability. 

These reasons are not proof that intelligent real-time 
systems cannot be built; the reasons are purely intu- 
itive and rife with underlying assumptions about what 
it means for a system to be intelligent and real-time. In 
addition, current AI systems are far from the creative 
and adaptive intelligent systems that we might hope to 
build in the future, so our current systems are probably 
not as incompatible with real-time systems as they might 
become. Our goal in this research, therefore, is not to 
condemn attempts to combine real-time and AI concepts 
into a single system, but instead to keep an open mind 
and begin to consider alternatives approaches to build- 
ing real-time intelligent systems. Before describing the 
alternative approach that we have developed to date, we 
first present an overview of approaches to building inte- 
grated real-time AI systems. 

2.2    Real-Time AI: Embedded Approaches 

One approach to combining real-time and AI concepts 
has been to engineer AI systems to meet real-time needs 
[Laffey et al., 1988]. Typically, this means simplify- 
ing a system's knowledge-base and inference mechanism 
so that the system will respond to all expected inputs 
within some maximum time. Unfortunately, while these 
systems might retain some of the languages and algo- 
rithms of AI, it could be argued that whatever intelli- 
gence they began with has been engineered out in order 
to guarantee predictable real-time responses. 

Another approach has been to develop AI systems 
that use iterative improvement algorithms, so that at 
any given time the system can return some approxima- 
tion of the desired response [Dean and Boddy, 1988; 
Horvitz, 1987]. Systems that use this approach attain 
goals within real-time, but this approach is limited to 
applications that admit to successive-refinement algo- 
rithms. In many applications, successfully meeting time 
constraints might mean that the system generates a use- 
ful but unexpected result, rather than an approximation 
of the expected result. For example, when navigating a 

vehicle through a congested area, an approximation such 
as "turn 90 degrees, plus or minus 45 degrees" might lead 
to disaster, while a completely different response such as 
"honk your horn and slam on the brakes" might be bet- 
ter. 

Both of these approaches have combined AI and real- 
time by embedding an AI system within a real-time sys- 
tem. As part of the real-time processing, any AI reason- 
ing must also return a response within a deadline. This 
view can be contrasted with the view in which real-time 
(reactive) capabilities are embedded within an AI sys- 
tem. For example, Cohen [Cohen et al, 1989] describes 
an AI architecture which includes a real-time component 
that can be triggered by certain input and that rapidly 
responds to time-critical situations by "short-circuiting" 
the more general reasoning mechanisms. A more uni- 
fied approach, such as Soar [Laird et al., 1987], encodes 
reactive knowledge just like any other knowledge, with 
the stipulation that, when it is applicable, the reactive 
knowledge should take priority. To make real-time guar- 
antees, these systems must ensure some upper bound on 
the time it will take the AI system to invoke the reactive 
component or to retrieve and execute a reactive "rule." 
In a system with changing (especially growing) knowl- 
edge but limited computing resources, establishing such 
a bound could be problematic. 

3     A Cooperative Approach 

An alternative approach is to view the real-time and 
AI components as being separate, concurrent, and asyn- 
chronous systems. Because neither is embedded in the 
other, we do not need to alter the basic behavior of ei- 
ther. The AI system is free to change unpredictably and 
need not satisfy any hard real-time guarantees, while the 
real-time system can ensure rigid timing constraints on 
its own well-defined behavior. The challenge, then, is to 
enable the two individual systems, with their own goals 
and restrictions, to cooperate so that real-time intelli- 
gent behavior emerges. 

In our cooperative approach, the real-time system 
follows a schedule of tasks, where those tasks have 
known effects, resource requirements, and worst-case 
time needs. We view the purpose of the real-time system 
as reacting and adapting to domain dynamics in prespec- 
ified ways so as to ensure that some behavioral goals are 
maintained. As a simple example, a mobile robot gener- 
ally has a goal of avoiding collisions. This goal leads to 
ongoing obstacle avoidance behavior. The purpose of the 
real-time system is to guarantee that the periodic task 
of detecting objects looming ahead and stopping when 
they appear will be carried out with some worst-case fre- 
quency. Because the detection actions (arithmetic com- 
parisons using certain sonar readings) and reactions (set- 
ting specific motor parameters to 0) are rigidly encoded, 
the time needs of the periodic task can be bounded. The 
real-time system takes a cyclic schedule of such periodic 
tasks and guarantees its timely performance. This en- 
sures that a set of reactions to particular changes in the 
domain will occur quickly enough to maintain at least 
some minimal level of performance, such as keeping a 
mobile robot in a "safe" state until more reasoned re- 
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sponses can be developed. 

But where does the well-defined set of tasks comes 
from, and how can we ensure that it can be accom- 
plished? The answer is the AI system. The AI system 
has the knowledge and reasoning power to interpret the 
current situation, to consider the overall system objec- 
tives, to plan and anticipate for the future, and to thus 
decide on the active and reactive behaviors that should 
be maintained at any given time. Of course, given unlim- 
ited resources, the AI system might prefer to maintain 
all reactive behaviors, but this might not be feasible. 
To determine whether a desired set of behaviors can be 
guaranteed by the real-time system, the AI system uses 
established real-time scheduling techniques to generate 
the real-time system's schedule. If these techniques can- 
not form a guaranteed schedule for the chosen behaviors, 
then the AI system must use this feedback to modify its 
expectations. 

For example, let us say the AI system decides that 
the most relevant behaviors for a robot's next activity 
are (1) moving forward at speed s while (2) checking for 
obstacles and stopping before collisions and (3) checking 
for sensor readings indicating the arrival at a desired lo- 
cation without overshooting the location by more than 
distance d. Behaviors (2) and (3) must be repeated at 
a frequency determined by the AI system based on the 
desired parameters s and d. These behavioral tasks and 
their periods are passed to the real-time scheduling al- 
gorithms. If the algorithms can successfully schedule the 
tasks, they return an executable schedule which the AI 
system can then pass to the real-time system. If the 
tasks cannot be scheduled, then it is up to the AI sys- 
tem to relax expectations so that a satisfactory schedule 
can be formed. For example, if it can afford to spend 
more time traveling, then the AI system can reduce s, 
which in turn reduces the frequency at which behaviors 
(2) and (3) need to be repeated. On the other hand, 
if arrival at the destination must proceed in haste, then 
the AI system could choose to drop behavior (2) from 
the schedule and just hope that no obstacles will get in 
the way. Because time and other resources are limited, 
sometimes the AI system must intentionally choose to 
ignore some reactive behaviors in order to ensure more 
important behaviors. 

In essence, our cooperative approach trades away com- 
plete flexibility in reactive behavior in favor of guaran- 
teeing a subset of reactions. The AI system must choose 
what to guarantee wisely. For example, if an action to 
look out for cliffs was not included in the schedule, the 
system might very well fall off a cliff before the AI sys- 
tem recognizes its error and modifies the schedule. If the 
probability of encountering a cliff and the costs of falling 
off of it are high enough, however, the AI system should 
have planned for it. Although the AI system is free to 
revise the guaranteed subset of behaviors at any time, 
we are not restricting the AI system to meet any hard 
real-time requirements. This allows the AI system to ap- 
ply any knowledge and inferences it chooses in deciding 
how to act. If it has already downloaded an appropriate 
schedule of behaviors that are guaranteed to keep the 

overall system in a safe state,1 the AI system has the 
time and flexibility to carefully craft the next schedule 
of behaviors. 

4    Comparison to Related Work 

Our emphasis on using real-time scheduling algorithms 
to guarantee a well-defined subset of reactions dif- 
fers from more typical pattern-directed invocation ap- 
proaches, exemplified in rule-based and blackboard- 
based systems [Hayes-Roth et al, 1989b; Laird et al, 
1987]. In pattern-directed invocation, changing state in- 
formation is matched to the rules or knowledge sources to 
trigger appropriate responses. An advantage of pattern- 
directed invocation, therefore, is that unexpected events 
can trigger any applicable knowledge. Our approach in- 
stead forces the AI system to restrict the reactive knowl- 
edge that will be considered to only the best subset that 
can be considered within time constraints. 

In pattern-directed invocation, the pattern-matching 
overhead of using state information to trigger knowledge 
can potentially be costly. Although faster algorithms 
are continually being developed and the use of parallel 
hardware can further speed this process, providing ab- 
solute upper bounds for pattern-matching time in a sys- 
tem with a changing knowledge base and fixed hardware 
is problematic. The advantage of our approach is that 
the real-time schedule explicitly targets specific reactive 
knowledge and the criteria for applying that knowledge. 
Thus, the real-time system knows exactly what patterns 
it will attempt to match. It also knows what state in- 
formation to collect, which can lead to more focussed 
sensing than in the typical pattern-directed invocation 
approaches where all changes to state information are 
generally collected. Our approach is therefore more fo- 
cussed and less opportunistic than pattern-directed in- 
vocation approaches, but this allows it to also be more 
predictable and to guarantee performance of limited be- 
havior. 

In other reactive approaches, overall system behav- 
ior emerges from the collective responses of a number of 
simple reactive components [Agre and Chapman, 1987; 
Arkin, 1987; Brooks, 1986]. As in our approach, these 
approaches delegate the responsibility for recognizing 
specific issues of concern in the current situation to sepa- 
rate behaviors. However, these approaches usually view 
the separate reactive behaviors as running concurrently 
on parallel processors, whereas we make no assumptions 
about having enough processors to give each behavior its 
own. Our approach is based on the expectation that, as 
we continually extend the range of situations that our 
systems will face, the amount of computing we would 
like to do will exceed the available computing resources. 
Thus, resource allocation and scheduling are critical in 
uniprocessor and multiprocessor implementations, and 
our approach using real-time scheduling algorithms guar- 
antees performance given time and resource constraints. 

Firby's RAP planner [Firby, 1987] is another exam- 
ple of a reactive approach where overall system behavior 

1 We also assume that the real-time system is bootstrapped 
with a suitable schedule. 
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emerges from the responses of several reactive compo- 
nents, but, like our approach, the RAP planner makes 
no assumptions about parallel hardware. Instead, the 
separate reactive behaviors, called RAPs, sit on an ex- 
ecution queue and an interpreter decides at any given 
time which will execute next. The RAP planner and 
our approach thus differ in how and where the decisions 
about real-time execution of reactive behaviors is accom- 
plished. In the RAP planner, the interpreter must de- 
cide which RAP to execute next, considering its time 
constraints and relationships to other RAPs. While this 
has considerable flexibility, making such decisions might 
take considerable time as well. In our approach, the AI 
system decides which reactive behaviors are needed and 
uses real-time scheduling algorithms to develop a fixed 
schedule for execution. Moreover, our approach incor- 
porates strategic planning capabilities in the AI system, 
allowing strategic and reactive planning to be combined 
in a more natural manner. 

Our cooperative approach concentrates on guarantee- 
ing real-time control reactions that keep an overall sys- 
tem in a safe state, and makes no assumptions about 
the timing characteristics of the AI system. As such, 
our approach concentrates on time constraints at the 
reactive control level rather than at the task level. In 
meeting task-level time constraints, issues in hastening 
decision making and balancing time spent reasoning and 
acting [Boddy and Dean, 1989] come to the fore. While 
providing real-time guarantees about AI systems is not 
possible in general, for some tasks and some AI algo- 
rithms it is possible to strictly bound reasoning time. For 
example, anytime algorithms [Dean and Boddy, 1988; 
Horvitz, 1987] allow the formulation of some decision 
within a deadline, with decisions improving as allotted 
time is increased. The work on approximate process- 
ing has similar goals [Lesser et al, 1988]. Meanwhile, 
Hendler is developing an AI system on top of a real-time 
operating system [Hendler, 1990]. The operating system 
allocates time to reacting and reasoning in his system, 
so that in highly dynamic environments the reasoning 
tasks might get little or no time, while in more relaxed 
domains less reaction might be needed. Like ours, his ap- 
proach builds on real-time computing techniques, but he 
uses an embedded rather than a cooperative approach. 

Finally, research on using multiple systems, or "coop- 
erating experts" has predominantly focussed on speeding 
up overall system performance through parallelism and 
filtering information [Durfee et al, 1989; Hayes-Roth et 
al, 1989b; Smith and Broadwell, 1987]. For example, 
the work of Hayes-Roth and her colleagues decomposes 
a real-time intensive-care monitoring task into a number 
of intelligent subsystems for interpreting sensory data, 
evaluating trends, enacting changes in treatment, and 
so on [Hayes-Roth et al, 1989a]. This decomposition 
enables faster responses (through parallelism and infor- 
mation reduction), but does not separate real-time and 
AI capabilities as our approach does. 

5    Preliminary Implementation 
As a preliminary investigation of our approach, we have 
been experimenting with planning and control for a mo- 

map-bb control-bb 

HERO 

Figure 1: AI and Real-Time Systems 

bile robot that must navigate through the halls of our 
building using only sonar sensors and a floor plan. Our 
experimental environment consists of a Heathkit HERO 
robot connected by an RS232 cable to a TI Explorer II. 
Using multitasking, the TI Explorer simulates concur- 
rency in executing both cooperating processes, the AI 
system and the real-time system (Figure 1). 

5.1     AI System 

The AI system is responsible for taking high-level task 
specifications and planning routes and control behaviors 
for the robot. The system is implemented in a black- 
board architecture using the Generic Blackboard (GBB) 
shell [Corkill et al, 1986], and has several blackboards 
for control and data (Figure 1). 

The map blackboard contains information about the 
floor plan at different levels of detail. The map provides 
abstract information about corridors and rooms, and 
more detailed information about static features (doors, 
partitions, etc.) and about mobile features (the robot, 
objects to retrieve, etc.). Knowledge sources (KSs) can 
access the map blackboard to plan routes, generate ex- 
pectations about sonar readings, plot robot and object 
locations, and so on. 

The control blackboard contains information about 
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the current and pending behaviors of the robot. A be- 
havior is represented along the dimensions of: who (cur- 
rently the single robot, but we are working toward multi- 
robot domains); what (the goals of the behavior); when 
(the time interval over which the behavior will occur); 
where (the spatial region in which the behavior will oc- 
cur); how (the methods employed to achieve the goals); 
and why (the source of the behavior and its importance). 
The behavioral specification provides us with a common 
representation for organizations, plans, and schedules 
[Durfee and Montgomery, 1990]. The control blackboard 
is thus divided into levels for: 
organization: general responsibilities (such as deliver- 

ies on the first floor); 

long-term-plan: behaviors requiring substantial time 
(such as pick up and deliver package x); 

short-term-plan: subcomponents of long-term-plans 
(such as follow halll to the intersection with hallS); 

schedulable-action: behaviors to maintain during 
short-term-plans (such as orient to wall or avoid 
obstacles); 

schedule: scheduled actions to meet real-time require- 
ments. 

The control KSs use information from the map and 
control blackboards to generate new behaviors. Cur- 
rently, we have only a few KSs, and these allow the top- 
down elaboration of plans. Given a pickup-and-delivery 
request, the long-term-planning KS builds a long-term- 
plan behavior. The short-term-planning KS decomposes 
it into temporal subplans (go to x, go to y, pick up object, 
etc.). The schedulable-action KS generates behaviors to 
activate for each subplan, and the schedule KS takes the 
schedulable-actions associated with the current time and 
builds a schedule. Currently, a schedule is constructed 
as a lisp procedure where the functions associated with 
active schedulable-actions are appended within a loop 
construct. While frequencies and time-costs are associ- 
ated with the schedulable-actions, our simplistic initial 
scheduling algorithm simply includes all actions. 

The execute-schedule KS causes the schedule to be 
downloaded to the real-time system, which in our current 
implementation means that the schedule is transferred 
to the interface blackboard. This KS also adds in an 
additional function call to periodically test to see if a new 
schedule is downloaded. Thus, the AI system explicitly 
tells the real-time process how often to periodically poll 
their connecting stream to see whether a new schedule 
is ready to supercede the current schedule. 

Communication from the real-time process to the 
AI system is accomplished through the interface black- 
board. A control function associated with an action 
can generate a message, which the AI system receives 
through a stream and posts on the interface blackboard. 
For example, the avoid-collision function takes two ac- 
tions when it detects an object closer than 15 inches 
away: it causes the robot's wheels to stop; and it gen- 
erates a BLOCKED message that gets sent to the AI 
system. 

The appearance of a message such as BLOCKED on 
the interface blackboard triggers additional KSs to re- 

spond to the event. For example, when blocked, the 
blocked KS suspends previously active behaviors and 
builds a short-term-plan to swivel the robot back and 
forth to detect the left and right boundaries of the ob- 
struction. This leads to a new schedule that is down- 
loaded to the real-time system. The function for sizing 
up the new obstruction returns a message containing its 
dimensions, which the AI system's update-map KS uses 
to add the obstruction to the map blackboard. 

Finally, the robot blackboard contains information 
about the current state of the robot, as received from 
the robot via the interface blackboard. Once again, to 
receive such information the AI system must explicitly 
include commands in the schedule telling the real-time 
system to send messages containing the desired informa- 
tion. 

5.2    Real-Time System 

The real-time system is a separate process running on the 
TI Explorer. The process simply reads from the stream 
connecting the processes and evaluates the s-expression 
representing the schedule that it receives. Once the eval- 
uation returns, it reads again from the stream, and so on. 
As an example schedule, the schedule for hall following 
has the form: 

(loop  (avoid-collisions) 
(orient-to-wall) 
(check-landmarks) 

(when  (new-sched-ready-p) 
(return))) 

The real-time process communicates via the RS232 
link with the HERO robot by using predefined BASIC 
command templates. For example, the avoid-collisions 
function can generate a request for a forward sonar read- 
ing, and once it receives the response, it compares the 
value with some threshold to decide whether to stop the 
motors because the path is obstructed. As described 
previously, the detection of an obstruction causes the 
real-time process to send a message to the AI system. 
Fortunately for the HERO, the schedule supplied by the 
AI system specified the immediate reaction to take if 
blocked, which is simply to stop moving. If instead the 
process had to wait for the blackboard system to trig- 
ger and execute KSs and issue a command to stop, that 
command would arrive well after the HERO would have 
collided with the obstruction. 

6    Discussion 

Our experiments with the HERO robot have concen- 
trated primarily on moving between locations in the 
same or adjacent hallways (limited by the length of our 
RS232 connection), and in adding an encountered ob- 
stacle to the map. The experiences we have gained have 
illustrated some of the advantages of our approach. Af- 
ter the AI system develops a schedule of the current be- 
haviors, the real-time process begins maneuvering the 
robot down the hall. Concurrently, the AI system is 
incrementally planning [Durfee and Lesser,   1986] the 
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next set of behaviors to pursue once the current sched- 
ule has completed successfully. Thus, our blackboard 
system's planning and prediction activities are not di- 
rectly competing with the more time-critical robot con- 
trol actions of avoiding walls and obstacles. More impor- 
tantly, the time-critical control actions are not sched- 
uled through the blackboard's opportunistic but time- 
consuming agenda mechanisms. 

The schedule of control actions clearly delineates what 
sensor readings are needed at any given time, and this 
improves reactivity. For example, the robot's head sonar 
needs nearly two seconds to make a complete revolution 
if it is to scan in all directions. The control actions of 
the schedule, however, avoid the time-consuming collec- 
tion of unnecessary information by directing the sonar 
in only those directions where readings are desired. Al- 
though it might remain ignorant of some phenomenon 
in an area that it only would have checked had it been 
scanning completely around, the robot using our system 
more frequently performs the control activities that the 
AI system chose. 

Navigating a HERO robot down a hallway is made 
difficult by the imprecision of the robot's sensors and ef- 
fectors. The sonar readings are often errorful, and the 
robot's wheels often slip. To compensate for this, the 
functions for orienting the HERO and checking for land- 
mark readings must integrate information about the cur- 
rent sensor data, past readings, known wheel movements, 
previous orientation, and features of the floor plan in or- 
der to develop a reasonable estimation of the robot's cur- 
rent position and orientation in the hall. While much of 
this can be done by the AI system, we have incorporated 
some of this into the real-time system's control functions 
themselves. We need to study these issues further to dis- 
cover how much of the reasoning about uncertainty and 
data fusion can be included in the control code, and how 
much must be done by the AI system. 

On a related note, one important area that we have 
not adequately addressed is the issue of responsiveness 
of the AI system. Our approach emphasizes guarantees 
about the control behavior, and our system can guaran- 
tee that the robot will stop before a head on collision 
with a stationary object and will reorient before collid- 
ing with a wall. However, once the hard-coded reaction 
is taken, the blackboard system might require a signifi- 
cant amount of time to develop a reasoned response to 
the situation. Thus, for example, on encountering an 
obstacle the hero will stop and do nothing for a short 
while before the AI system downloads the commands to 
collect data about the obstacle's boundaries. While this 
is acceptable behavior in our environment, we still need 
to examine techniques such as deliberation scheduling 
and approximate processing to speed up this reasoning 
so that we can better address time constraints at the 
task as well as the control level. 

7    Summary and Current Directions 
In summary, we are developing a cooperative approach 
to combining techniques from the real-time computing 
and AI fields in order to integrate high-level planning 
with scheduling low-level control actions.   To evaluate 

this work, we have begun implementing our ideas in a 
real, robot system. Our preliminary experiments have 
shown that for our limited task domain, our coopera- 
tive approach allows us to combine task planning and 
reasoned responses to unexpected events with tight-loop 
control and rapid, hard-coded reactivity. Important cur- 
rent directions for this work include: enlarging the set 
of KSs to expand the range of behaviors; incorporating 
more complete timing knowledge and testing alternative 
real-time scheduling algorithms; more completely ana- 
lyzing the dividing line between the AI and real-time 
components in information-rich, uncertain domains; and 
using techniques such as approximate processing [Lesser 
et a/., 1988] and cooperating intelligent systems [Hayes- 
Roth et al, 1989b] for reducing AI system time needs to 
address task-level time constraints. 

We are also exploring related issues in controlling and 
coordinating multiple robots. For example, multiple 
robots typically need to communicate in order to syn- 
chronize their actions. To make intelligent communi- 
cation decisions, these robots need knowledge about the 
underlying communication mechanisms, such as whether 
messages will ever be lost and how long communication 
takes in the worst (or average) case. To ensure timely 
communication, we might need to adopt a port-based 
communication architecture [Shin and Epstein, 1987], al- 
lowing different priority channels. In dynamically chang- 
ing environments, where agents come and go over time, 
reasoning about messaging capabilities, needs, and pri- 
orities will be a complex problem. 

As a simple example of the types of tasks we are con- 
cerned with, consider several mobile robots that are fol- 
lowing each other in a line. If the robot in the front dis- 
covers that it soon must stop unexpectedly, what should 
it do? It could stop immediately and, at the same time, 
send messages to the robot behind it to halt. But if the 
message takes too long to arrive and process, the robot 
behind might crash into the leader. The robot behind 
also must ensure that the robot following it will not crash 
into it. To avoid a chain reaction of rear-end collisions, 
therefore, a robot that is being followed must decide how 
quickly the following robot can stop, and a crucial aspect 
of this decision is using knowledge about the communi- 
cation channels. If we are to guarantee real-time respon- 
siveness in dynamic domains, then the capabilities and 
the use of communication channels must be appropriate. 

The final direction that we are exploring is the role 
that reasoning about coordination plays in real-time AI. 
Although many deadlines an agent faces are based on as- 
pects of the physical world that are beyond the agent's 
control, other deadlines are based on coordination de- 
cisions with other agents. For example, if two robots 
have arranged to pass a part from one to the other at 
a specific time and place, they have imposed deadlines 
on themselves for this rendezvous. If one robot is slowed 
by some unanticipated obstacles, it could try alterna- 
tive means of meeting the deadline (such as increasing 
its speed) but this might have drawbacks (such as in- 
creasing the chances that it will be unable to avoid a 
collision). The robot could instead attempt to modify 
the deadline; it could ask for an extension. 
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We believe that reasoning about the timing of inter- 
actions between intelligent systems is a key aspect of 
intelligent behavior in dynamic domains. Our expecta- 
tion is that real-time AI and distributed AI have many 
connections between them, and that studying these con- 
nections will lead to important insights and progress in 
both fields. 

7.1     Conclusion 
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Abstract 

This paper describes some recent research1 on 
architectures for situated (embedded) systems 
that need to deliberate and reason in real time. 
One of the most difficult problems in the design 
of such architectures is how to manage the rea- 
soning performed by such a system while still 
meeting the real-time constraints of the prob- 
lem domain. We present an architecture, based 
on the Procedural Reasoning System (PRS), 
that provides mechanisms for the management 
and control of deliberation and reasoning in 
real-time domains. In particular, we show how 
deliberation and reasoning strategies can be 
represented in the form of metalevel plans, and 
describe an interpreter that selects and exe- 
cutes these in a way that retains bounded reac- 
tion time. In addition, this approach allows us 
to represent different types of situated system 
by varying the metalevel deliberation strate- 
gies. Finally, we provide some statistical mea- 
sures of performance for one such type of sit- 
uated system applied to a complex real-time 
application. 

1     Introduction 

The design of reasoning and planning systems that are 
situated (embedded) in real-time, dynamic environments 
has recently been the focus of expanded research efforts 
in Artificial Intelligence. A critical issue is to identify the 
architectural features that would enable such systems 
to exhibit rational behavior in these domains. In this 
paper, we describe a uniform architecture that we believe 
addresses many of the difficult problems in this area. 

Computer systems, like human beings, have resource 
limitations: they have only partial knowledge of their 
environment and bounded computational (or reasoning) 
capabilities. When situated in dynamic environments, 
these limitations become important, because the envi- 
ronment may change in significant ways while the sys- 
tem attempts to gather more information or to reason 

This research is supported by the National Aeronautics 
and Space Administration, Ames Research Center, under 
Contract No.  NAS2-12521. 

about what actions to pursue, given the information it 
already has. If the system (or agent) does not act in a 
timely manner, it may not be able to recover from a de- 
teriorating situation or may miss positive opportunities. 

One way to cope with stringent time constraints is 
to determine ahead of time how the system should act 
in every possible situation [Kaelbling, 1987; Rosenschein 
and Kaelbling, 1986]. However, in domains requiring 
complex responses to different patterns of events, it is 
unlikely that such precompilation of plans of action will 
be practically possible. In such cases, the system must 
be able to reason about what courses of action to pursue 
as it observes the changing environment and performs 
its various tasks. 

In particular, at any given time, the system will have 
to decide what tasks are important enough to initiate 
or continue, choose among the various means for accom- 
plishing each task, and determine how to order the cho- 
sen tasks for execution. In some cases, these decisions 
may be relatively simple and straightforward. But in 
other cases they may involve consideration of the likeli- 
hood of success of the task, the utility of performing the 
task, the resources required, the task's expected execu- 
tion time, the availability and reliability of information 
upon which the performance of the task depends, the 
task's dependence on other tasks that are also to be per- 
formed, etc. 

Moreover, these deliberative tasks themselves are sub- 
ject to the same constraints on time and information as 
any other task the system is performing. Thus, the agent 
will need to decide when and how to seek more informa- 
tion, when and how to deliberate, and when to simply 
go ahead and act on the basis of whatever reasoning and 
deliberation it has already performed using whatever in- 
formation it has at the time. And these deliberations, in 
turn, need to be reasoned and deliberated about. 

An important question, then, is to determine how one 
can design a situated system that provides for the exe- 
cution and management of such deliberative processes, 
yet meets the real-time demands and information con- 
straints of its environment. In this paper, we describe 
how one such architecture, the Procedural Reasoning 
System (PRS), provides the mechanisms for handling 
this problem. 
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An Architecture for Situated 
Deliberation 

The architecture of a PRS module or agent consists of 
(1) a database containing the system's current beliefs 
about the world; (2) a set of current goals; (3) a library 
of plans, called Knowledge Areas (KAs), which describe 
particular sequences of actions and tests that may be 
performed to achieve given goals or to react to certain 
situations; and (4) an intention structure, consisting of 
a [partially] ordered set of all those plans chosen for ex- 
ecution. An interpreter or inference mechanism manip- 
ulates these components, selecting an appropriate plan 
(KA) based on system beliefs and goals, placing those 
selected KAs on the intention structure, and finally ex- 
ecuting them. 

PRS interacts with its environment both through its 
database, which acquires new beliefs in response to 
changes in the environment, and through the actions 
that it performs as it carries out its intentions. Different 
instances of PRS, running asynchronously, can be used 
in an application that requires the cooperation of more 
than one subsystem. 

The PRS interpreter runs the entire system. From a 
conceptual standpoint, it operates in a relatively simple 
way. At any particular time, certain goals are established 
and certain events occur that alter the beliefs held in the 
system database. These changes in the system's goals 
and beliefs trigger (invoke) various KAs. One or more 
of these applicable KAs will then be chosen and placed 
on the intention structure. Finally, PRS selects a task 
(intention) from the root of the intention structure and 
executes one step ofthat task. This will result either in 
the performance of a primitive action, the establishment 
of a new subgoal, or the conclusion of some new belief. 

At this point the interpreter cycle begins again: the 
newly established goals and beliefs trigger new KAs, one 
or more of these are selected and placed on the intention 
structure, and again an intention is selected from that 
structure and partially executed. 

PRS has several features that make it particularly 
powerful as a situated reasoning system, including: (1) 
The semantics of its plan (procedure) representation; (2) 
Its ability to construct and act upon partial (rather than 
complete) plans; (3) Its ability to pursue goal-directed 
tasks while at the same time being responsive to chang- 
ing patterns of events in bounded time; (4) Its facilities 
for managing multiple tasks in real-time; (5) Its default 
mechanisms for handling stringent real-time demands of 
its environment; and (6) Its metalevel (or reflective) rea- 
soning capabilities. Some of these features have been 
discussed in earlier reports and papers [Georgeff and In- 
grand, 1989; Georgeff and Ingrand, 1990a; Georgeff and 
Ingrand, 1990b; Georgeff and Lansky, 1986; Rao and 
Georgeff, 1990]. In this paper, we consider in more detail 
the way the system architecture supports deliberative 
reasoning and provide some statistics on the system's 
real-time performance capabilities. 

3    Making Decisions in Real Time 

At each interpreter cycle, the changing beliefs and goals 
of PRS trigger certain KAs (plans) which, upon execu- 
tion, either perform certain primitive actions or modify 
the internal state (the beliefs, goals, and intentions) of 
the system. At this level of abstraction, PRS acts like a. 
situated automaton [Rosenschein and Kaelbling, 1986]. 

However, one of the most critical aspects of the PRS 
architecture is the way in which its beliefs, goals, and 
intentions evolve and change over time. It is here that 
a number of strong commitments in the design of PRS 
have been made and these, we believe, are crucial to its 
successful performance as a situated, real-time system. 

Given that the system needs to be able to deliberate in 
various ways and at various times, one of the most diffi- 
cult problems to overcome is how to reduce the amount 
of potential deliberation that need be undertaken. In 
particular, how can we avoid deliberation on every ac- 
tion (internal or external) taken by the system and, re- 
cursively, how can one avoid or reduce deliberation on 
those deliberation processes themselves? 

Most existing situated reasoning systems use one or 
a combination of the following approaches: (1) They do 
not allow any form of deliberation—the considerations 
important to such deliberation are compiled into the 
triggering parts of the plans or knowledge sources them- 
selves [Firby, 1989]; (2) The deliberation is performed at 
one level only and is done at every cycle irrespective of 
the constraints on time and information existing at that 
moment in time [Hayes-Roth, 1989]; and (3) The deliber- 
ation occurs at one level only and is performed by a sep- 
arate module of the system, unconstrained by the real- 
time demands of the application and thus not bounded 
in reaction or response time [Dodhiawala et al., 1989; 
Fehling and Wilber, 1989; Hayes-Roth, 1989]. 

PRS takes a quite different approach. We consider 
that the first task of the system should be to keep the 
number of options open to deliberation under control. 
To achieve this, the PRS interpreter uses certain de- 
fault decision-making mechanisms that are stringently 
bounded in execution time. For example, once a cer- 
tain means has been chosen for achieving a particular 
goal, and as long as the system has not already failed 
to achieve the goal using those means, that means will 
not be reconsidered — despite possible changes in the 
environment that may indicate the existence of better 
options. These option-reducing decision mechanisms ex- 
ecute in bounded time and, in most real-world situations, 
substantially reduce the set of options available for de- 
liberation. Some of the more important of these mech- 
anisms are discussed elsewhere [Georgeff and Ingrand, 
1989]. 

Of course, even after this filtering of options, some 
options remain open to consideration. Furthermore, the 
filtering may have removed some options that should re- 
ally have been considered more carefully. Thus, it is 
necessary to provide the system with a capability for 
performing a possibly unbounded amount of delibera- 
tion and for reconsidering some of the options that have 
possibly been discarded by the default decision mecha- 
nisms. 
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In PRS, both these tasks are achieved by the use of 
so-called metalevel KAs. Metalevel KAs use exactly the 
same knowledge representation as application-level KAs; 
they differ only in that they operate on the system's in- 
ternal state (i.e., its beliefs, goals, and intentions)2 rather 
than the external world. 

The way these metalevel KAs are brought to bear on 
any particular problem is via their invocation criteria. 
These criteria may depend both on conditions obtain- 
ing in the external world and, more typically, on condi- 
tions relating to the internal state of the system. Such 
conditions might include, for example, the applicability 
of multiple KAs in the current situation, the failure to 
achieve a certain goal, or the awakening of some previ- 
ously suspended intention. 

The body of a metalevel KA can be used to represent 
any kind of decision-making procedure and can be of ar- 
bitrary complexity. However, because it is executed in 
the same manner as any other KA, it will be interrupted 
whenever any external events modify the system's be- 
liefs or goals. The system can thus continue to react 
in bounded time, irrespective of the complexity of the 
decision procedure. This is unlike other existing situ- 
ated reasoning systems, whose bound on reaction time 
is determined by the complexity of the decision-making 
procedures incorporated in the system. 

Moreover, further metalevel KAs can be invoked to 
make decisions about the decision-making procedures 
themselves. Again, the representation of these higher 
levels of metalevel procedures is as for any other proce- 
dure, and the system's reaction time remains bounded. 
Of course, one has to be careful in the design of such 
metalevel procedures if one wants the system to respond 
to events — rather than just notice them — in some 
given time frame. 

It is also important to note that the decision-making 
behavior of PRS is strongly influenced by the choice of 
the invocation conditions of metalevel KAs. For exam- 
ple, if these conditions are such that the decision-making 
metalevel KAs are frequently invoked, PRS will act in a 
cautious manner, spending more time making decisions 
than otherwise [Bratman et al., 1988]. If, on the other 
hand, these metalevel KAs are rarely invoked, PRS will 
act in a bold manner, rapidly choosing its actions in re- 
sponse to the changing world in which it is embedded. 
Thus, by varying the metalevel KAs, we can study dif- 
ferent types of situated systems and determine which are 
best suited for which problem domains. 

The question remains as to how to invoke the met- 
alevel KAs and how to ensure their execution as appro- 
priate. We look at this problem in the next section. 

4     Invoking MetaLevel Procedures 

Our aim in designing PRS was to hardwire as little as 
possible into the interpreter; i.e., to make it as simple as 

It is important to note that these include beliefs goals, 
and intentions toward various properties of the system state, 
such as the number of applicable KAs at the current time 
point, the success or otherwise of a particular KA instance, 
the ordering of the intention structure, or the status of some 
specific intention. 

possible. This provides us with the potential to inves- 
tigate many different types of agents simply by varying 
the default decision procedures and the metalevel KAs. 

The main loop of the system interpreter determines 
which KAs are applicable and chooses which to place on 
the intention structure. It can be viewed as the topmost 
metalevel KA; it is the final arbiter of which KAs reach 
the intention structure and thus which can be executed. 

The major problem is how to allow KAs to be delib- 
erated upon by other [metalevel] KAs and how to place 
the chosen ones on the intention structure. The basis 
of our approach is to allow the main interpreter loop to 
place at most one KA on the intention structure and to 
require it be placed at the root of that structure. 

At first sight, this seems unduly restrictive—one often 
wants to attend to more than one task, and one often 
wants to order these tasks for later execution rather than 
have them executed immediately (which placing at the 
root of the intention structure entails). The way around 
this problem lies in the metalevel KAs: these are the 
means by which one can place multiple intentions on the 
intention structure and order them, as one pleases. 

The next problem is how to actually invoke metalevel 
KAs. The difficulty is that, while some of the invocation 
conditions of metalevel KAs will be known at the begin- 
ning of each selection cycle, others (such as the number 
of KAs applicable at a given moment) can only be de- 
termined part way through this cycle. The way we solve 
this problem is to allow the system to continue to reflect 
on its changing beliefs about its own internal state within 
a single cycle of the interpreter, breaking out of this self 
reflection only when the process of KA activation ceases. 

Figure 1 shows a simplified version of the main in- 
terpreter loop. Its purpose is to select a KA, place it 
on the intention structure, and invoke its execution (of 
which we have more to say later). The basic idea of 
the algorithm is that the system continuously reflects 
on itself until no new KAs are applicable. When this 
state is reached, a KA is chosen at random from those 
applicable at the previous reflection cycle. If there are 
no KAs to choose from (i.e., the set of applicable KAs 
is empty), the execution phase is invoked and the outer 
cycle repeated. Otherwise, the chosen KA is placed on 
the intention structure, the execution phase invoked, and 
the outer cycle repeated. 

To enable this scheme to work, the system has to de- 
termine which KAs are applicable on each self-reflection 
cycle. This information becomes a new system belief. In 
particular, on each cycle, the system concludes a belief 
about the set of KAs applicable on that cycle, expressed 
as (soak x), where x is the list of applicable KAs. It is 
then determined whether or not the acquisition of this 
new belief (i.e., (soak x)), and possibly other events, 
triggers any new [metalevel] KAs. If it does, the system 
acquires a new belief about the applicability of these 
metalevel KAs. In fact, it does so simply by updating 
the belief (soak x) so that the list x now contains ex- 
actly those metalevel KAs that are now applicable. (The 
previous belief about applicable object-level KAs is re- 
moved from the database and so, in a sense, is forgotten. 
However, if needed, it can be captured in the variable 
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(loop  ;Loop continuously. 
do   (loop for  soak =   (set-of-applicable-ka)   ;Set soak to the set of applicable KAs 

when   (or previous-soak soak) 
do   (conclude-f act   '(soak   ,soak))   ;Post the soak metalevel fact 

if (null soak)   ;No new KAs are applicable 
then if (null previous-soak) 

;Jf previous soak is empty then either no KAs were relevant 
;or there is nothing to do (no new goals). 
then  ;Continue to execute the intentions in the Intention Structure 

(activate-intention-structure) 
return  ;Exit the reflective loop. 

else;Else, intend one of the KAs selected randomly, 
(intend  (select-randomly previous-soak)) 
;Go and execute something in the intention structure, 
(activate-intention-structure) 
;Set previous-soak to nil 
(setq previous-soak nil) 
return)   ;Exit the reflective loop 

else   (setq previous-soak soak))   ;Swap previous-soak and soak 
do   (get-new-facts))  ;Get any new facts generated by metalevel matching 

(get-new-f acts-goals-messages) )  ;Get any new messages, goals or facts 

Figure 1: KA and Intention Selection in PRS 

bindings of the invoked metalevel KAs.) 
As PRS places no restrictions upon the invocation con- 

ditions of metalevel KAs, it is quite possible that more 
than one metalevel KA will be invoked at this stage. If 
this happens, we shall now be left with the problem of 
deciding which of these metalevel KAs to invoke. There 
are a number of possible solutions to this problem. One 
would be simply to select one of the metalevel KAs at 
random, on the assumption that all are equally good 
at making the decision about which object-level KAs 
should be invoked. Another alternative would be to pre- 
assign priorities to the metalevel KAs and to invoke the 
one with the highest priority. However, in keeping with 
our aim of providing maximum flexibility, the solution 
we chose to adopt is to allow further metalevel KAs to 
operate on these lower-level metaKAs in the same way 
that the lower-level metaKAs operated on the object- 
level KAs. 

The process of invoking metalevel KAs is thus contin- 
ued until no further KAs are triggered. At that point, 
there may still be a set of applicable KAs from which 
to choose. It is then, and only then (i.e., only after fail- 
ing to find any more applicable metalevel KAs), that we 
select one of these KAs at random. 

Thus it is seen that, when more than one KA is ap- 
plicable, and in the absence of any information about 
what is best to do, the system interpreter defaults to se- 
lecting one of these KAs at random. With no metalevel 
KAs, the system would thus randomly select one of the 
applicable object-level KAs. However, one usually pro- 
vides metalevel KAs to help make an informed choice 
about the object level KAs. The applicable metalevel 
KAs themselves are subject to the same default action 
(i.e., one will be randomly selected) unless there are yet 
other metalevel KAs available to make a choice among 
them. In the end, at some level in the meta-hierarchy, 
the default action will be taken. 

Once selected, the chosen KAs must be inserted into 

the intention structure. If a selected KA arose clue to an 
external goal or a new belief, it will be inserted into the 
intention structure as a new intention at the root of the 
structure. For example, this will be the case for any met- 
alevel KA that is invoked to decide among some set of 
applicable lower-level KAs. Otherwise, the KA instance 
must have arisen as a result of some subgoal of some 
existing intention, and will be "grown" (i.e., attached) 
as a subKA of that intention. Finally, we are left with 
the execution phase. This is relatively straightforward.3 

First, an intention at one of the (possibly multiple) roots 
of the intention structure is selected for further execu- 
tion. The next step ofthat intention will comprise either 
a primitive action or one or more unelaborated subgoals. 
If the former, the action is directly initiated; if the latter, 
these subgoals are posted as new goals of the system. 

While we have focussed above on metalevel KAs that 
react to changes in the type or number of applicable KAs, 
other beliefs about the environment or the internal sys- 
tem state can trigger other kinds of metalevel KAs. For 
example, beliefs about changing intentions could trigger 
metalevel KAs to reorder the intention structure, or be- 
liefs about failed goals could trigger a metalevel KA to 
deliberate on the utility of reattempting the goal. 

5     Measures of Performance 

Definitions of real-time systems revolve around the no- 
tion of response time. For example, Marsh and Green- 
wood [Marsh and Greenwood, 1986] define a real-time 
system as one that is "predictably fast enough for use by 
the process being serviced" and O'Reilly and Cromarty 
[O'Reilly and Cromarty, 1985] require that "there is a 
strict time limit by which the system must have produced 

3In fact, the execution algorithm is somewhat more com- 
plicated than we indicate here. For example, it needs to han- 
dle in different ways the failure and success of attempting to 
accomplish its goals, what goals need to be reestablished, etc. 
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a response, regardless of the algorithm employed." This 
measure is most important in real-time applications; if 
events are not handled in a timely fashion, the operation 
can go out of control. 

Response time is the time the system takes to recog- 
nize and respond to an external event. Thus, a bound on 
reaction time (that is, the ability of a system to recognize 
or notice changes in its environment) is a prerequisite 
for providing a bound on response time. PRS has been 
designed to operate under a well-defined measure of re- 
activity. Because the interpreter continuously attempts 
to match KAs with any newly acquired beliefs or goals, 
the system is able to notice newly applicable KAs after 
every primitive action it takes. 

Some useful performance metrics for evaluating the 
performance of real-time situated systems are provided 
by Dodhiawala[Dodhiawala et al., 1989]. Not all of these 
are of relevance in the applications to which PRS has so 
far been applied, but the following five probes provide 
important measures of performance: 
1. sending-iime(e) is the time at which an event e is 
signalled; 
2. receiving-time'(e) is the time at which e is received by 
the system; 
3. begm-ack-lime(e) is the time at which e is noticed by 
the system; 
A. end-soak-time-cycle(e) is the time at which all the 
events occurring in the same cycle as e have been noticed 
and the corresponding set of applicable KAs determined; 
5. event-execution-ttme(e) is the time at which the first 
action following KA selection has terminated; 
6. event-response-time(e) is the time at which the execu- 
tion of all the procedures initiated by e have terminated. 

Then we defined: 
Rl = receiving-time(e) - sending-time(e), 
R2 = begin-ack-time(e) - receivmg-time(e), 
R3 = end-soak-time-cycle(e) - begin-ack-time(e)', 
RA = event-execution-time(e) - end-soak-time-cycle(e), 
Rx> = event-response-time(e) - sending-time(e), 

Assuming a bounded number of events occurs in any 
time interval, we can prove that Rl, R2, R3, and RA 
are bounded. Rl is the time used to communicate the 
event to the system and is bounded by definition of the 
communication function (independently of PRS). The 
operations performed in i?3 and RA form a cycle, so R2 
is actually bounded by #3 + RA. So if we prove that R2> 
and RA are bounded, we can conclude that R2 is also 
bounded. 

RA is bounded by the maximum time required to exe- 
cute the longest primitive action in PRS or the time re- 
quired to post a goal. The time to post a goal is bounded 
by definition and is negligible. Therefore, the bound on 
RA is determined by the choice of primitive actions and 
thus by the user. As the user can choose any level of 
granularity he or she desires, this bound can be made 
arbitrarily small. (In the application described below, a 
maximum action execution time of one second was found 
to be quite satisfactory, though other applications may 
well require finer granularity.) 

A3 is the time used by the system to parse the invo- 
cation part and the context part of relevant KAs. As we 

have a bounded number of events and a bounded number 
of KAs, we can guarantee that RZ is bounded4. 

To estimate the bound on R2, let p be an upper bound 
on the execution times of the primitive actions that the 
system is capable of performing. Let's also assume that 
n is an upper bound on the number of events that can 
occur in unit time, and that the PRS interpreter takes 
at most time t to select the set of KAs applicable to 
each event occurrence. The maximum reactivity delay, 
AR, is then given by: AR = p + y x t, where y is the 
maximum number of events that can occur during the 
reaction interval. We have y = AR X n and thus obtain 
AR = p/(l - nt) where we assume that t < \/n. This 
means that, provided the number of events that occur 
in unit time is less than 1/t, PRS will notice every event 
that occurs [that is capable of triggering some KA] and 
is guaranteed to do so within a time interval AR. 

Because metalevel procedures are treated just like any 
other, they too are subject to being interrupted after ev- 
ery primitive metalevel action. Thus, reactivity is guar- 
anteed even when the system is choosing between alter- 
native courses of action or performing deliberations of 
arbitrary complexity. 

R5 is the time one would like most to see bounded. 
However, as the time taken to respond to an event can 
be arbitrarily large, no such guarantee can be given in 
general. Let's consider this in a little more detail. 

Having reacted to some event, it is necessary for the 
system to respond to this event by performing some ap- 
propriate action. As the system can be performing other 
tasks at the time the critical event is observed, a choice 
has to be made concerning the possible termination or 
suspension of those tasks while the critical event is han- 
dled. Furthermore, if there are a number of different 
ways in which the event can be handled, it might be 
necessary to choose among those alternatives. 

Such choices can be made by appropriate metalevel 
KAs. However, in general, these decision procedures 
may take an unbounded amount of time to reach a de- 
cision. There are two possible ways to overcome this 
problem. One is to require that all decision procedures 
complete in a bounded time. In many domains, this pro- 
vides adequate decision-making capability and yields a 
bound on response time. As a particular case, it is not 
difficult to construct metalevel KAs that yield the same 
functionalities as Ladder Logic5. 

Alternatively, one could construct a special metalevel 
KA to act as a task scheduler. This KA would have 
the capability to preempt all executing decision tasks 
(and any other tasks for that matter) within a bounded 
time and begin execution of an event handler. It could 
utilize whatever information was available (such as any 
incremental decisions made by anytime decision algo- 
rithms [Dean and Boddy, 1988]) to select the most appro- 
priate event handler and the manner in which to suspend 
or terminate other tasks. It could also take into account 

As selection of KAs does not involve any general deduc- 
tion beyond unification and evaluation of a boolean expres- 
sion, an upper bound does indeed exist. 

Ladder Logic is one of the most widely used program 
languages for real-time systems. 
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the different constraints on response time that may exist 
in different situations. The only requirement is that this 
KA have a guaranteed upper bound on execution time. 

In summary, PRS is guaranteed to react to critical 
events in a bounded time interval. With appropriate 
metalevel and application-level KAs, it is also possible 
to guarantee a bound on response time. 

6     Experimentation 
As mentioned earlier, one of the valuable features of this 
design is the ability to realize different types of situated 
system by varying the default decision rules and the met- 
alevel procedures. In particular, one could then exam- 
ine the behavioral properties of different types of agents 
in different environments. We have begun this process 
by creating one particular type of agent [Georgeff and 
Ingrand, 1989] and applying it to various real-time ap- 
plications. In this section, we briefly describe one such 
application and provide statistics on the performance of 
the system. 

The application domain we choose for experimenta- 
tion is the task of malfunction handling for the Reaction 
Control System (RCS) of NASA's space shuttle. This 
is a relatively complex propulsion system that is used to 
control the attitude of the shuttle. A wide range of prob- 
lems can occur in this system and, in a normal shuttle 
mission, no less than four mission controllers are contin- 
uously monitoring and controlling its operation. 

Two PRS modules (agents) were used for the applica- 
tion. The resulting system was able to detect and recover 
from most of the possible malfunctions of the RCS, in- 
cluding sensor faults, leaking components, and regulator 
and jet failures. It is presently under testing at NASA's 
Johnson Space Center. 

The following performance measures have been made 
on a SUN Sparestation, with 20 Mega Bytes of central 
memory, running Sun Common Lisp, development Envi- 
ronment 4.0.0 Beta-0, Sun4 Version for SunOS 4.0. The 
code was not optimized by the compiler, and the probing 
itself affects system performance (the probes defined in 
section 5 are activated for every event and goal posted 
by PRS). 

For the series of tests given below, we ran the following 
RCS scenarios: a pressure transducer failure, a regulator 
failure with both regulators open, and a leaking mani- 
fold. This set of scenarios exercises most of the major 
features of PRS and is representative of the kind of prob- 
lems occurring in the RCS system. The whole test set 
took approximately six minutes to run. 

Figure 2 shows some statistics on the run. The % 
measurement indicates how busy the PRS agent were. 
During the six minutes, RCS ran for 31 seconds, and 
INTERFACE for 2 minutes 31 seconds. Clearly, each 
PRS module has plenty of time to work on other prob- 
lems. (On this machine, with this configuration, this 
application can be run three times faster that real time 
without any difficulty). The number of facts, metalevel 
facts, goals and messages indicate the flow of input to 
the two PRS modules. We have separated metalevel 
facts, such as (soak . . .), and application facts. The 
statistics on the goals and messages refer only to the 

Name RCS INTERFACE 
% 8.07 36.33 
Facts 20 49 
Met a-Facts 357 2364 
Goals 202 1257 
Messages 66 355 
Relevant-KAs 923 8359 
Applicable-KAs 105 1108 
Intentions 6 14 
Satisfied Goals in DB 28 164 
Total Run Time 00:00:31 00:02:29 

Figure 2: Performance Statistics in the RCS application 
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Figure 3: Rl, R2 and R3 for the RCS application 

application level. Relevant-KAs represents the number 
of relevant KAs (selected by the indexing mechanism as 
being potentially applicable) and Applicable-KAs repre- 
sents the number of KAs that were actually applicable. 
Intentions indicates the number of intentions the PRS 
agent has formed, and Satisfied Goals in DB represents 
the number of goals that were directly satisfied in the 
database (and thus did not require KA activation). 

Figure 3 shows the values of Rl, R2 and A3 (see Sec- 
tion 5). All the values are given in sixtieths of a second. 
The average Rl are usually very low (a few sixtieths 
of a second), and even the maximum values stay under 
one second . R2 is also quite small and never exceeds 
one second. The values of iJ3, which represents response 
time, are very difficult to interpret. This is because many 
of the procedures executed in the RCS application are 
supposed to "wait" for certain external events to occur. 

The high maximum value can be explained by the quan- 
tum (300 ms) of the scheduler used under SUN lisp 4.0. That 
means that if both PRS modules are runnable, one will have 
to wait at least 300 ms before getting a chance to run. 
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For example, certain procedures require the system to 
wait for the pressure to drop under 300 psi, or to wait 
lor the astronauts to flip a switch.' Nevertheless, the 
experience and the evaluation of the system by mission 
controllers shows that PRS executes its procedures much 
faster than either an astronaut or a mission controller 
could. Moreover, in this application, metalevel KAs have 
been written to ensure that the most important proce- 
dures get executed first, thus guaranteeing that the re- 
sponse time is shortest for the most urgent procedure 
[Georgeff and Ingrand, 1990b]. 

7     Review of related works 

Some researchers have sought to deal with resource 
limitations in dynamic environments by considering all 
contingencies at design time. This approach obviates 
the need for explicit reasoning at execution time: all 
such reasoning is effectively compiled into the struc- 
ture of the executing program [Agre and Arge, 1987; 
Brooks, 1986; Firby, 1989; Rosenschein and Kaelbling, 
1986; Kaelbling, 1987]. It is very likely that these 
techniques are optimal in certain applications. How- 
ever, many researchers believe that, in complex do- 
mains, the knowledge-compilation approach will lead to 
brittle, inflexible systems if used without any real-time 
deliberative processing [D'Ambrosio and Fehling, 1989; 
Doyle, 1988; Pollock, 1989]. 

Blackboard architectures have been used in cer- 
tain systems that are intended to perform real-time 
behavior[Dodhia\vala et al, 1989; Hayes-Roth et al., 
1989]. They use a collection of knowledge sources (tasks) 
sharing a common data structure. There are a number 
of interesting features of these systems that could be im- 
portant in providing fast response in real-time domains 
that do not require significant amounts of deliberation. 
However, in current blackboard systems, the actions car- 
ried out by the system are not interruptible. This poses 
serious problems for maintaining realistic bounds on re- 
action time whenever complex or lengthy tasks need to 
be performed [Georgeff and Lansky, 1986]. Keeping the 
blackboard consistent when knowledge sources are asyn- 
chronous is also a serious problem that has yet to be 
addressed. In addition, most blackboard architectures 
use an agenda of pending tasks that are run serially. The 
problem is that the agenda manager (i.e., the component 
that deliberates on what tasks to execute, how to exe- 
cute them, and when to execute them) is invoked in each 
cycle and for each task present on the agenda. Thus it 
runs with considerable overhead, again seriously restrict- 
ing the real-time capabilities of the system. Moreover, 
it is difficult to include any lengthy deliberation proce- 
dures and there are no mechanisms for reasoning about 
the deliberation processes themselves. 

Schemer-II [Fehling and Wilber, 1989] is in some way 
similar to PRS, but utilizes specific managers and han- 
dlers (deliberation processes) to control the system. As 
with the blackboard approach, these task handlers can- 
not reason a.bout themselves.   Consequently, the archi- 

' These waits are asynchronous and do not block system 
execution. 

tecture is not as general or flexible as PRS. However, it 
is an interesting approach and may be optimal for some 
real-time domains. 

8     Conclusion and Future Developments 

In this paper, we have attempted to show how the uni- 
form knowledge representation for both application-level 
knowdedge and metalevel knowledge, the default decision 
rules, and the algorithm used for handling metalevel pro- 
cedures provides a good framework for managing delib- 
eration and reasoning in real-time environments. We 
have presented some results regarding the real-time per- 
formance of the system wdien used in a real application 
(RCS), and briefly reviewed some related works. 

Although we have presented an architecture that sup- 
ports real-time deliberation and reasoning, we have so 
far not investigated how different default decisions and 
different metalevel strategies affect system behavior; nor 
have we examined sufficient real-time domains to deter- 
mine which kind of situated system best suits which kind 
of domain. The current RCS application used a set of de- 
fault decision rules and metalevel procedures that proved 
to be particularly successful in that domain. While we 
believe these to be of wide applicability, that conjecture 
has yet to be tested. 

Of particular interest would be to incorporate as met- 
alevel procedures various algorithms that have recently 
been proposed for deliberating in real-time environ- 
ments. These include the work of Whitehair and Lesser 
on approximate reasoning [Lesser et al., 1989], Dean 
and Boddy's work in anytime algorithms [Dean and 
Boddy, 1988], and the work of a number of researchers 
[Agogino and Ramamurthi, 1989; Horvitz el al., 1988; 
Russell and Wefald, 1989] in decision-analysis tech- 
niques. 

We intend to explore some of these issues in our fu- 
ture research. In particular, by varying metalevel strate- 
gies, we aim to experiment with different types of system 
(such as the IRMA agent architecture [Bratman et al., 
1988]) in different kinds of environments, thus leading 
to a better understanding of situated systems and agent 
rationality. 
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Abstract 

To handle multiple, complex tasks in dynamic, 
uncertain environments, robot systems need to combine 
planning and reactive behaviors. The Task Control 
Architecture (TCA) provides facilities for extending the 
classical planning framework to include capabilities for 
interleaving planning and execution, monitoring, error 
recovery, and handling multiple tasks. To date, TCA has 
been used to coordinate three mobile robot systems at 
CMU. The paper focuses on why these capabilities are 
necessary and how they are realized using TCA. We also 
describe future research goals for incrementally learning 
the capabilities, based on the robot's experiences. 

1. Introduction 
There has been much discussion recently on the utility 

of plans and planning for intelligent agents that interact 
with the real world (e.g., [Agre 87, Chapman 
90, Ginsberg 90, Kaelbling 86]). The "reactive" camp 
contends that long-range plans are useless in dealing with 
dynamic, uncertain domains. The "planning" camp 
contends that complex tasks are difficult to perform 
without reasoning about interactions between subtasks. 

Both frameworks have advantages. Plans provide a 
natural language (goal/subgoal hierarchies) for describing 
complex tasks. In particular, they enable planners to 
compensate for interactions between subtasks by 
coordinating their execution. An advantage of the 
reactive framework is its attentiveness to change, which is 
clearly important in dynamic environments. This 
capability, however, can also be achieved within a 
planning framework. In particular, the framework must 
be extended to allow plans to be executed before they are 
wholly specified, and must facilitate monitoring for and 
adapting to changes in the environment. 

The Task Control Architecture (TCA) was developed 
to explore combining reactivity within a planning 
framework [Lin 89a, Simmons 90a]. TCA was designed 
to facilitate building and controlling mobile robot systems 
that have multiple, complex tasks, limited sensors relative 
to their tasks, and that operate in dynamic, but relatively 
benign, environments. 

TCA consists of a task-independent central control 
process and utilities for communicating between the 
central control and task-specific processes. More 
importantly,  TCA provides  facilities  for maintaining, 

scheduling and executing hierarchical plans, for 
coordinating concurrent monitors and exception handling 
strategies, and for managing physical and computational 
resources. The facilities were designed by analyzing the 
requirements of several mobile robot systems (e.g., [Lin 
89b]). We noted several important capabilities needed to 
extend the planning framework to achieve the necessary 
reactivity. These capabilities include: 

• Interleaving Planning and Execution: While the 
world is in general too complex and uncertain to 
plan down to primitive actions, there are often 
times when advance planning is desirable, or even 
necessary. Robot systems need flexibility in 
specifying when to plan and when to act. This 
flexibility can be achieved in a hierarchical 
planning framework by placing temporal 
constraints on the planning and execution of tasks. 

• Detecting Changes: Reacting to change is basic to 
survival. In rich environments, however, it is often 
difficult to continually check all relevant features. 
To manage with limited sensors, systems must 
selectively choose which features to monitor, based 
on their current tasks and environment 

• Error Recovery: Purely reactive systems do not do 
error recovery, since they treat each situation 
afresh. Planning systems, however, must notice 
when plans are going astray and modify them 
accordingly. In addition, reflexive behaviors 
should be provided to safeguard the robots. 

• Coordinating Multiple Tasks: Unexpected 
opportunities and contingencies may give rise to 
multiple tasks. Robot systems must decide if tasks 
can occur concurrendy and, if not, in which 
contexts one task has priority over another. In 
addition, they should be able to interrupt lower- 
priority tasks and smoothly transition to new ones. 

The above capabilities have all been implemented 
using the facilities provided by TCA. An important 
design feature of TCA is that the capabilities can be added 
incrementally. The idea is to build basic behaviors first, 
and then add concurrency, monitors, error recovery 
procedures, etc. For example, our methodology is to first 
develop systems having sequential sense-plan-act cycles, 
then use the TCA facilities to add concurrency. Similarly, 
we first implement behaviors that handle "normal" 
situations, then add monitors and error recovery 
procedures for handling the exceptions. Although these 
extensions are currently encoded manually, our research 
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1 
program is geared towards automatically learning 
strategies that increase the performance and competence 
of the robots [Mitchell 90, Tan 90]. 

To date, we have used TCA in three mobile robot 
systems: the CMU Planetary Rover [Bares 89], a single 
leg of the rover [Krotkov 90], and an indoor mobile 
manipulator [Lin 89a]. The Planetary Rover project is 
developing the Ambler, a novel six-legged robot, to be 
used for navigation, exploration, and sample acquisition 
in rugged environments. To demonstrate competence in 
rough-terrain walking, we built a prototype leg of the 
Ambler (Figure 1) and a software system for 
autonomously walking the leg over rough terrain. 

Carriagi Bail Screw Actuator- 

<±s 

Figure 1: The Single-Leg Testbed 

The mobile manipulator testbed is based on a 
Heathkit/Zenith Hero 2000. The robot operates in a 
peopled, unstructured laboratory and nearby corridors. 
The system is currently able to perform a variety of 
navigation and manipulation tasks. Its main tasks are to 
identify and collect cups from the floor, retrieve printer 
output, fetch and deliver objects from workstations, avoid 
collisions with static and dynamic obstacles, and recharge 
when necessary. Within the lab, navigation is performed 
by following a path planned using a 2D map obtained 
from an overhead camera. To traverse the corridors, the 
system uses local sonar navigation techniques. 

2. The Task Control Architecture 
A robot system built using TCA consists of task- 

specific processes, called modules, and a general-purpose 
central control module. Our testbeds all use the same 
central control module, but have different, robot-specific 
modules for controlling the robot, acquiring and 
processing images, and planning and error recovery 
(Figure 2). The modules communicate with one another 
by passing messages through the central control, which 

routes them to be handled by the appropriate modules. 
Routing information is determined dynamically when 
modules connect with the central control: modules 
register with TCA message names, descriptions of the 
data formats associated with the messages, and the names 
of procedures for handling the messages. 

AMBLER LEG 

Controller 

Gait 
Planner 

Leg Recovery 
Planner 

Central 
Control 

Rotting 
Tab!« 

Local 
Terrain Map 

Manager 

Image Sensing 
Manager 

'■ 

LASER 
SCANNER Human 

Figure 2: Modules for the Single-Leg Walking System 

The facilities of TCA are built around the framework of 
hierarchical task trees. A task tree encodes parent/child 
relationships between messages: for each message sent, 
TCA records which message handler issued it. The non- 
leaf nodes in the task tree represent subgoals and 
monitors; the leaf nodes are sensor queries and executable 
commands (Figure 3). 

Tasks are coordinated by specifying temporal 
constraints between nodes in the tree. For example, a 
module can constrain one subtask to follow another 
sequentially. For non-leaf nodes (goals and monitors), 
this sequential-achievement constraint implies that all the 
leaf nodes of the first task must be executed before the 
second task can begin. In Figure 3, for instance, the 
sequential-achievement constraint between goals B and C 
implies that commands E and F must be completed before 
command G can be scheduled for execution. Note, 
however, that the lack of constraint between E and F 
implies that they can be executed concurrently. 

The delay-planning constraint indicates that the 
subsequent goal should not be handled until the previous 
task has been completely achieved. Without this 
constraint, TCA is free to create a plan (by expanding the 
goal into subgoals), although the plan will not, of course, 
be executed until the previous task is completed. For 
example, the delay-planning constraint between goals C 
and D indicates that D should not be expanded until 
commands G, I, and J are all executed. 

TCA also provides facilities for examining the structure 
of the task trees and modifying them by killing subtrees, 
changing temporal constraints, and adding new nodes to 
the tree.   These facilities are useful for error recovery, 
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Figure 3: A TCA Task Tree 

since they enable robot systems to patch plans. 
Facilities are provided for specifying and scheduling 

monitors. The start time of a monitor can be constrained 
in relationship to another task (e.g., in Figure 3, the 
monitor PM begins after D is achieved), and it can be set 
to run for a specified duration (e.g., 3 minutes), or until a 
specified task is completed. 

TCA supports polling and interrupt-driven monitors, 
both of which are specified by a condition query and an 
action message (Figure 3). For polling monitors, the 
central control module issues the condition query at a 
fixed frequency. If the condition holds, the action 
message is sent. The action message typically is used to 
replan by modifying the task tree. For example, we use a 
polling monitor that checks the Hero's battery every 20 
seconds and inserts a "recharge" task if the battery level is 
low. 

For interrupt-driven monitors, TCA informs modules 
when to set up new monitors and when to cancel them. 
The modules have responsibility for informing TCA 
whenever the monitor's condition holds, at which point 
TCA will issue the associated action message. For 
example, whenever an image is acquired, the Hero's 
perception module scans the image and informs TCA if 
new cups are detected. 

Context-dependent exception handling is supported by 
TCA. Modules can associate exception handlers with 
nodes in the task tree. When an exception message is 
issued, TCA searches up the tree to find a handler for that 
exception. If the handler cannot deal with the situation, it 
reissues the exception and the search continues up the 
tree. If the root node is reached, TCA simply terminates 
the task. 

Facilities are also provided for defining and managing 
resources. A TCA resource is a collection of message 
handlers, together with a capacity. TCA ensures that the 
resource capacity is never exceeded, queuing messages if 
necessary until the resource becomes available. The 
resource facility can also be used for synchronization. A 
module can lock a resource, which prevents the resource 
from  handling  messages  until  it  is  unlocked.     For 

example, a concurrent vision module might want to 
ensure that images are acquired while the robot is 
stationary. This can be accomplished by locking the 
resource for the robot's actuators before acquiring an 
image. 

3. Capabilities 
To cope with dynamic and uncertain worlds, the 

classical planning framework must be extended to include 
several new capabilities. These capabilities include 1) 
interleaving planning and execution, to enable partially 
specified plans to be executed, 2) using monitors to detect 
environmental changes, 3) recovering from execution 
errors (plan failures), and 4) dealing with multiple tasks 
when unexpected opportunities or contingencies arise. 

The following sections describe these capabilities and 
why they are needed to achieve reactivity within a 
planning framework. Each section indicates how the 
TCA facilities can be used to implement the capabilities. 
We also present some research goals that are directed 
towards having robot systems incrementally produce the 
capabilities themselves, based on their experiences. 

Interleaving Planning and Execution 
In dynamic, uncertain domains, it is unreasonable to 

have a planner specify plans down to the minutest detail 
[Agre 87, Chapman 90]. Instead, it is often advocated to 

use the environment to dictate actions [Brooks 
86, Kaelbling 86]. The optimal strategy is probably some 
combination of both: the system should plan to the limits 
of its knowledge of the environment, but no further. 

Rather than being antithetical to planning, this strategy 
is actually well-suited to a framework based on 
hierarchical decomposition and temporal constraints. The 
idea is to treat the decomposition of a goal into subgoals 
as an action in its own right Thus, planning can be 
tightly controlled by adding temporal constraints between 
planning and execution actions. 

In TCA, for instance, the delay-planning constraint (see 
Figure 3) can be used to coordinate planning and 
execution. A purely reactive system can be implemented 
by adding delay-planning constraints between every 
subgoal. With more judicious application, one can 
specify fairly arbitrary strategies for interleaving planning 
and execution. For example, the Hero's cup-collection 
task is expanded into four sequentially executed subtasks: 
navigate to the cup; pick it up; navigate to the trashbin; 
deposit the cup. A delay-planning constraint is added 
between the first two subtasks, since the system cannot 
plan how to grasp the cup until it gets near enough to 
make measurements with its wrist sonar. In addition, a 
constraint is added that the second navigation task cannot 
be planned until after the first. With these constraints, the 
Hero uses its overhead vision map to plan a path from the 
cup to the trashbin concurrently with picking up the cup. 
The plan is cached by TCA until the cup is grasped, at 
which point it is executed. 
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We also explored concurrency in the single-leg walking 
system. After developing and debugging the system 
using sequential planning and execution, several of the 
delay-planning constraints were removed to enable the 
system to execute one step while planning the next. In 
addition, we added a constraint to prevent the planning 
from getting too far ahead of execution, and used resource 
locking to prevent the robot from moving during image 
acquisition. The addition of concurrency increased 
performance by over 30%, with only minor modifications 
to the existing walking system [Simmons 90b]. 

Detecting Changes 
The capability to detect changes in the environment is 

obviously central to being reactive. While a simple 
scheme is to continually monitor all relevant features 
(e.g., [Brooks 86, Kaelbling 86]), this is not feasible for 
robots with many tasks and limited sensors. In such 
cases, monitors must be carefully selected and scheduled 
(cf. [Firby 89, Noreils 89]). 

TCA facilitates selective monitoring by providing 
mechanisms for creating polling and interrupt-driven 
monitors, and for synchronizing them with respect to 
other tasks in the task tree. In addition, since the TCA 
monitors run concurrently, a wide range of conditions can 
be monitored without impeding the robot's main tasks. 
For example, after the Hero system spots a new cup (and 
until the cup is grasped) it monitors whether the cup 
remains visible; after the cup is grasped, it periodically 
checks whether the cup remains in its gripper. 

Given the monitor facilities, the problem remains to 
decide what to monitor, and how frequently. By 
monitoring only selected conditions, the robot could miss 
important changes. The challenge is to minimize that 
possibility. One idea we are exploring is the use of 
coarse-to-fine sensing strategies. For example, the Hero 
system uses its coarse 2D vision map to find cup-like 
regions. It then navigates near the object, and uses 
multiple sonar readings to determine if the object is 
actually the size and shape of a cup. In related work, this 
strategy is being generalized by using inductive methods 
to learn information-sensitive and cost-sensitive strategies 
for classifying objects [Tan 90]. 

We are also developing methods for automatically 
deriving the parameters of sensing strategies, such as the 
polling frequency or sensor resolution. The idea is to 
construct a causal explanation for why a sensing strategy 
works, and then reason about the uncertainties in that 
strategy. In monitoring the robot's battery, for example, 
we must determine how often to poll the battery level and 
the threshold for heading back to the charger. We can 
construct an explanation (an equation) that relates the 
polling frequency, monitor threshold, expected distance to 
the charger, speed of the robot, and expected rate of 
discharge. Since some of the terms are random variables, 
we end up with an equation that enables us to trade off 
probability of success (risk), polling frequency (sensor 

utilization), and monitor threshold (urgency). 

Error Recovery 
Monitors can detect when the assumptions underlying a 

plan are no longer valid (either the world changed, or the 
plan was based on inaccurate information). Error 
recovery strategies can then be employed to change the 
plan to reflect reality. In general, they are quite 
dependent on the current task and environment The TCA 
exception handling facilities support context-dependent 
error recovery by enabling different error handlers to be 
associated with different nodes of the task tree. 
Typically, errors are handled in a TCA-based system by 
collecting information about the current environment, 
analyzing the task tree, and then manipulating the task 
tree by killing subtrees, adding nodes and temporal 
constraints, and resending messages. 

For example, Figure 4 illustrates part of the task tree 
and associated exception handlers for the Hero's cup- 
collection task. An "object in path" exception message is 
first handled by EH1, which tries to plan a detour. If a 
detour is found, a new Path Segment node is added 
between Path Segmentl and Path Segmentl; this node 
will then be expanded and executed, as usual. Otherwise, 
EH2 tries to replace the current plan with a new path to 
Cupl. If this fails, EH3 is invoked to terminate the task 
by killing the subtree rooted at Collect Cupl. 

EH3: (object in path) f£ollect Cupl 
Terminate task     v ^ 

EH2: (object in path) fGoNear Cupl 
Replan path V. 

EH1: (object in path) 
Add detour 

C    Path 
I Segmentl 

z 
Figure 4: Context-Dependent Error Recovery Strategies 

TCA's use of centralized communication places an 
upper limit on its reaction time. For more reflexive 
behaviors, we implement routines within the controller 
module that act to stabilize the robot if the sensors detect 
anomalies, and then report the error via TCA (cf. [Miller 
89]). In the single-leg testbed, for instance, the controller 
monitors the force on the leg and stops the mechanism 
immediately if slippage is detected. Similarly, on-board 
routines check the Hero's wheel encoders and sonars 
while it is moving. If a collision, or imminent collision, is 
detected the robot reflexively stops and an exception 
message is issued, which invokes the error recovery 
strategies described above. 

An alternative method is to use a debugging algorithm 
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to determine how to patch plans (e.g., [Hammond 
89, Simmons 88]). While the debugging methodology 
tends to be fairly general, the TCA method is more 
efficient in finding applicable strategies. We are currently 
working to combine the methods: the algorithms of 
[Simmons 88] would be used to debug plans, which 

would then be generalized and "compiled" into error 
recovery strategies usable by TCA (cf. [Mitchell 90]). 

Multiple Tasks 
In addition to reacting to plan failures, robot systems 

must handle changes in the environment that signal new 
opportunities or contingencies, such as a new cup 
appearing on the floor, or the battery getting low. These 
new tasks should be coordinated with the current task(s) 
in an intelligent manner. 

A straightforward approach is to temporally order all 
tasks based on their priorities. As with error recovery, 
prioritization is often context dependent. For example, 
we can prioritize two cup-collection tasks based on which 
task ordering yields the shortest overall path length 
(Figure 5). If we approximate path length by the straight- 
line distance between objects, we can infer that the robot 
should collect Cupl if: 

^«Robot   ~   ^Cupxl    +    lLoCCuP2 
ILoo. Robot ^«cupal +   ILoc, Cupl 

Figure 5: Ordering Two Cup-Collection Tasks 

A generalization of this strategy is to prioritize tasks by 
estimating their relative costs and benefits (including 
opportunity costs). We have begun developing specific 
prioritization strategies for the Hero's tasks, and hope that 
the effort will help us discover a general, yet efficient, 
algorithm for context-dependent prioritization of tasks. 

It is not always necessary to prioritize tasks, since tasks 
can occur concurrently if the resources they use are 
disjoint. For example, the Planetary Rover could 
conceivably navigate and communicate with Earth 
simultaneously. The TCA resource mechanism provides 
an efficient method for detecting conflicting tasks: 
contention occurs when the capacity of a resource is 
exceeded. While our Hero system currently orders all 
top-level tasks, we intend to explore alternative strategies 

that prioritize tasks only if TCA detects resource 
contention between their subtasks. Again, some 
combination of strategies might be best: if the system 
knows from prior experience that two tasks utilize 
common resources, it can prioritize them immediately; 
otherwise, it can wait until TCA detects contention. 

4. Conclusions 
This paper describes the Task Control Architecture, a 

general-purpose framework plus set of utilities for 
coordinating the planning, sensing, and action of mobile 
robot systems. Hierarchical plans are central to TCA, 
providing a natural and flexible foundation for handling 
multiple, complex tasks. TCA provides facilities for 1) 
creating and manipulating hierarchical plans (task trees 
and temporal constraints), 2) specifying polling and 
interrupt-driven monitors, 3) resource management, and 
4) context-dependent exception handling. 

We present several capabilities that must be added to 
the classical planning framework in order to handle 
uncertain and dynamic environments: interleaving 
planning and execution, detecting changes, error 
recovery, and coordinating multiple tasks. The first 
capability enables robot systems to act on partially 
specified plans, allowing them to plan in advance in spite 
of uncertainty. The other three capabilities enable 
systems to detect and intelligently handle plan failures, 
unexpected opportunities and contingencies. The paper 
focuses on how TCA supports the implementation and 
coordination of the four capabilities. 

TCA was designed to provide a framework for 
combining deliberative and reactive behaviors. Its 
demonstratable success with the Planetary Rover and 
Mobile Manipulator projects is an encouraging indication 
of its utility in coordinating complex behaviors. Our next 
step is to automate the incremental addition of monitors, 
error recovery strategies, and task prioritization, along the 
directions outlined in the paper. 
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Abstract 

In this paper we describe D/EDALUS, a case- 
based planner that learns from successful 
plans. The system uses a means-ends engine 
to generate plans, treats the retrieval of opera- 
tors from memory as a classification task, and 
treats the update and organization of memory 
as a conceptual clustering task. This combina- 
tion of methods lets DAEDALUS use abstractions 
to guide its planning when they are available, 
fall back on specific cases when they are not, 
and resort to traditional means-ends search on 
completely novel problems. 

1     Introduction 

In general, planning is intractable in that no algorithm 
can find solutions to all planning problems in all do- 
mains (Chapman, 1987). Nevertheless, one can still aim 
for general methods that can solve realistic planning 
problems in many situations. Researchers have explored 
several techniques, such as hierarchical planning (Sacer- 
doti, 1974), in an attempt to reduce the combinatorial 
search that plagues planning problems. Although these 
methods constrain search, they also require the imple- 
menter to introduce domain-dependent knowledge, and 
acquiring and coding such knowledge is difficult. This 
suggests that automated methods for acquiring domain 
knowledge for planning tasks would be very useful. 

Much of the recent research in machine learning has 
directly addressed this issue, attempting to acquire 
domain-specific plan knowledge from experience. This 
research falls into two basic paradigms. One approach 
involves learning abstract knowledge, either in the form 
of search-control rules that reduce the effective branch- 
ing factor or in the form of macro-operators that de- 
crease the effective length of solution paths. Much of the 
work on explanation-based learning falls into this camp, 
but inductive variants also exist. Researchers who study 
learning abstract knowledge directly address problems of 

*Also affiliated with the University of California, Irvine, 
and Sterling Federal Systems. 

constraining search, but they often assume a simplistic 
rule-based representation of knowledge whose conditions 
require an exact match, thus ignoring issues of memory 
organization and retrieval. 

An alternative approach involves storing specific plan- 
ning experiences in memory and then using these 
"cases" in solving novel but related planning problems. 
Researchers in this case-based framework focus directly 
on the organization of memory, on the retrieval of knowl- 
edge from this memory, and on adapting the retrieved 
cases to new situations. This work is closely related to 
research on analogy, but it is often applied to specific 
performance tasks such as planning. Despite its advan- 
tages, research on case-based planning often emphasizes 
the importance of memory to the exclusion of the search 
issues that arise in domains where one lacks experience. 

In this paper we describe DAEDALUS, a planning sys- 
tem that begins to bridge the gap between these two 
approaches to the representation, use, and acquisition 
of plan knowledge. As we describe in the following sec- 
tion, the system begins with knowledge of legal opera- 
tors as its only domain expertise, so that it must search 
to find successful plans. However, DAEDALUS stores cases 
based on these plans in memory, and it uses them to con- 
strain its future planning behavior. Eventually, the sys- 
tem moves beyond specific cases to store abstract plan 
knowledge, but it retains the ability to fall back on case 
knowledge or even search when necessary. After describ- 
ing the basic system, we present some experimental evi- 
dence that DAEDALUS' planning skills improve with prac- 
tice. We also compare the system's approach to learning 
and planning with alternatives from the literature, and 
propose some directions for future research. 

2    The Daedalus System 

DAEDALUS is a case-based planner that starts with a 
small number of simple cases, and builds a library that 
allows it to plan by indexing cases, rather than by 
search. The system accepts an initial state and a set of 
goal conditions as input and returns a sequence of op- 
erators that will transform the initial state into a state 
that satisfies the goal conditions. The planner is given 
an initial case library consisting solely of operators ap- 
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plicable in the domain. The operators are organized hi- 
erarchically in a memory structure, and are indexed by 
the changes or differences they effect. DTEDALUS uses a 
variant of means-ends analysis that calculates the dif- 
ferences (the changes to be made) between the current 
state and the goal conditions, and uses these differences 
along with the features of the current state to retrieve 
operators (cases) from memory. The system uses the 
operators it retrieves to search for a plan in the domain 
space, much as Fikes, Hart, and Nilsson's (1971) STRIPS. 

Learning in DAEDALUS consists of incorporating the 
generated plans into memory in a way that allows them 
to be retrieved when applicable. Upon encountering a 
previously unseen problem, the system retrieves a rele- 
vant part of a plan and uses it to select operators for 
the new task. The process of creating the indices for a 
new case leads DAEDALUS to generalize its stored plans, 
giving rise to useful abstractions while still retaining 
the ability to search if necessary. Below we describe 
DiEDALUS' representation and organization of plans, its 
performance and learning components, and its overall 
behavior. 

2.1     Representing States, Problems, Operators, 
and Plans 

DTEDALUS acts on data structures of four types: states, 
problems, operators, and plans. In general, a state con- 
sists of some description of the world, possibly including 
features internal to the agent. We use a simple STRIPs- 
like state representation (Fikes et al., 1971), with each 
state described as a set of objects and symbolic relations 
that hold among them. 

A problem consists of an initial state and a set of 
goal conditions that the agent wants to achieve. Each 
state may be a partial description of the world. For 
instance, Figure 1 (A) presents a graphical description of 
a rocket world problem (Veloso, 1989)1. The initial state 
consists of three objects: an autonomous rover, a rover 
support satellite, and a one-way transport rocket. Each 
of the three objects are located on Earth; the rocket is 
on its launch pad, the satellite loaded inside, and the 
rover waiting nearby. The final state shows the rover 
exploring Mars, the satellite transmitting data back to 
Earth, and the rocket cracked and bent for lack of a 
landing procedure. 

The box in Figure 1 (B) labeled "initial state", shows 
the STRiPS-like state representation of the pictorial de- 
piction of the initial state in (A). The box labeled "goal 
conditions" is a partial description of Figure 1 (A)'s fi- 
nal state. Although the initial and final states are the 
formal definition of a problem, DiEDALUS uses the initial 
state and the differences between the initial state and 
the goal conditions as an internal representation of a 
problem, and uses the goal conditions to test for success- 
ful termination. The notion of representing problems as 

The examples in this paper make use of a domain slightly 
different from that presented by Veloso. 

differences is central to our approach. 
An operator in DJEDALUS has a set of preconditions, 

an add list, and a delete list, giving them a strong re- 
semblance to the STRIPS operators (see Table 1). From 
this information one can derive a set of differences that 
exist between states before and after application, result- 
ing in a description similar to that used for problems, 
and allowing them to be stored in the same memory 
structure. 

The system represents a plan for solving a particu- 
lar problem in terms of a derivational trace (Carbonell, 
1986) that states the reasons for each step in the opera- 
tor sequence. A trace consists of a binary tree of prob- 
lems and subproblems, with the original task as the root 
node and with trivial (one-step) subproblems as the ter- 
minal nodes. Each node in the derivational trace has 
two recursively defined children. One child represents 
the subproblem of transforming the parent problem's 
current state into the preconditions of the parent prob- 
lem's operator. The other child represents the problem 
of transforming the state that results from applying the 
parent problem's operator into the goal state of the par- 
ent. As well as having pointers to subproblems, each 
problem in the binary tree has pointers to its current 
state, its operator, and the state resulting from apply- 
ing the operator. 

The derivational trace in Figure 2 shows a plan that 
solves the problem presented in Figure 1. Here, ellipses 
represent problems, rectangles represent operators, and 
squares represent states. The root node, representing 
the problem, has links to both the starting state and the 
final state that satisfied the goal conditions. The root 
node also records the operator instance, (unload-rover 
roverl), which the system selected to transform the 
top-level problem. Two children sprout sideways from 
the root node. The upper child denotes the problem of 
transforming the initial state into a state that satisfies 
the preconditions of the operator at the root node. Since 
this node, demarcated (load-rover roverl), does not 
have an upper child, one can infer that all the precon- 
ditions of (load-rover roverl) were satisfied and the 
operator was directly applicable. The fact that it has 
a lower child shows that the application was insuffi- 
cient for satisfying the preconditions of (unload-rover 
roverl). In summary, upper children represent the 
problem of changing the current initial state into a state 
that satisfies the preconditions of the operator at the 
current node, and lower children represent the problem 
of transforming the state resulting from applying the 
operator at the current node into a state that satisfies 
the current goal conditions. 

Although the derivation trace in Figure 2 shows how 
DJEDALUS found the successful plan, it does not show all 
the problem-solving activity. In fact, when DTEDALUS 

was first presented this problem, the first operator it 
selected was (unload-satellite satellitel). How- 
ever, once this operator was applied, D^DALUS could 
find  no  way  of resolving  the  difference   (at roverl 
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(A) 

Initial State Final State 

(B) (at rover 1 earth) 
(at rocket earth) 
(inside satellite 1 rocket) 
(satellite satellitel) 
(rover rover 1) 

Problem 

Initial State 

(at roverl mars) 
(at satellitel mars) 

(at roverl mars) 
(at satellitel mars) 

Goal Conditions 

Differences 

Figure 1. A simple problem in the rocket world. 

Mars ). It was forced to backtrack over the application of 
(unload-satellite satellitel) and retrieve another 
operator from its memory, (unload-rover roverl). 
Thus, problem solving can be viewed as and/or search 
with the derivational trace constituting the and tree re- 
sulting from that search. 

2.2     The Organization of Plan Memory 

DTEDALUS' memory is used to assist a means-ends style 
planning engine, so both the plans created by DJEDALUS 

and the plans given by the user need to be "index- 
able" by the information available to means-ends anal- 
ysis. The derivational trace is designed to record the 
necessary information; storing the sequences of domain 
operators with their associated problem-solving state 
(PSstates), which consists of the state current at the 
time of selection, and the differences the operator was 
selected to address. 

An operator and its PSstate make up a case, and 
DJEDALUS breaks up the derivational trace into its com- 
ponent cases and stores each case separately into mem- 
ory.   The resulting memory structures are both usable 

and flexible. As observed by Kolodner (1987), the infor- 
mation stored with an entire plan may make the plan 
difficult to work with, and much of that information may 
not be relevant to the inference at hand. Also, storing 
the cases separately, in addition to giving access to parts 
of plans, lets one reconstruct the original plan, or con- 
struct a new plan out of the pieces of several different 
plans. 

The cases are organized in a probabilistic concept hi- 
erarchy similar to Fisher's COBWEB (1987). This mem- 
ory takes the form of a tree in which each leaf describes 
an individual case, and each internal node describes an 
abstraction that covers the cases found at the leaves of 
the node's subtree. Every node makes up a concept de- 
scribing some set of cases that are similar to each other, 
but different from those described by sibling nodes. The 
concepts are probabilistic in that they describe the like- 
lihood of occurrences of each statement in the PSstate, 
as well as the likelihood of occurrence of the concept 
itself. 

The nodes consist of two parts: the PSstate and the 
operator.   The PSstate has a differences section and a 
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Table 1. The operators of the rocket world. 

Name Preconditions Add-list Delete-list 

(launch-rocket) (at rocket earth) (at rocket mars) (at rocket earth) 
(load-satellite ?object) (at ?object ?place) 

(at rocket ?place) 
(satellite ?object) 

(inside ?object rocket) (at ?object ?place) 

(load-rover ?object) (at ?object ?place) 
(at rocket ?place) 
(rover ?object) 

(inside ?object rocket) (at ?object ?place) 

(unload-satellite ?object) (inside ?object rocket) 
(at rocket ?place) 
(satellite ?object) 

(at ?object ?place) (inside ?object rocket) 

(unload-rover ?object) (inside ?object rocket) 
(at rocket ?place) 
(rover ?object) 

(at ?object ?place) (inside ?object rocket) 

state section. Both sections contain a list of domain 
features (either goal or state) with an associated con- 
ditional probability of occurrence given membership in 
the concept. The operator also has an associated con- 
ditional probability. If the node is a leaf node, then all 
the conditional probabilities equal one. If the node is 
an internal node, the conditional probabilities are de- 
termined by the cases covered by the node. For exam- 
ple, if an internal node covers three cases, two of which 
have the operator Eat-lunch. and one with the operator 
Eat-dinner, then the internal node would list two op- 
erators: one, Eat-lunch, with a conditional probability 
of two-thirds, the other, Eat-dinner, with a probability 
of one-third (another example is shown in Figure 3). 

The hierarchical organization and the probabilistic in- 
formation associated with the nodes are used as indices 
for the case information. The memory structure defines 
a polythetic decision tree that may be used to determine 
the most similar case to the case at hand. This form 
of indexing is used to store both cases and operators, 
with only a slight difference between the two: cases are 
indexed by PSstate (state and differences), whereas op- 
erators are indexed by their differences. This distinction 
turns out to be inconsequential to the retrieval process, 
and both cases and operators are treated identically. 

2.3     Planning and Retrieval in Daedalus 

In this section, we discuss DTEDALUS' performance sys- 
tem — its planning and memory components. We de- 
scribe how a simple means-ends style planner, which 
solves problems through the generation of subgoals, may 
be guided and assisted by permitting access to a richly 
indexed memory of planning experience. We also discuss 
the mechanism of indexing plan memory and illustrate 
the process by way of an example. 

DJEDALUS uses a variant of means-ends analysis 
(Newell et al., 1960; Fikes et al., 1971). In this frame- 
work, solving a problem (transforming a current state 

into a desired one) involves the recursive generation of 
subproblems. The standard means-ends approach de- 
termines all differences between the current and de- 
sired state, selects the most important difference (using 
some predefined criterion), and then retrieves an oper- 
ator that reduces that difference. If the selected opera- 
tor cannot be applied, a subproblem (called a transform 
goat) is generated to change the current state into one 
that satisfies the operator's preconditions, and is solved 
by a recursive call to the algorithm. Applying the oper- 
ator produces a new state, along with a new subproblem 
(another transform goal) to transform this into the de- 
sired state; the algorithm is then called recursively to 
solve this task. The derivational trace in Figure 2 re- 
flects the recursive nature of the means-ends engine and 
displays all the goals generated in the problem-solving 
process: upper and lower branches represent transform 
goals, and the central branch represents the applied op- 
erator. 

DTEDALUS searches the domain space in a depth-first 
manner. The system continues recursively generating 
subproblems until it detects one of two conditions: ei- 
ther the differences are removed or a loop is detected. If 
the goals are satisfied, the system ends the recursion and 
proceeds with the next subgoal; if there are no more sub- 
goals, the plan is finished. However, if a loop is detected, 
the planner halts its current path of enquiry, backs up, 
and tries another path. DiEDALUS checks for loops in 
transform goals, whose detection causes the system to 
backtrack and pursue a different plan. 

Our system differs from most means-ends planners in 
the way it retrieves operators from memory, which is 
significantly different that used by either GPS (Newell 
et al., 1960), or STRIPS (Fikes et al., 1971). Initially, 
DJGDALUS is given a memory containing a set of plans 
that the user thinks will be useful. This may be as elab- 
orate as the user desires, but since cases can be tedious 
to construct, usually the initial memory consists of ab- 
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Initial State 

(inside satellitel rocket) 
(at roverl earth) 
(at rocket earth) 
(satellite satellitel) 
(rover roverl) 

Differences 

(at satellitel mars) 

(at roverl mars) 
(launch-rocket) 

Final State 

(at satellitel mars) 
(at roverl mars) 
(at rocket mars) 
(satellite satellitel) 
(rover roverl) 

(unload-satellite satellitel) 

Figure 2. Derivational trace for a solution of the rocket-world example. 

stract descriptions of the domain operators. 
Figure 3 displays an example of the initial hierar- 

chy for the rocket domain, which consists of five oper- 
ators: load-rover, load-satellite, launch-rocket, 
unload-rover, and unload-satellite. Each node 
has an associated label N, a set of associated differ- 
ences Di, and a set of one or more associated opera- 
tors. For example, the box in the lower left-hand side 
of Figure 3 shows node N7, with differences ~( inside 
?object rocket) and (at ?object ?place), and op- 
erator (unload-rover ?object). Each node has a base 
probability of occurrence P(N), and each difference has 
a conditional probability P(JF|7V) of occurrence given 
the concept, as does each operator. Node N7 had a prob- 
ability of | (because it covers one of the two instances of 
node K4), its differences each have conditional probabil- 
ities of 1, and its operator has a conditional probability 
of 1 as well. Cases are kept at the leaves of the hierar- 
chy, as indicated by the expansion of nodes N7 and N8. 
Node 14, the parent of nodes N7 and N8, is more general 
than either of its children. 

As in most case-based systems, retrieval is central to 

DJEDALUS' operation. Retrieval from memory is done 
in the following manner. The means-ends engine passes 
the memory system a PSstate, S, to request an opera- 
tor. The memory system takes S and temporarily incor- 
porates it into the root node of the concept hierarchy. 
Incorporation first identifies which features in 5 corre- 
spond to which features in the PSstate of the root node, 
and then, temporarily updating the conditional proba- 
bilities of the features in the node. Finding the corre- 
spondence between features in S and PSstates in the 
concept hierarchy is cast as a partial-matching problem 
in which the domain constants of the features in S must 
be consistently bound to the pattern matching variables 
in the features of the node in the hierarchy. The second 
part, modifying the conditional probabilities, consists of 
increasing the probabilities of those features of the con- 
cept's PSstate that were matched, and decreasing the 
probabilities of those features that were not matched. 

Once the S has been incorporated into the root node, 
the memory system must decide which of the root's 
children has the closest resemblance to the PSstate 
S.     This decision  is done  by  way  of an evaluation 
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load- 
rover 

P(N4) = 2/5 P(F|N4) 

Present Differences 

-(inside ?object rocket) 

(at ?object ?place) 

1 

1 

Operators P(o|N4) 

(unload-satellite ?object) 
(unload-rover ?object) 

1/2 

1/2 

P(N7) = 1/2 P(F|N7) 

Present Differences 

~(inside ?object rocket) 

(at ?object ?place) 

1 

1 

Operators P(o|N7) 

(unload-rover ?object) 1 

P(N8) = 1/2 P(F|N8) 
Present Differences 

-(inside ?object rocket) 

(at ?object ?place) 

1 

1 

Operators P(o|N8) 

(unload-satellite ?object) 1 

Figure 3. Initial concept hierarchy containing rocket world operators. 

function adapted from Gluck and Corter (1985). The 
function, category utility = [EjfcP(Cjt)SiP(F,|Cfc)2 — 
T,iP{Fi\C)2]/N, evaluates a partition — defined as a 
parent node and its immediate children. P(Ck) refers 
to the a priori likelihood that S is a member of the 
child Cfc. P(F{\Ck)2 is a measure of within-class simi- 
larity, that is, how closely to the cases summarized by Ct 
resemble one another. P(Fi\C)2 is the within-class sim- 
ilarity of the parent node; the subtraction of this term 
lets category utility measure the information gained by 
dividing the parent into a set of classes. Dividing by 
Ar, the number of children in the partition, allows cate- 
gory utility scores to be compared even if the described 
partitions are of different size. Our modifications allow 
category utility to be applied to a feature-based repre- 
sentation rather than the attribute-value representation 
of the original formulation. 

In choosing the best child, the memory system tem- 
porarily incorporates the PSstate, S, into each child in 
turn and evaluates the resulting partition. The partition 
resulting in the highest category utility score determines 
the node that most closely resembles S. Once that node 
is found, the PSstate is temporarily incorporated into 
it and the process is repeated using the selected node 
and its immediate children as the partition. This pro- 
cess continues until a leaf node is selected or the system 
determines that continuing down the hierarchy is inap- 

propriate. Currently, the memory system stops at an 
internal node if the cases below it have been tried and 
did not lead to a successful plan. 

Keeping track of unsuccessful cases allows the memory 
system to suggest a "next best" operator instance. This 
is a significant difference in that it places and ordering 
on the operator instances, rather than separating them 
into the relevant and irrelevant sets of more traditional 
means-ends planners. 

In summary, DTEDALUS augments simple means-ends 
planning with a hierarchically organized plan memory. 
The resulting merger is a planner whose behavior is 
strongly determined by the experience encoded in the 
plan memory. This domain knowledge influences the 
planning process by controlling what operator instances 
are retrieved for each step in a plan. 

2.4     Learning in Daedalus 

DJEDALUS integrates learning into its planning process 
by storing the cases it obtains from derivational traces. 
The concept hierarchy stores information about the 
problems and subproblems DAEDALUS has encountered, 
along with the operators that led to their successful solu- 
tion. Whenever a plan is found that achieves a problem 
or subproblem, the description of that problem is stored 
in the concept hierarchy. This involves storing the case 
(the PSstate and the selected operator) as a new termi- 
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rial node in the hierarchy. In addition, DTEDALUS up- 
dates the summary descriptions of the nodes (indices) 
by revising the probabilities on all nodes along the path 
between the new node and the root. The system in- 
vokes this process for each subproblem as it is solved, 
effectively storing (and indexing) a probabilistic 'selec- 
tion rule' (Minton, 1988) for deciding among operators. 

This process is almost identical to the retrieval pre- 
cess, with only a few exceptions. As the memory system 
calculates the category utility of each partition, search- 
ing for the best match between the children of the par- 
tition and the PSstate, three other possibilities are con- 
sidered: create a new sibling, merging two children, and 
splitting a child. At each level, category utility is calcu- 
lated to determine which child of the current partition 
is the best candidate for the permanent incorporation 
of the PSstate. The system also considers putting the 
PSstate off by itself, creating a new class in the partition. 
In merging two nodes, DJEDALUS takes the two most 
promising nodes and checks to see if a new node, sum- 
marizing the combined cases of the original two nodes, 
would result in a partition with a higher category utility 
score (i.e., yields a greater information gain). In split- 
ting, the system takes the best candidate and replaces 
it with its children, checking whether the resulting par- 
tition has a higher category utility score. If any of these 
exceptions have higher category utility scores than in- 
corporating S into one of the children, the corresponding 
modification will be made to the hierarchy. 

These hierarchy-modifying operators allow the mem- 
ory system to alleviate order effects by allowing it to 
recover from a biased set of examples. If DAEDALUS 
were trained on a set of blocks-world problems, where 
every problem started with all the blocks on the table 
and ended with a single tower, then when given a prob- 
lem of disassembling a tower it might recommend the 
stack operator, since it has always worked in the past. 
The hierarchy modifying operators can help the memory 
system recover from such over-commitment by splitting 
classes that are overly general, or merging classes that 
are overly specific. 

The ability to merge, split, and create new siblings 
is a distinction between learning and retrieval. When 
the system is learning, the classification process makes 
permanent changes to the concept hierarchy and is us- 
ing the hierarchy modifying operators. However, during 
retrieval, the classification process makes no permanent 
changes, and splitting, merging and creating new sib- 
lings are not considered. This distinction allows for hi- 
erarchy maintenance during learning without worrying 
about hierarchy maintenance during retrieval. 

This storage process should give DAEDALUS more effi- 
cient future behavior. Upon encountering a new prob- 
lem, the system uses its memory of past successes to 
select operators in a more discriminating fashion. Spe- 
cific problems (described by PSstate-operators pair) are 
stored in the same concept hierarchy as the original op- 
erators, and the same sorting process is used to retrieve 

them. If a stored case matches a new problem or sub- 
problem more closely (according to an evaluation func- 
tion) than one of the original operator descriptions (be- 
cause it has more in common), DAEDALUS retrieves this 
case and attempts to apply the associated operator. 

Figure 4 displays DTEDALUS' memory after the deriva- 
tional trace in Figure 2 has been incorporated. The 
white nodes are those found in the initial hierarchy (see 
Figure 3). The black nodes are those incorporated dur- 
ing the planning process. Node N9 shows the resultant 
form of the PSstate-operator pair for (unload-rover 
roverl). The constants in the PSstate have been re- 
placed by variables, allowing a certain amount of gen- 
eralization. The structural dependencies between the 
relations have been preserved by assigning the same 
pattern matching variable to identical constants. For 
instance, (rover roverl) and (at roverl Earth) be- 
came (rover ?x) and (at ?x Earth). Note that the 
argument of the operator falls under the same variabi- 
lization process. The user can specify constants where 
variabilization is not desired; rocket, Earth, and Mars 
have been so declared. The node N12 is a generalization 
of the two cases where (launch-rocket) proved bene- 
ficial. The two cases were nearly identical, but in one 
case, roverl was still on Earth, in the other, roverl 
was inside the rocket. 

The modification of the hierarchy affects the retrieval 
process of future queries. After having solved a prob- 
lem using extensive backtracking, the system will do no 
backtracking while solving similar problems. At each 
choice point where DAEDALUS had previously retrieved 
an inappropriate operator (one that led to backtrack- 
ing), it now has a concept describing the state and goals 
that characterize that choice point, and the correct oper- 
ator instance to be used. When DiEDALUS sees a similar 
problem, it retrieves the correct operator. In this way, 
the system builds up a hierarchy of classes describing the 
problems and situations characteristic of the domain, as 
well as the operator instance appropriate for each. The 
result is a planner that does progressively less search, 
planning more and more by retrieval. 

3     Experimental Evaluation of Daedalus 

Effectively evaluating a learning planning system is 
an elusive and slippery task. Recent literature has 
pointed out shortcomings in previous forms of evalu- 
ation and proposed tentative solutions (Minton, 1988; 
Segre, Elkan, & Russell, 1990). In the evaluation of 
DJEDALUS, we have tried to avoid the pitfalls of evalu- 
ation by using the suggestions proposed by the afore- 
mentioned authors, by explaining the limitations of our 
approach. 

3.1     Experimental Method 

Our experimental study focused on planning in the 
blocks world domain. The domain involves a two- 
dimensional world that contains a table and some num- 
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P(N9) = 1/11 P(F|N9) 

Present Differences 

(at ?x mars) 

(at ?y mars) 

1 

1 

1 
1 
1 
1 
1 

State 

(at ?x earth) 
(at rocket earth) 
(inside ?y rocket) 
(satellite ?y) 
(rover ?x) 

Operators P(o|N9) 

(unload-rover ?x) 1 

P(N8) = 1/2 P(F|N8) 

Present Differences 

-(inside ?object rocket) 

(at ?object ?place) 

1 

1 

Operators P(o|N8) 

(unload-satellite ?object) 1 

P(N12) = 2/11 P(F|N12) 

Present Differences 

(at rocket mars) 1 

1/2 
1 
1 

1/2 
1 
1 

State 

(at ?x earth) 
(at rocket earth) 
(inside ?y rocket) 
(inside ?x rocket) 
(satellite ?y) 
(rover ?x) 

Operators P(o|N12) 

(launch-rocket) 1 

Figure 4. Concept hierarchy after incorporating the derivational trace in Figure 2. 

ber of blocks. A block may be on another block, or upon 
the table. There is no limit to the number of blocks in 
a single stack or the number of blocks the table may 
hold. The domain has four operators that change the 
positions of the blocks: (stack ?x ?y), (unstack ?x 
?y), (putdown ?x), and (pickup  ?x). 

The data was collected by averaging ten trials of forty 
problems each. A problem is an initial state, made out 
of a randomly (with some restrictions) chosen number 
of blocks that are randomly placed on the table and 
on other blocks, and a randomly generated set of goal 
conditions, reflecting the desired final configuration of 
the blocks in the initial state. Each problem was ran- 
domly generated by a problem generator, and presented 
to the system. If a figure compares two systems, each 
system was run on the same set of problems. For each 
run, the problems presented to the planners are ini- 
tially limited to simple problems, those problems con- 
taining a small number of blocks and goal conditions. 
As more problems are encountered, the problem gen- 
erator is permitted to produce problems having more 
blocks and more goal conditions. The first 10 problems 
consisted solely of two block problems with at most one 

goal condition. The maximum number of blocks and 
goal conditions was increased by one for every 10 prob- 
lems presented. Hence, problems one through ten con- 
sisted of two block/one goal condition problems, and 
problems thirty-one through forty consisted of two to 
five blocks/one to four goals problems. 

In collecting statistics for DJEDALUS with learning, the 
we presented the system with each problem twice. The 
first time, with the learning component turned off, was 
used to generate performance measures. The second 
time was done with learning turned on, and was used 
to train the system on the problem. This was done to 
avoid the potential effects of within-trial learning. 

Two limitations were placed on D^DALUS during 
these runs. The first was a limit on the depth of pend- 
ing transform goals during backward chaining, which 
was set at four. This means that no path from the root 
of the derivational trace to any leaf may traverse more 
than four upper branches. This limitation was enforced 
primarily for expedience, since it cut down on the explo- 
sivness of the search space. Further code optimizations 
may allow us to relax or remove this limitation, but 
currently the search for a solution in the unbounded 
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space takes too long. The limitation is biased to favor 
the non-learning system in two ways. First, it restricts 
the amount of backtracking possible, thereby giving the 
non-learning system the appearance of finding a solution 
with little search. Second, in general, the selection rules 
learned from backward chaining have more transfer than 
those learned from forward chaining, thereby forcing the 
learning system to assimilate more information in order 
to get good performance. 

The second limitation is a time limit. In these runs 
we allowed the system a maximum of ten CPU minutes 
to solve each problem. This limitation was also used for 
expedience. There is a difference between the transform 
goal limit and the time limit. The former limit will not 
prevent the planner from finding solutions, whereas the 
time limit can. 

3.2     The Effect of Learning on Search 

The primary goal of learning in a planner is to reduce 
the amount of search needed to find a solution. Fig- 
ure 5 shows the amount of search done by DAEDALUS 
without learning (white boxes) verses that amount of 
search done by D.EDALUS with learning (black boxes). 
The metric for determining search is computed by divid- 
ing the number of nodes expanded in the domain space 
by the number of operators in the solution plan. This 
gives an indication of the amount of backtracking done 
by each system. 

15° 

32       36       40 

Problem Number 

Figure 5. DJGDALUS' search with and without learning. 

The graph in Figure 5 shows how cumulative search 
grows as the number and complexity of the examples 
increases. The cumulative search is the total problem 
solving search over all examples up to that point; thus, 
the slopes of both curves are positive because the y- 
axis represents cumulative search. The second derivative 
of the curve representing DJGDALUS without learning is 
positive because the relative difficulty of the problems 
presented is increasing (the curve levels off at the end 

because of the time limit). The second derivative of 
the curve representing D^DALUS with learning is also 
positive, but only slightly. This shows that the system 
with learning is insensitive to problem difficulty, doing 
very little search on any of the problems. 

3.3     The Effect of Learning on Solution Length 

Traditionally, learning researchers have been primarily 
concerned with reducing the amount of search needed to 
find a plan, but have neglected to study how the learn- 
ing affects the length of the solution path. There seems 
little benefit in reducing the effort of finding a plan if it 
requires the execution system to traverse circuitous or 
redundant routes. Ideally, a learning planner should at 
least produce plans that are comparable to those pro- 
duced by the performance system. 
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Figure 6. Solution path length with and without learning. 

Figure 6 compares the solution paths produced by 
DJEDALUS without learning and DAEDALUS with learn- 
ing. The solution paths are averaged over the same 
ten trials used to generate Figure 5; again, problems 
were not included in the average. The graph is cumu- 
lative, showing the sum of the lengths of all solution 
paths to that point. From this graph, one can deter- 
mine that D^DALUS with learning did not reduce the 
average path length as compared to the system with- 
out learning. However, it does not greatly increase the 
length of the solution path either. This is due to the 
nature of the learning mechanism, which builds its con- 
cepts solely on the problem-solving behavior of the per- 
formance system, and not on an in-depth analysis of the 
produced plan. 

3.4     Testing Other Dimensions 

The utility problem, described by Minton (1988), was 
based on the observation that learning systems, while 
reducing the amount of search, may actually give rise 
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to an increase in solution time. In most planning sys- 
tems, this is characterized by a trade-off that brings 
about a reduction of search in the domain space but 
increased operator retrieval time. In D/EDALUS on the 
blocks world, the effect of this trade-off is an overall 
reduction in the work done by the system, but the de- 
crease is marginal. This is an important direction for 
future work. 

We have started preliminary testing using the tower 
of hanoi, rocket world (as shown by our examples), 
and scheduling domains. We chose the blocks world as 
our initial testing domain because its explosive problem 
space lets us study the effectiveness of operator selec- 
tion. The tower of hanoi domain was chosen for the same 
reason, but in our formulation there is only one operator, 
which allows us to study the effectiveness of the selec- 
tion of variable bindings. The rocket world was chosen 
because it contains irreversible operators, and gives the 
opportunity to demonstrate the power of means-ends 
analysis in conjunction with learning (see section 4.1 for 
further discussion). The scheduling domain was chosen 
as a first step towards a real-world domain. 

These domains have been coded and some preliminary 
testing has been done with each. The simple runs have 
shown a reduction in search without compromising the 
solution path length. As of yet, we have not determined 
DAEDALUS' overall performance with these domains, but 
we hope to report on them as the testing and develop- 
ment of DJEDALUS continues. 

4    Discussion 

4.1     Generality 

Traditionally, means-ends systems required an explicitly 
defined set of goal conditions that are used to generate 
differences. They also assume that the generated differ- 
ences are in the same language as the add and delete 
lists of the operators. DAEDALUS is somewhat different 
in this respect. As previously mentioned, DTEDALUS is 
capable of retrieving operators that are not relevant to 
the current differences, and can retrieve operators with- 
out differences at all. This ability lets the system plan 
under these conditions, and to learn relations between 
the differences and the operators, or, if differences are 
absent, to learn relations that occur between operators 
and domain states. 

For instance, suppose the task were to navigate a 
maze using three operators: turn-left, turn-right, 
and move-forward-one-step. If one were to spec- 
ify (at mouse positionl), and (mouse-orientation 
north) as the initial state, having a goal condition 
(at mouse position43) would give no indication what 
operator should be chosen. However, DJEDALUS will 
choose an operators at random until it has found a 
path from positionl to position43. When it learns, 
it will store each operator with its associated PSstate 
into the hierarchy, learning the relationship between the 
goals, states and operators.    With sufficient training, 

DAEDALUS should be able to map out the maze, and be 
able to navigate it with reasonably little search. 

This property allows DJEDALUS to run in domains that 
are not traditionally thought of as means-ends domains. 
It also makes the system less dependent on the choices 
of representation for any particular domain. Another 
property stems from DJEDALUs' strategy of operator se- 
lection, which differs from earlier methods it orders op- 
erators, rather than dividing them into relevant and ir- 
relevant sets. One result is that DTEDALUS prefers op- 
erators that reduce multiple differences in the current 
problem, which should make it more selective than tradi- 
tional techniques. More important, although DTEDALUS 

prefers operators that reduce problem differences, it is 
not restricted to this set. If none of the 'relevant' opera- 
tors are successful, it falls back on operators that match 
none of the current differences. This gives it the poten- 
tial to break out of impasses that can occur on 'trick 
problems'. 

This ability makes DAEDALUS less susceptible to some 
of the criticisms made about linear planners. There are 
two classes of 'trick problems' for such planners. The 
first class, which includes the famous Sussman anomaly 
(1973), consists of problems whose strong goal inter- 
action prevent linear planners from finding an optimal 
solution. DiEDALUS provides little for improving this 
class of problems; if a solution can be found, the system 
behaves like many other linear planners. The second 
class of problems are those in which a combination of 
irreversible domain operators and goal interaction pre- 
vent any solution from being found by a linear planner. 
This second class can be characterized in the following 
way: if one expands a domain with irreversible opera- 
tors into a graph, where the nodes represent each pos- 
sible state and the links represent the operators that 
transform one state into another, the resulting graph 
can be partitioned into at least two subgraphs in which 
the subgraph A has links into subgraph B, but subgraph 
B has no links into subgraph A. A 'trick problem' in 
such a domain has an initial state in subgraph A, and 
two or more interacting goals whose satisfying states are 
found in subgraph B. In solving the first goal, the plan- 
ner must travel from subgraph A into subgraph B. As 
the linear planner attempts to solve the second goal, it 
will have to return to subgraph A in order to undo the 
solution of the first goal; however, there is no way to 
do this. To solve this problem a planner must recognize 
that certain subproblems must be solved before it leaves 
subgraph A. Non-linear planning is one way to achieve 
this, DTEDALUS'S technique of learning the interactions 
provides a different solution. 

4.2     Related Work on Learning and Planning 

DAEDALUS is a learning planner with several unique 
properties, but it is only one of a set of planners pro- 
duced by the machine learning field. With this in mind, 
it seems beneficial to compare and contrast our system 
with other planners that address similar issues. 
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Of the more traditional planners, DAEDALUS is most 
similar to the PRODIGY/EBL (Minton, 1988) system. 
Both systems rely on means-ends analysis for the gen- 
eration of plans, and both systems learn information in 
the form of preference rules (probabilistic in DJEDALUS'S 

case). The most significant differences between the two 
systems lie in what is learned, and how it is learned. 
PRODIGY/EBL acquires several types of control rules: 
node preference, node rejection, operator selection, op- 
erator preference, operator rejection, goal preference, 
goal rejection, binding preference, and binding rejection. 
These rules are separately learned and stored, using an 
explanation based learning technique with different do- 
main knowledge for each type of rule. DAEDALUS only 
learns a subset of those rules (goal select, operator se- 
lect, and variable select), and is acquires them using an 
incremental conceptual clustering technique. 

The retrieval process returns an operator and its can- 
didate set of bindings, an obvious mapping to selection 
rules for operators and bindings. Less obvious is the goal 
selection. As a PSstate is being sifted down the concept 
hierarchy, it becomes associated with nodes that make 
stronger and stronger claims about which goals are rel- 
evant, that is, which goals have a high probability of 
occurrence in the PSstate. Although this does not spec- 
ify which goals are to be worked on, it does show which 
goals are being considered. 

The PLEXUS system of Alterman (1988) is another 
planning system that makes extensive use of non- 
episodic knowledge to eliminate search during plan re- 
pair. One marked similarity of DiEDALUS and PLEXUS 

is the storage and use of both general and specific plan 
information. In both systems, the retrieval and use of 
specific plans over general plans is preferred. However, 
both systems may make use of general plans if neces- 
sary. Another similarity is in plan repair. If a plan step 
fails for PLEXUS, it assumes that the failed plan step is 
"representative of the category of action" and will use 
background knowledge to find a new plan step. The re- 
pair process uses abstraction (moving up its categorical 
hierarchy from the failed plan step), and specialization 
(moving down its categorical hierarchy) to search for a 
suitable replacement. DAEDALUS operates in much the 
same way. If a plan step fails, DAEDALUS will query 
its memory for an alternative solution, which is usually 
taken from a sibling or an abstraction of the plan step 
initially retrieved. 

The planning/execution system PLOT (Yang & 
Fisher, 1990) is based on the same observation as 
DTEDALUS, that operator selection can be viewed as clas- 
sification. As a consequence, both systems use means- 
ends analysis to generate plans and probabilistic hierar- 
chies to store plan knowledge. There are two significant 
differences between the PLOT and DAEDALUS: what they 
learn and their response to the utility problem. 

DiEDALUS creates a plan in the form of a derivational 
trace, then breaks up the trace into its PSstate-operator 
pairs. PLOT also creates its plans in the form of a deriva- 

tional trace, but then creates a macro-operator out of 
the operator sequence and stores it. These macros are 
indexed by the preconditions and the differences of the 
macro itself; all PSstate information that made up the 
derivational trace is discarded. As a result, PLOT bal- 
ances between reactive behavior (by retrieving operators 
whose preconditions are satisfied) and traditional plan- 
ning, whereas DJEDALUS learns rules that reduce the 
amount of search needed to plan. 

In addressing the utility problem, PLOT borrows from 
Minton (1988) in keeping statistics that measure the 
utility of learned information. In Yang's system, a moni- 
tor watches the base rate associated with the concepts of 
PLOT'S plan memory. If a base rate drops too low the 
concept is judged to be of low utility (since it is used 
rarely), and is pruned from the tree. DAEDALUS does no 
pruning, but relies on the speed of its heuristic partial- 
matching function and tree-shaped memory to address 
the utility problem. 

4.3     Directions for Future Research 

As it currently stands, DJEDALUS is much too simple 
to plan effectively in a real-world setting, but future 
research may remedy many of its limitations. For in- 
stance, the system learns only from successful plans and 
never from failures. No matter how many times the sys- 
tem fails to solve a problem, it cannot use knowledge 
of those failures to constrain future search. Consider 
the following scenario: DAEDALUS is controlling an au- 
tonomous robot, and it stands on the curb of the killer 
street of the reactionary planners (Hendler & Sanborn, 
1987), but suppose now that the robot is sufficiently ar- 
mored to resist four or five collisions. As DJEDALUS is 
currently implemented, it would step into the street, see 
a car coming, start planning and get run over. Now, due 
to its protective shell, it would have survived the colli- 
sion, but since it did not successfully achieve its goal of 
avoiding the car, it learned nothing. Having not learned 
anything, DJEDäLUS would do exactly the same thing 
every time a car came at it until it was finally obliter- 
ated. However, if DTEDALUS could learn from failure, it 
could learn bad operator choices as well as good oper- 
ator choices, it might be able to avoid collisions after a 
few tries. 

The natural response is to store not only those 
PSstate-operator pairs that led to a successful plan, but 
also those that failed to produce a solution. The sim- 
plest version of this approach would store both types 
of cases, marking one desirable and the other undesir- 
able. If the extended DAEDALUS retrieved only unde- 
sirable operators, it would select some untried operator 
first. However, this approach ignores the fact that some 
failures are less undesirable than others, just as some 
some successes are less desirable than others. 

A more sophisticated approach would associate a de- 
sirability score or affect, ranging from oo to — oo, with 
each final state in a plan (such as being across the street 
or being hit by a car). Using a technique similar to Sut- 
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ton's (1988) method of temporal differences, the system 
would propagate affective scores back to the intermedi- 
ate states (such as being halfway across the street) that 
are stored in memory. States close to desirable states 
would acquire some of the latter's positive affect, while 
those close to undesirable states would acquire negative 
affect. Upon encountering a new problem, the system 
would retrieve a number of plausible operators, as in 
Jones' (1989) EUREKA, and then select the one that is 
expected to produce the state with the highest affective 
score. Over time, the temporal-difference method might 
produce cases and abstractions that accurately predict 
the desirability of the states to which they lead, letting 
one learn from varying degrees of success and failure. 

5     Conclusion 

This paper has described DAEDALUS, which we designed 
in an attempt to bridge the gap between planners that 
learn abstract knowledge and those that learn by creat- 
ing indexes to specific cases. We evaluated the system 
in terms of its ability to reduce the amount of search 
without adversely affecting the solution path lengths in 
the blocks world domain. Experiments in the rocket 
world domain have shown that DTEDALUS' combination 
of means-ends analysis with a memory in the form of 
a probabilistic concept hierarchy allows the system to 
successfully plan in domains not normally accessible to 
linear planners. 

Although the system has proved successful in captur- 
ing planning knowledge in toy domains, further testing 
is needed to examine the full generality and limitations 
of the system. Future work will be needed to extend 
DAEDALUS' capabilities before it can be applied to real- 
world domains. 
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1. Introduction 

No model, no matter how complex, can exactly mirror the real 
world. Consequently, any planner with a static model will in- 
evitably be handicapped in dealing with a complex real-world 
domain, unable to deal with failures which are a result of an 
inadequacy of the model. For example, suppose we are devel- 
oping plans which employ a gantry-arm in a warehouse to lift 
and place crates and boxes. In this complex environment, 
shown in Figure 1, we don't have perfect knowledge about the 

Real-world Complexity 

effects of operators we might employ. The gantry-arm is not 
perfectly accurate. It also is a complicated mechanism which 
might fail for many reasons. The planner also cannot have a 
perfect model of the world objects. B oxes are not perfect rect- 
angular prisms. Even if a more complex model were used, it 
is always possible that some detail, beyond the resolution of 
the model, could lead to an unexpected failure. A small hole 
in the side of one carton may catch on the sharp corner of the 
gripping device causing the box to slip and fall as it is lifted. 
In such a domain, no plan can be perfect. This is the qualifica- 
tion problem. More qualifications can always be added as to 
when a plan should not be attempted because it could fail. 

One of the major differences between artificial domains and 
complex real-world domains is the presence of uncertainty. 
Most simplified models assume facts are known with certain- 
ty while in the real world often they are not. Actions carried 
outin the worldmay often have uncertain effects. Simplified 
representations also introduce uncertainty because they trade 
off accuracy for ease of use. 

The primary approach to developing plans in the presence of 
uncertainty has followed the theme: "If we can represent and 
reason about uncertainty, we can develop plans that are guar- 
anteed to succeed anyway." This theme has been pursued 
strongly in the robotics community. In 1982, Brooks made use 
of numeric error bounds which could be propagated back 
through a plan to specify the conditions under which the plan 
could achieve its goal [Brooks82]. This analysis also indi- 
cated when additional operators should be added to the plan 
to reduce the restrictions on uncertainty in the plan precondi- 
tions. Many planners followed which employed explicit un- 
certainty representations and built on these techniques includ- 
ing the LMT Planner [Lozano-Perez84], EDR [Donald90], 
and SPAR [Hutchinson90]. 

Generally, in these approaches, numeric error ranges are as- 
signed to the sensors and effectors. During planning, possible 
error ranges are continually re-calculated as new operators 
are introduced into the plan. In several approaches, if the ac- 
cumulated error exceeds some preset limit, operators are in- 
troduced specifically for reducing the error. Guaranteed un- 
certainty-tolerant plans are sought, so all possible modes of 
potential failure (due to uncertainty) must be considered dur- 
ing planning. Producing such guaranteed plans can be very 
difficult. This shouldnotbe surprising considering that the al- 
ready complex domain representation has been made more 
complex through the addition of uncertainties. For instance, 
in Donald's EDR [Donald90] approach, generating plans 
when model error is possible involves generating and navigat- 
ing through a large number of slices of configuration space, 
each corresponding to a different constant model error. Each 
point in a configuration space corresponds to one possible po- 
sition and orientation of the piece being manipulated. Even 
if we restrict ourselves to a planar object with position and 
orientation, each slice of configuration space would be three- 
dimensional. In general, another dimension is addedfor every 

313 



uncertainty which is to be considered. In fact, when model un- 
certainties are introduced it is not always possible to find a 
guaranteed solution. Donald recognized this and uses an error 
detection and recovery (EDR) approach relaxing the guaran- 
teed criteria to allow the system to try apian if it can be guaran- 
teed that the possible resulting failure or success states can be 
recognized. If a failure occurs, it continues planning to 
achieve the goal from the recognized failure state. However, 
recognizing when a guaranteed plan is not possible, in order 
to apply EDR, still involves the same expensive techniques 
used when finding a guaranteed plan. 

Despite the fact that small uncertainties abound in many di- 
mensions considered by these planning systems, the uncer- 
tainties may not be equally likely to cause errors with a given 
set of tasks. Furthermore, if a plan is modified to tolerate some 
particular uncertainty, it may well be tolerate other uncertain- 
ties as well. Consequently, reasoning about all the uncertain- 
ties at planning time may involve a considerable waste of re- 
sources in comparison to an approach which deals with 
uncertainties if they cause difficulty during plan execution. If 
the domain is one where failures can be tolerated during a 
training phase, a system can be employed which learns from 
its failures, introducing uncertainty-tolerance into plans in an 
on-demand fashion. 

In our system, explicit approximations can be declared as deal 
with quantitative facts about the world. Rules employed by 
the system in constructing plans include tunable parameters. 
These parameters can be tuned in response to failures to im- 
prove the uncertainty-tolerance of generated plans. When the 
systems generates plans, no explicit reasoning about the ap- 
proximations takes place. Only when recovering from execu- 
tion failures does reasoning about the approximate nature of 
the data take place and then only in a limited qualitative man- 
ner. The planner can therefore quickly construct ungua- 
ranteed plans which can be refined as necessary to deal with 
uncertainties as they cause problems. Furthermore, plans 
which are constructed are generalized using explanation- 
based learning [DeJong86, Mitchell86]. These generalized 
plans can be employed in a class of similar situations meeting 
the same causal constraints as seen in the specific instance for 
which planning took place. This eliminates the need for the 
planner to generate separate plans for these similar situations. 

First, we will discuss the types of approximations the system 
employs for modelling world facts. Next, parameter-based 
rules are discussed whose parameters can be tuned to add un- 
certainty-tolerance to operations planned using them. An ar- 
chitecture is then presented for generating and refining ap- 
proximate uncertainty-tolerant plans. This includes a 
discussion of the role of explanation-based learning, execu- 
tion and monitoring, and plan refinement. A sample task do- 
main of robotic grasping is then described along with an ex- 
ample of system operation and some initial empirical results. 
Lastly, we discuss the future directions for the work. 

2. Data Approximations 

Data approximations can be either external or internal. An ex- 
ternal data approximation is used to represent the uncertainty 
of data in the world. The system employs internal data ap- 
proximations to simplify complex sets of data to make reason- 
ing more tractable. First, let us consider external data approxi- 
mations. 

2.1. External Data Approximations 
An external data approximations involves a set of quantities 
for which the system is given approximate values. Let Q be 
a vector {qi,q2,q3,...,qn} of quantity variables and Abe a vec- 
tor of their corresponding approximate values 
{ai,a2,a3,...,an}. A    data    approximation    asserts 
that: 

n 

V P(qi = x)<P(q; = y) iff   |x-a;| > ly-aj 
i=l 

This gives a very simple qualitative view of uncertainty distri- 
butions like that shown in Figure 2. It specifies that the proba- 

probability distribution 
for quantity variable q; 

decreasing 

Figure 2. Characterizing a Data Approximate Quantity 

bility of one encountering the true value of the quantity dimi- 
nishes as one moves away either above or below the 
approximate value. 

In the case of external data approximations, the value vector 
A is the best information the systemhas aboutthe values of the 
quantity variables Q. The only way to improve this informa- 
tion is to interact with the world. For purposes of planning, 
Q=A. The qualitative definition of a data approximation is 
never employed during planning, only when analyzing fail- 
ures so as to tune rule parameters. 

In robotics, external data approximations can be used to repre- 
sent values read from sensors, which are inherenüy uncertain. 
For instance, the position of a block, as sensed by a visual sys- 
tem, would be represented with an external data approxima- 
tion. 

2.2. Internal Data Approximations 

With an internal data approximation, the system chooses the 
values A of the quantity variables Q with a data approximation 
procedure. This is often motivated by the need to simplify the 
representation so reasoning can be performed more efficient- 
ly. Internal data approximations can be adjusted through the 
system's reasoning alone. The qualitative view of a data ap- 
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proximation applies to both external and internal data approx- 
imations. 

In robotics, geometric object models are examples of internal 
data approximations. A simplified geometric representation 
can be far more efficient to reason about than the complex raw 
data returned by a vision system. However, in seeking a sim- 
plified representation, accuracy is sacrificed. The system has 
thus introduced uncertainty. 

3. Parameter-Based Rules 

Parameter-based rules are employed when the system plans 
how a goal can be achieved. The parameters are tunable and 
if tuned correctly can be used to improve the uncertainty-tol- 
erance of generated plans. We make use of the following types 
of parameter-based rules: 

constraints 

Suppose that a system, in achieving some goal, must 
choose the best from a set of candidates. Each of the can- 
didates differ along one ormore continuous dimensions. 
A constraint rule is used for indicating a preference for 
candidates based on their value along one of these di- 
mensions. Each constraint rule functions as part of a 
multi-constraint rating rule for evaluating a set of candi- 
date choices. The parameter on which the constraint rule 
is based, when tuned, has an effect on how the candidates 
are rated by that rule. In the robotic grasping domain, pa- 
rameter-based constraint rules are used in choosing the 
bestfaces to use in achieving a grasp. Currently implem- 
ented constraint rules include opening-width-con- 
straint and contact-angle-constraint for constraining 
the choice of faces to those with a realizable opening 
width and a contact angle within the friction angle. 

controls 

These rules directly choose the value for some controlla- 
ble quantity. The parameter to the rule directly effects 
this choice. Controls can be either external and internal. 
External controls are directly associated with some con- 
trollable parameter in the outside world. Internal con- 
trols affect the system's internal reasoning. For exam- 
ple, in the robotic grasping domain, an external control 
is chosen-opening-width which chooses the amount by 
which the gripper should open for achieving the grasp. 
Weights which are used in combining constraints are ex- 
amples of internal controls. They affect the overall rat- 
ing which some set of constraints give a candidate by de- 
termining how constraints are weighted with respect to 
each other. For example, opening-width-constrainthas 
an associated weightopening-width-constraint-weight 
used in evaluating it relative to contact-angle-con- 
straint. 

3.1. Control Parameters 
Figure 3 gives a constraint diagram for the chosen-opening- 

Chosen-Opening-Width (Initial) 
1 | 1 ^- quality function 

 I  width of target objei •ct        / I  

min(distance to nearest object, 
max-opening-width) 

Figure 3. Initial Constraint Diagram for the Chosen- 
Opening-Width Parameter 

width parameter employed in the robotic grasping domain. 
This continuous parameter, corresponding to opening-width 
of the gripper for grasping the object, has an upper and lower 
bound specified. These are specified by general expressions 
which return the correct bounds for the current grasping situa- 
tion. In this case, even in the most approximate model, the 
gripper must be open at least as far as the width of the target 
object at the current orientation and position. It also must not 
exceed the maximum pos sible gripper opening limit of the ro- 
bot and must not open so wide as to collide with a nearby ob- 
ject. Of course, representations for the objects and their posi- 
tions and orientations are known to be data approximations. 
The initial belief of the system regarding opening width is that 
anything lying between the bounds on the value of opening 
width are acceptable values. The dashed line in Figure 3 is 
called the quality function and gives the system's current eval- 
uation of the various values which could be chosen for the 
opening width parameter. The initially flat function indicates 
no preference as long as the preconditions for the bounds are 
met. However, in choosing an opening width, minimal motion 
of the control from its current value is preferred, reducing 
movement viewed as extraneous. Therefore, initially, the con- 
straints on the chosen-opening-width parameter cause three 
mles to be generated. In general, the number of rules depends 
on the number of peaks and plateaus of the quality function. 
One rule is generated which prefers that the control be set to 
the lower bound when the current value is less than the lower 
bound, one leaves the control at its current value if that value 
is between the bounds, and one sets the control to the higher 
bound if it is greater than the higher bound. One of these rules 
is shown in Figure 4. A declarative specification for the con- 
straint on the parameter is translated into a set of rules 
employed in planning. When control parameters are tuned in 
response to failures, their corresponding mles are revised and 
will take on the new desired behavior in planning. Tuning of 
control parameters amounts to posting preferences in the re- 
gion between the bounds in Figure 3. These have generalized 
conditions which calculate the numeric location of the prefer- 
ence and have an effect on the quality function for the parame- 
ter. For instance, after posting a preference for opening widths 
greater than the lower bound, the new quality function appears 
as in Figure 5. The new constraint on the parameter value 
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INTRA-RULE: R190-«— one of three rules defined by the initial constraints on the opening width parameter 
FORM:     (CHOSEN-OPENING-WIDTH 7GRIPPER ?X ?Y 7ANGLE 70BJECT 7RETURN) 
ANTS:     (GRIPPER-OPENING 7GRIPPER 7LOP187) find minimum required 

(GRiPPER-PERP-wiDTH 7GRIPPER 7SPAN) opening so fingers don't 
(MN-SPAN-FOR-OBJECT 70BJECT ?X ?Y 7ANGLE 7SPAN 7LEFT 7RIGHT) •*— rnmfo wjth nhippt in 
(SUM 7LEFT 7RIGHT 7RETURN) C0UlCle wlto ot)Ject ln 

(MAX-GRIPPER-OPENING 7GRIPPER 7MAX-OPEN) approximate moael 
(<- 7RETURN 7MAX-OPEN) -*— can't realize it even in approximate model if too wide for gripper 

(<?LOP187?RETURN) 
APPROX: CHOSEN-OPENING-WIDTH ■ • indication that this rule is based on the opening width parameter 

Figure 4. One of the Rules Generated from the Constraints on the Chosen- 
Opening-Width Parameter 

Chosen-Opening-Width (After Tuning) 
 i quality function 

I 
■-•   posted constraint: 

prefer greater than 
target object 

/[__. 
min(distance to nearest object, 

max-opening-width) 

Figure 5. Constraint Diagram for the Chosen-Ope- 
ning-Width Parameter After First Tuning 

causes the corresponding rules to prefer an opening width cor- 
responding to the new peak of the quality function at the maxi- 
mum opening width. 

3.2. Constraint Parameters 

Constraint parameters work similarly to the control parame- 
ters except they don't choose a value directly but rather use 
their quality function to give a value some rating. If a con- 
straint rule were evaluating one particular dimension of a set 
of candidate choices, the value of the quality function of the 
constraint parameter would be consulted for each candidate's 
value along that dimension. For that particular dimension, 
preference would be given to the candidate with the best quali- 
ty function value forthat dimension. Of course, candidates are 
generally evaluated using several constraint rules which have 
their resulting ratings combined using weights. These weights 
were previously mentioned as examples of internal controls. 
They can be tuned in response to failures to prefer certain con- 
straint rules over others. 

In the next section, we introduce the architecture whichmakes 
use of these types of approximations in conjunction with para- 
meter-based rules for performing learning and planning. 

4. An Architecture for Learning and Planning 
with Approximations 

The system is organized as illustrated in Figure 6. There are 
three modes of operation. Input to the system is through the 
approximate explanation-based learning component shown 
in Figure 7. In the simplest mode, a goal is presented to the 
system which already corresponds to apian in the knowledge- 
base whose preconditions are satisfied in the current state of 
the world. In this case, that plan is passed directly to the execu- 

Figure 6. Approximation Architecture 

Figure 7. Approximate Explanation-based Learning 

live to be carried out. Secondly, a goal could be presented to 
the system which doesn't correspond to any known plans. In 
this case, an explanation is generated for how the goal can be 
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achieved in the current state. The explanation is then general- 
ized and packaged into a general plan which is then saved and 
passed on for execution. Lastly, a goal and observed action se- 
quence can be given to the approximate EBL component 
which then generates the explanation from both the goal and 
the observed actions. This is the preferred mode of operation 
of explanation-based learning systems because it can make 
explanation construction an easier task. In this last mode, the 
explanation is then generalized, packaged into a plan, saved, 
and the plan is passed on to the executive. 

The executive instantiates the execution sequence associated 
with the plan with the appropriate bindings obtained from 
evaluation of the plan's preconditions in the current state. 
Many of these actions will be monitored, having sensor expec- 
tations associated with them that define success or failure. 
Should a failure occur, as defined by the expectations, the plan 
refinementmodule is called to perform tuning of rule parame- 
ters so as to decrease the chance of future failures. If no errors 
occur, the system is ready for the next goal or goal/observation 
pair. 

We will now consider the components performing approxi- 
mate EBL, execution andmonitoring, and parameter tuning in 
more detail. 

4.1. Approximate Explanation-based Learn- 
ing 

The explanation-based learning component of the system is 
largely the same as those in other EBL systems which require 
perfect world models, although the data includes declared ap- 
proximations. The explanation-based component operates on 
these as if they were data from a perfect world model. The 
planner thus constructs plans treating the approximate data 
like they were certain, reducing planning cost in comparison 
to techniques that reason explicitly about the uncertainty. Of 
course, because of the use of tunable parameter-based rules, 
uncertainty-tolerant plans may be created. If the systemis be- 
ing used to learn from observation, an explanation is con- 
structed (planning) from both the goal and the observed ac- 
tions. Consequently, only aspects of the observed actions 
which are supported by the rules and data approximations be- 
come part of the resulting explanation for goal achievement. 

For instance, in opening a robotic gripper to surround an ob- 
ject, the human operator of the robot opens slighüy wider. The 
systems starts with initial constraints on the parameter for 
gripper opening width which require only that the gripper be 
open just as wide as the object. This coupled with the bias for 
minimal movement causes a preference for opening only as 
wide as the target object if the gripper is initially open less 
wide. Consequently, the increased opening of the gripper, be- 
yond the minimal opening width required, is perceived as ex- 
traneous and is not part of the explanation for goal achieve- 
ment and hence does not appear in the resulting general plan. 
This is the desired behavior of an approximate EBL system. 
On one extreme, the action sequence could have been repeated 
literally in the plan. This would be highly non-general. On 
the other extreme, extensive reasoning could have been done 
using the available domain knowledge to construct the perfect 
general plan from the observed actions. This would be intrac- 
table. Thepurpose of an approximate model and tunablepara- 
meter-based rules is to reduce this sort of inference. Natural- 
ly, this approach requires a means for improving the imperfect 
plans should failures occur. 

4.2. Execution and Monitoring 

In order for the system to improve its plans when they don't 
perform well in the world, the systemmust have a monitoring 
capability. It is important that the system be able to represent 
what actions are to be carried out, what the expected outcome 
of those actions is, why that outcome is expected, and when 
the specified actions should be terminated. Figure 8 illustrates 
the syntax of monitors in the current implementation. The 
monitor specifies one or more coordinated actions which are 
performed simultaneously. Expectations are specified which 
are evaluated continually during execution, in the case of sen- 
sor expectations, and are also checked after termination of the 
action, in the case of expected features of a full sensor trace. 
Terminations specify under which conditions the set of ac- 
tions should be halted. Any monitored set of actions 
employed in a plan must have its expectations justified. The 
support field of a monitor specifies a predicate which, if prov- 
en, justifies that the expectations will hold throughout execu- 
tion of the monitor. Figure 9 gives a concrete example of a 
monitor employed for closing the robotic gripper on an object. 
The single action specified is for the gripper to begin closing 

(MONITOR <actions> <expectations> <terminations> <support>) 
A 
I 

j A set of primitive actions to j 
I   be executed concurrently   j 

j   A DNF expression referencing built-in system   | 
I predicates, sensor values, and sensor trace features I 

-i   r 

A 
I 
I 
I 
I 
I 

A 
I 

r J. _, 
jHead of explanation sup-1 
I   porting expectations    I 

I which defines successful execution I   I 

j A DNF expression referencing built-in system predicates j 
land sensor values which defines the termination condition! 

for the set of actions I 

Figure 8. Syntax for Monitored Actions 
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— Close Gripper Until Termination Met 
Final force should exceed 50 units and final 

(MONITOR     (MOVE-GRIPPER 7GRIPPER32878 CLOSE 20 64 20 POSITION) 
(AND    (FINAL-FORCE GRIPPER 7GFFORCE32731) 

(>?GFFORCE32731 50)   
(FINAL-POSITION GRIPPER 7GFPOS32732) position should be such that the gripper 
(> 7GFPOS327321)) didn't close on itself (otherwise failure). 

(OR       (AND   (POSITION GRIPPER 7GPOS32733) 
(PRINT (LIST (QUOTE POSITION) 7GPOS32733)) 
(QUäL- 7GPOS32733 0)) Terminate action if the gripper closes on 

(AND   (FORCE GRIPPER 7GFORCE132734) itself or if the force exceeds 60 units 
(PRINT (LIST (QUOTE FORCE) 7GFORCE132734)) 
(> 7GFORCE132734 60))) 

(STABLE-GRASP   7GRIPPER32878   7OBJECT32870   ((RELATIVE-FACE   7NAME132744   7X132762 
7Y132763 7REF-ANGLE32779 7LEN132748) (RELATIVE-FACE 7NAME232749 7X232764 7Y232765 7REF-ANGLE32824 

" ~_^_ Justification for the expectations is that a stable grasp 
has been planned by the system. 

Figure 9. An Example of a Monitored Action 

from its current position. The expectation is that the final 
force of the gripper on the object exceed 50 units and that the 
gripper not close on itself. The action terminates when the 
gripper exerts a force greater than 60 units on the object or the 
gripper closes on itself. The expectation of feeling the object 
between the fingers with force greater than 50 units is justified 
by an explanation for why the planned grasp is stable (so the 
object will not slip away as force is applied). The specification 
of expectations as well as their justification facilitates attribu- 
tion of execution failures to poorly set rule parameters. The 
process by which parameters are tuned is discussed in the next 
section. 

4.3. A General Algorithm for Tuning Parame- 
ters in Light of Failures 

Given a goal, the system constructs an explanation for how 
the goal may be achieved. This can be accomplished in either 
an understanding mode, given an applied operator sequence, 
or in a planning mode where the operator sequence is derived. 
Rules involved in constructing the explanation include para- 
meter-based rules as outiined above. Most of the facts 
employed in constructing the explanation are data-approxi- 
mate having been derived from sensed values from the real 
world. In order for a monitored action to be achieved in the 
explanation, a set of expected sensor values must be justified 
by a further subpart of the explanation. The overall explana- 
tion is then generalized using EGGS [Mooney86] and pack- 
aged into a rule as with standard EBL systems. When the rule 
is executed in the real world, those sensors described in the 
monitored actions are observed. If the sensor readings ob- 
served violate the constraints described in the monitored ac- 
tions, plan execution has failed.1 In this case, the subpart of 
the original explanation which justified the expected sensor 
readings is suspect. Clearly, in the approximate model of the 
world, no error was foreseen, otherwise the explanation would 
not have been possible. This suspect subpart of the original 

1.     Parameter tuning in our system is driven based on expectation fail- 
ure. This idea has long been advocated by Roger Schänk [Schank82]. 

goal 

_explanation in 
generalized form 

explanation is the starting point for our general tuning algo- 
rithm. 

The tuning algorithm has two major steps: 

1) generate a qualitative explanation for how the probability 
of the failed expectation can be increased through tuning 
of parameters in the rules employed and 

2) perform the actual tuning of the indicated rule parame- 
ters. 

The key in accomplishing the first step is to express the rela- 
tionships between generalized variables in the failing subtree 
as qualitative relations. This will make possible qualitative 
proofs which relate data-approximate quantities, rule param- 
eters, and qualitative probabilities of success of the various 
predicates.   The procedure is primary 
depicted graphically in Figure 
10. First, the sub-tree of the 
overall explanation 
which    supports    the 
failed expectations is 
instantiated with the 
generalized   bind- 
ing     list     which 
EGGS     produced 
for the original goal expla- 
nation. The predicates at 
the root and leaves of this 
sub-tree are asserted in a 
new situation as quali- 
tative relations.    The 
quantity arguments to 
these predicates (which 
are   generalized   vari- 
ables) become quanti- 
ties in our qualitative 
model of the sub-proof. 
Any   data-approximate 
quantities or rule param- 
eters which took part in 
the original explanation 

sub-explanation 
V supporting action whose 

expectations were violated 

assert root and leaves 
of failed sub-tree as 
qualitative relations 

(pred argl arg2 arg3 ...) 
1 quantities 

named same 
quantity ,.    , ^   . ,, as generalized 
variable . ,, variables 

Figure 10. Generating the 
Qualitative Model 
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and whose quantity variables are members of the set of gener- 
alized quantity variables for the sub-proof are asserted as da- 
ta-approximate and tunable quantities respectively in the cur- 
rent situation. Once these facts have been asserted which 
pertain to the specific proof tree, the goal of increasing the 
probability of the root predicate to the sub-proof can be 
proved using a set of domain-independent qualitative rules. 

There are four classes of domain independent qualitative 
rules used by the system for generating the qualitative tuning 
explanation: 

general qualitative inference rules 
These are rules for inferring the effects of changes in quan- 
tities. For instance, the qualitative proportionality predi- 
cate (Q+ ?a lb) asserts that the magnitude of the quantity 
lb directly influences the magnitude of the quantity la. 
Therefore, one such inference rule states that to achieve 
the goal of increasing la one could find a quantity lb for 
which (Q+ la lb) holds and try to achieve the goal of in- 
creasing lb. 

qualitative predicate definitions 
These rules provide qualitative representations for the 
quantitative predicates employed in generating explana- 
tions. For example, the predicate (diflql lq2 Prjisused 
by the system for taking the difference between two quan- 
tities (Iql and lq2) and computing the result {If). One of 
several rules which form the qualitative predicate defini- 
tion for the dif ^\t :form 
predicate is (Q+ ?r ?ql) 
shown    on   the .   ^ 

tlfthe'UgS (qrelation <dif ?<n ?i2 ?r» 
tude of the quantity Iql directly influences the magnitude 
of the result Ir in a ^/predicate. These definitions and the 
general qualitative inference rules described above are 
similar to elements of Forbus' Qualitative Process Theory 
[Forbus84]. 

approximation definition rules 
Data-approximate quantities have properties which can 
be expressed in a qualitative manner as discussed earlier 
in section 2. 

qualitative probability rules 
These rules relate the probabilities of succes s of predicates 
in a way similar to the general qualitative inference rules. 
Proportionalities can be declared between the probabili- 
ties of success of certain pairs of predicates as well as be- 
tween the probability of success of a predicate and the 
magnitude of a quantity. Using these proportionalities, 
goals of achieving increases or decreases in probabilities 
of success can be achieved. For example, the probability 
of success of the antecedent to a rule is declared to have a 
positive influence on the probability of success of the con- 
sequent of a mle. 

In order to see ho w the qualitative tuning explanation is con- 
structed using these rules, it is important to understand how 
qualitative probabilities of success are related to tunable quan- 
tities. Quantitative predicates employed by the system have 
one of two basic intents. Either they are calculation predi- 
cates, whose purpose is to compute some value (e.g. the dif 

function discussed earlier), or they are test predicates, which 
are designed to fail for certain sets of inputs (e.g. the less-than 
function). There is no way to vary the probability of success 
of a calculation predicate since they always succeed. A test 
predicate's probability of success, is sensitive to the probabili- 
ty distribution of its argument quantities. In the diagram be- 
low, the less-than test on the right has a higher probability of 

(<abV?      probability     (<ab)? 

succeeding given the illustrated probability distributions for 
its arguments. While probability distributions are difficult to 
define and work with, recall the simpler qualitative view of the 
probability distribution defined      decreasina^p^decreasing 

central       *'! 
value =3^ for data approximations in sec- 

tion 2: probability density de- 
creases as one moves either higher or lower away from the 
central value. The general definition for a data approximation 
embodies this principle. The measured quantity is taken to be 
the central value. Some distribution is present because of the 
uncertainty involved. Without knowing any details about the 
distribution, the definition for a data approximation states that 
the probability of encountering the actual value for the mea- 
sured quantity decreases as we get farther from the measured 
approximate value. One of the approximation definition rules 
regarding data approximate quantities is shown below 
(rule :form 

(PQ- (< ?test ?loc) ?test) 
rants 
(data-approx-quantity ?loc2) 
(IQ+ ?loc ?loc2)) 

This translates to: if a less-than is being performed between 
Itest and a quantity Hoc which is indirectly or directly quali- 
tatively proportional to a data approximate quantity, the prob- 
ability of the less-than succeeding is inversely proportional to 
the magnitude of the Itest quantity. 

Rules like this effectively translate goals to increase the proba- 
bility of success of a predicate into goals to increase or de- 
crease quantities. 

In general, an explanation for positively influencing the 
probability of a predicate proceeds so as to: 
1. relate the probability of the failing predicate to that of a 

test predicate involving data-approximate quantities 
2. use the definition of a data approximation to relate the 

probability of success of a test predicate with the magni- 
tude of a tunable quantity 

To guarantee that the probability of the failing predicate will 
increase, all the test predicates in the rule antecedents must be 
examined. At least one must show an increasing probability 
of success and the others must be non-decreasing. 

The tuning explanation, once generated, indicates only 
which parameters to tune and in which direction. To carry out 
the tuning as prescribed by the qualitative tuning explanation, 
new constraints are imposed on the values of the indicated pa- 
rameters. Figure 11 illustrates several possible scenarios 
when constraints have been imposed on a rale parameter. If 
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the value at which the failure was suggested was originally 
generated from one of the constraints or bounds on the param- 
eter, the same general predicate expression is used for calcu- 
lating it but the type of constraint is changed as necessary. 
When constraints need to be posted between sets of existing 
constraints, a new general expression is created using the gen- 
eral expressions for the two surrounding constraints and using 
the ratio between their specific values in the context of the fail- 
ure. Once the new constraint has been added (or the old con- 
straint changed) the quality function is re-computed and for 
control parameters, the corresponding rules revised to reflect 
the new quality function. 

With constraint parameters, another decision also must be 
made before tuning. When the qualitative tuning explanation 
indicates that the tunable quantity related to a constraint pa- 
rameter is the target for tuning, it is possible that the current 
constraint rule had no say in the choice that failed. This is be- 
cause constraint rules are combined using weights. If Inequal- 
ity function of the current constraintparameter did give the se- 
lected value a negative rating, the associated weight should be 
tuned instead of the constraint itself. This serves to increase 
the relative importance of a constraint which is already tuned 
correctly. Since weights are scaled in the range 0 to 1, this 
amounts to either tuning the indicated weight to be increased 
from the current value or equivalently tuning all the weights 
for the other constraints employed in the rating function to be 
decreased from their current values if the indicated weight is 
already set to 1. 
Next, we introduce the robotic grasping domain which serves 
as the first testbed for the approach. 

Unconstrained 

 , lower 
"' bound 

+ 
quality function 

upper |  
bound 

With Increasing Constraint 
quality function 

+-*•= 
, 1 

With Opposing Constraints 

+^* 
•S quality function 

**T+ x 
X. 

Constraint Types 
-•    Failure, Decrease = Better 
V*"   Failure, Increase = Better 
|      Bound 

Figure 11. Three Possible Constraint Diagrams 
Show Constraints on a Rule Parameter 

5. An Example in the Robotic Grasping Do- 
main 

We are currently using a robotic grasping domain to test our 
approach. Figure 12 shows the laboratory setup. The current 

Camera 

Robot 
I  Manipulator 

Prab 
RTX 

Workspace 

Pieces from a 
puzzle for young 

children 

Figure 12. Laboratory Setup 

implementation of the architecture is called GRASPER and is 
written in Common Lisp running on an IBMRT125. GRASP- 
ER is interfaced with a frame grabber connected to a camera 
mounted over the workspace. The camera produces bitmaps 
from which object contours are extracted by the system. The 
system also controls an RTX scara-type robotic manipulator. 
The RTX has encoders on all of its joint motors and the capa- 
bility to control many parameters of the motor controllers in- 
cluding motor current. This gives the system a rudimentary 
capability of detecting collisions with the RTX gripper. If 
enough current (force) is applied to the motor to overcome 
friction of the joint and the position encoder indicates no 
movement, an obstacle must have been encountered. This 
type of sensing gives feedback during execution of a plan 
when the camera's view of the workspace would otherwise be 
obscured. This precise control of the manipulator is ideal for 
carrying out monitored actions in the world. 

For the robotic grasping task, we are using plastic pieces from 
puzzles designed for young children. These pieces have inter- 
esting shapes and are large enough, yet challenging, to grasp. 
The goal is to demonstrate improving performance at the 
grasping task over time in response to failures. Some of the 
failures the current implementation learns to overcome, when 
using isolated grasp targets, include learning to open wider to 
avoid stubbing the fingers on an objects, and learning to prefer 
more parallel grasping faces to prevent unstable grasps. 

Initially, the system uses the camera to acquire contour in- 
formation about objects in the workspace. These contours are 
then approximated with n-gons (internal data approxima- 
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(MONITOR   (MOVE-GRiPPER 7GRIPPER32878 CLOSE 20 64 20 POSITION)    ■*— close Gripper Until Termination Met 
(AND   f^oRcS2i^1GWORCEZ2in)   ^ Final force should exceed 50 units and final 

(FINAL-POSITION GRIPPER 7GFP0S32732)   "~ position should be such that the gripper 
(> 7GFPOS327321)) didn't close on itself (otherwise failure). 

(OR       (AND   (POSITION GRIPPER 7GPOS32733) 
(PRINT (LIST (QUOTE POSITION) 7GPOS32733)) 
(QUAL= 7GPOS32733 0)) ^ Terminate action if the gripper closes on 

(AND    (FORCE GRIPPER 7GFORCE132734) itself or if ftg force exceeds 60 UüitS 
(PRINT (LIST (QUOTE FORCE) 7GFORCE132734)) 

(> 7GFORCE132734 60)))       justification for the expectations is that a stable grasp 

"Closing gripper for force 60"       ^-"^ ^s been planned by the system. 
(STABLE-GRASP 7GRIPPER32878 7OBJECT32870 ((RELATIVE-FACE 7NAME132744 7X132762 

?Y132763?REF-ANGLE32779?LEN132748)(RELATIVE-FACE?NAME232749?X232764?Y23276S?REF-ANGLE32824 
7LEN232753)))) 

Figure 14. The Failing Monitored Action 

tions) which result in (n2-n)/2 possible unique grasping face 
pairs. In runs performed here, n was set to 5. The data approxi- 
mated object representations as well as the current informa- 
tion about the state of the robotmanipulator are asserted in the 
initial situation. The target object is then selected and an ex- 
planation is generated for how to achieve a grasp of the target. 
Figure 13 (automatically generated by the implementation) 

actual piece 
contour 

/ 

data approximation 
of contour 

Figure 13. Grasp Target 

shows the selected target object with the visually sensed con- 
tour drawn with a heavy line. The light pentagon is the data 
approximation for the object. The object approximation 
employed here involves an algorithm which, in this case, tries 
to find the best pentagonal representation using extremes on 
the object contour. The arrows indicate the positions of the 
leading edges of the fingers for the grasp position given by the 
produced explanation (keep in mind that the system starts out 
with a very unconstrained set of rule parameters). This partic- 
ular grasping operation is taking place after the system has al- 
ready learned to open as wide as it can to avoid an earlier fail- 
ure where the finger struck the object while moving 
downward.2 It learned this by imposing a constraint on the 
opening-width rule parameter. The explanation for achieving 
grasp-object involves a total of about 3 00 nodes with a maxi- 
mum depth of 10 levels. The approximate rule employed in 
the explanation forrating potential grasping faces on the angle 
between them consults the quality function of the contact- 
angle-constraint parameter. This rule is: 

2.     For a detailed example illustrating an instance of how the system 
learned to open wider, see [Bennett90]. 

if *! 

rule to return a rating of 
the quality of the contact 

angle between two 
INTRA-RULE: R205 potential grasping faces 

FORM: 
(QUALITY-CONTACT-ANGLE-CONSTRAINT7GRIPPER 

7CALC-CA 7RETURN) 
ANTS: 

(QUALITY-CHECK CONTACT-ANGLE-CONSTRAINT 
(7GRIPPER 7CALC-CA) 7RETURN) 

CONS: 
APPROX: CONTACT-ANGLE-CONSTRAINT 

initially flat quality function for 
the contact-angle-constraint - 
parameter rates all contact 

angles equally 

The contact-angle-constraint parameter is initially con- 
strains the angle between grasp faces to be less than the arc- 
tangent of the friction coefficient (45 degrees for the approxi- 
mate friction coefficient of 1 initially assigned here). All 
angles below this level are rated as equally good. After the ex- 
planation was generated, and its associated operator sequence 
executed, the monitored action, shown in Figure 14, encoun- 
tered a violation of the expected sensor readings. The original 
explanation for the stable-grasp goal, indicated in the failing 
monitored action, is now suspect due to the violated expecta- 
tions. A sketch of the specific explanation is shown in Figure 
15. This explanation for why a stable grasp should have been 
achieved is the starting point for developing the qualitative 
tuning explanation. The generalized consequents and ante- 
cedents of the stable-grasp subproof are asserted as qualita- 
tive relations. Approximate quantities employed in the sub- 
proof are identified and asserted as such. A proof is then 
constructed for increasing the probability of success of the 
stable-grasp goal. Figure 16 shows the qualitative explana- 
tion for how preferring a smaller contact angle positively in- 
fluences the probability that a stable grasp will be achieved. 
Table 1 gives the semantics for the predicates employed in the 
explanation. The topmost left-hand subtree establishes that 
the probability of the < = test predicate can influence the prob- 
ability of the stable-grasp goal because it is an antecedent of 
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(STABLE-GRASP GRIPPERl OBJECT494 ((RELATIVE-FACE FACE495 -18.2 -11.5 64.8 18.79) 
(RELATIVE-FACE FACE496 -10.2 -19.0 184.76 24.08))) 

(CONTACT-ANGLE ((RELATIVE-FACE FACE495 -18.2 -11.5 64.8 18.79) 
(RELATIVE-FACE FACE496 -10.2 -19.0 184.76 24.08)) 
42.087609999999984) 

" Sub-proof of 19 Built-ins 

(MATERIAL GRIPPERl SMOOTH-PLASTIC) 

(MATERIAL OB JECT494 SMOOTH-PLASTIC) 

(FRICTION-COEFFICIENT SMOOTH-PLASTIC SMOOTH-PLASTIC 1) 

(DEGATAN1 1 45.0) 
(<= 42.087609999999984 45.0) 

Figure 15. Explanation Specific to Failure 

(PS-mcsG) all quantities are named using 
variable names from the general rule 

(P+ SG (<= B32891 FANGLE32742)) (PS-INC (<= B32861 FANGLE32742)) 

(ANTECEDENT-OF SG (<= B32861 FANGLE32742)) 

(PQ- (<= B32861 FANGLE32742) B32861) (DECREASE B32861) 

(APPROX-OUANTITY FRIC32741) (IQ+ FANGLE32742 FRIC32741) 

(QRELATION (FRICTION-COEFFiaENT MAT132739 (TUNABLE B32861) 
MAT232740 FRIC32741)) (IQ+ B32861 B32861) 

(DATA-APPROXIMATION (FRICTION-COEFFICIENT MAT132739 MAT232740 FRIC32741) FRIC32741) 
I 1 
1 Where SG represents the failing predicate: 

| (STABLE-GRASP GRIPPER32730 OBJECT32736 ((RELATIVE-FACE NAME132744 X132762 | 
| Y132763REF-ANGLE32779LEN132748) (RELATIVE-FACE NAME232749X232764Y232765REF- | 
I     ANGLE32824 LEN232753)))) I 

Table 1. Predicates Employed in the Tuning 
Explanation of Figure 16 

(PS-INC ?pred) 
the probability of success of?pred is influenced positively 

(P+ ?predl ?pred2) 
the probability of success of?pred2 influences the 
probability of success of?predl positively 

(ANTECEDENT-OF ?predl ?pred2) 
?pred2 is an antecedent of?predl in the rule being analyzed 

(PQ+ ?pred ?quant) 
the magnitude of the quantity ? quant influences the 
probability of success of ?pred positively 

(INCREASE ?quant) 
the magnitude of the quantity ?quant is influenced positively 

(APPROX-QUANITTY ?quant) 
?qant is an approximate quantity from a data approximation 
(not controllable by the system) 

(IQ+?ql?q2) 
the magnitude of quantity ?q2 indirectly influences the 
magnitude of quantity ?ql positively 

(TUNABLE ?quant) 
the magnitude of quantity ? quant is a tunable rule pa- 
rameter 

the rule. The right-hand subtree establishes that the probabili- 
ty of the <= can be positively influenced through a decrease 

Figure 16. A Qualitative Tuning Explanation 

in the contact angle between faces. The IQ+ predicate is a 
built-in predicate for establishing transitive relations between 
quantities. It consults the body of qualitative proportionalities 
which hold in the current situation 

The qualitative tuning explanation indicates that a smaller 
contact angle should be preferred in choosing grasping faces. 
Figure 17 illustrates the contact-angle-constraintparameter's 
constraint diagram before (top) and after (bottom) tuning has 
occurred. After tuning, the associated rule rates contact faces 
using the new quality function for the contact-angle-con- 
straint parameter and chooses a grasp position such that the 
two faces to be contacted are closest to parallel. 

Figure 18 shows results from the first test of our current ver- 
sion of the parameter tuning algorithm. All 12 pieces from one 
puzzle were used in the experiment. Piece orientations and the 
order of presentation were chosen atrandom. Grasping targets 
were presented in isolation from other pieces. On the left is 
performance without parameter tuning on failure. Finger 
stubbing failures occurred on most of the pieces because the 
gripper only opened as wideasthemodel of the piece dictated. 
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Figure 17. The Contact-Angle-Constraint 
Approximation Before and After Tuning 

Therefore, various errors in positioning of the piece and grip- 
per as well as the approximation of thepiece shape contributed 
to failures of this variety. Two of the twelve pieces presented 
were succes sfully grasped. One grasp failed because the piece 
slipped away when the gripper was closed, indicating that a 
stable equilibrium grasp was not chosen. The results when pa- 
rameter tuning was employed were much better. Since the 
pieces were presented in isolation, after the system learned to 
open wider, that was sufficient to prevent stubbing fingers on 
the object in all of the remaining trials. Vertical slipping fail- 
ures did occur on the second and third trials, however. The 
system doesn't have a complete model of the piece beyond its 
contour and has insufficient knowledge to explain a failure in 
the vertical dimension. These failures occur when the piece 
pops up when the gripper squeezes because either of tapering 
of the sides or flex of long narrow sides of the piece. We plan 

12 

to add a more complete model of the piece, using model-based 
vision, to permit these types of failures to be explained. In the 
fifth trial, the piece slips out of the gripper fingers during clos- 
ing and the system learns to prefer the most parallel grasping 
faces it can find. This strategy succeeded on the rest of the 
pieces in trials seven through twelve. 

6. Future Directions 
For a planning system to able to function effectively in a do- 
main where uncertainties arise, it is important that it be able 
togenerateuncertainty-tolerantplans. Itisalsoimportantthat 
in complex domains it be possible for the planner to be able 
to generate these tractably. Our architecture for planning with 
approximations addresses both of these important problems. 
The most important areas we are now addressing involve the 
development of a theory of when parameter tuning, in general, 
is worthwhile, when tuning a particular parameter can be det- 
rimental, and studying the performance and generality of our 
approach. 

One important theoretical problem to be investigated involves 
when tuning should take place. Tuning a parameter for one 
particular observed failure, despite the rarity of that type of 
failure, may unnecessarily compromise performance on later 
encountered, but much more likely, failures. There are many 
desirable qualities for a real-world plan. A system performs 
better with plans which are uncertainty tolerant, whose pre- 
conditions are efficient to check, whose actions are efficient 
to carry out, and several other factors. These are all part of a 
real-world plan's operationality [Bennett89]. The current 
tuning algorithm assumes all failures are worth having the pa- 
rameters tuned, consequently affecting the revised plan's op- 
erationality. A more intelligent algorithm would tune a pa- 
rameter only if it believed there was a high likelihood of the 
tuned parameter preventing other failures in the future. This 
would prevent possible adverse effects on plan operationality 
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if the improved payoff in error tolerance was minimal. There 
are several possible approaches to recognizing the signifi- 
cance of a gain in error tolerance. One approach is strictly em- 
pirical whereby data is obtained on the likelihood of different 
types of tasks and situations in the domain. If a failure is en- 
countered with a task and situation of low likelihood, the sys- 
tem would decide if it was below some threshold and simply 
not perform the tuning. Another interesting possibility is to 
have a weak theory of the types of errors likely to manifest 
themselves in the domain. Furthermore, some types of errors 
are more likely to be specific to a certain object or type of ob- 
ject than all the objects as a whole. Such a theory could repre- 
sent this as well and help to explain when the failure was sig- 
nificant enough to trigger tuning of the parameters. 
Another important problem we are working on involves the 
possibility of overtiming one particular parameter. Even if the 
observed failure is determined to be worthwhile tuning, be- 
cause it presumably is a common failure type, there may be an 
adverse effect in tuning the parameter which must be tuned to 
prevent that failure. This is because that parameter may have 
already been tuned to prevent a previous failure in such a way 
which opposes the tuning suggested by the current failure. 
This is either evidence that another parameter would be a bet- 
ter one to tune or that there is something different in this world 
situation which has been ignored by the system. That is, that 
the parameter is really being used in a different context now. 
If such a situation is recognized, the goal should be to distin- 
guish this situation from the one which lead to the previous 
tuning. Then, the one parameter would be split into two, one 
for each context. The first would retain the previous learned 
tuning and the second would include the proper tuning for the 
failure just discovered. The effect is to split what was pre- 
viously considered by the system to be one context into two 
separate contexts. We refer to this process as context-split- 
ting. 
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ABSTRACT 
This research grew from frustrated attempts to design an 
AI planning system to solve a number of every-day 
real-world planning problems. Beneath these failures 
lurked a concern that current symbolic (i.e., 
non-connectionist) AI planning approaches could never 
lead to adequate solutions. Applying current techniques 
to continuous domain problems feels a bit like trying to 
change a light bulb with a screwdriver; the tool, though 
fine for other applications, seem singularly inconvenient 
for this one. Neurally-inspiried approaches face equally 
daunting problems. Primary among these are the great 
size of the network with the concomitant high training 
costs (both in time and number of training instances 
required), and their rather limited ability to benefit from 
existing background knowledge, especially background 
knowledge of a symbolic form. 

Instead, the approach is inspired by Control Theory, 
which has a long and successful history of dealing with 
continuous real-world problems. The approach can be 
seen either as extending AI planning with plausible 
inference and a control theory-inspired ontology, or as 
providing an automated AI solution to the identification 
problem [Truxal61] of control theory resulting in a kind 
of intelligent adaptive control. The research reported 
here is not proposed as a general substitute for current AI 
planning approaches. Rather, it suggests a new direction 
by which symbolic AI may extend its war chest of 
planning techniques. 

Planning in continuous domains presents difficult 
problems for conventional planning approaches. Not the 
least of these is the need for reactivity. This paper 
investigates a direction in planning research that takes its 
inspiration from control theory. There are no "operators" 
as such with effects and preconditions that transform 
world states. The approach involves plausible 
explanation-based learning using a background domain 
theory of qualitative descriptions. Direct experience with 
the world refines and calibrates the generalized plausible 

The research reported in this paper was supported by 
the Office of Naval Research under grant number 
N0001486-K-0309 

explanations. The approach offers anatural integration of 
qualitative with quantitative reasoning and also 
explanation-based learning with empirical learning to 
acquire effective strategies for achieving goals in 
continuous domains. 

1. Introduction 
Planning in AI has traditionally been treated through 
some kind of calculus for articulated actions. A plan is 
viewed as a set of actions that transform a given initial 
world state into a world state satisfying some goal. Thus, 
a planning problem is a triple of an initial state, a goal 
relation, and a set of operators. The process of planning 
consists in discovering a set of operators together with 
sufficient constraints to guarantee thatthe goal is satisfied 
in the final world state [Chapman87, Genesereth87]. 

In one guise or another this view is nearly universal in 
conventional AI approaches to planning. The underlying 
notion of actions that are executed to alter the world has 
pervaded work in classical planning [Fikes71, Laird86, 
Wilkins88], as well as reactive planning [Agre87, 
Firby87, Gervasio89, Schoppers87], opportunistic 
planning [Hammond88], incremental planning 
[Chien89], and multi-agent planning [Georgeff86]. 

Traditional operators are characterized by their 
preconditions and effects (whichmay be conditional e.g., 
[Pednault88]). It is understood that an operator may be 
applied to any world state in which its preconditions are 
satisfied, resulting in a different world state. Often this 
transition is modeled as timeless or instantaneous 
[Fikes71, Wilkins84] although increasingly it has been 
found that temporal reasoning is needed to adequately 
describe the world [Allen83, Dean83, McDermott82, 
Shoham86a, Vere83]. For some domains even this sort of 
temporal reasoning does notgo far enough. In particular it 
is insufficient for continuous domains. An exception is 
the work of [Sandewall89] and [Dean90]. Their approach 
involves including integral and differential calculus 
constructs in an otherwise-conventional temporal 
reasoning system. 

Nearly all domains have some continuous attributes. 
Such attributes, or at least their continuity, can often be 
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neglected. Unfortunately, forcing the continuous facets 
of a domain into a discrete action mold can result in 
spurious complications. These often surface in the guise 
of the frame problem [McCarthy69] 

The problem is in large part due to what we will term the 
discrete action assumption which states that changes in 
the world are due to temporally bounded applications of 
operator instantiations (actions). While often adequate, 
the view of changing the world through actions can 
introduce unnecessary (and sometimes insurmountable) 
obstacles. 

To illustrate, consider the following scenario: An 
airplane is on the correct glide slope to land but with an 
airspeed that is 10 knots too fast. 

The pilot gently begins to close the throttle. A 
moment later he eases back on the control yoke 
(the pilot's steering wheel) deflecting the 
elevator up and increases the plane's angle of 
attack. He stops closing the throttle and then 
holds the yoke steady once again. The plane 
slows while maintaining its current glide slope. 

In this example gentle and continuously coordinated 
changes in throttle and elevator controls are essential. 
Closing the throttle slows the plane but also reduces the 
amount of lift that the wings are producing. Alone, this 
would steepen the glide slope. The undesirable side 
effect is counteracted by pulling back on the yoke which 
increases the angle of attack and produces more lift. 
These actions cannot be modeled as instantaneous. A 
temporal reasoning approach can help some but at a 
rather substantial cost. A temporal system would 
correctly recognize that the two intervals defined (one for 
closing the throttle and one for moving the elevator) in 
fact result in three important intervals: 1) throttle 
changing alone, 2) both throttle and elevator changing, 3) 
elevator changing alone. However, temporal reasoning 
does not ameliorate the cost of managing what happens 
during the second interval in which both the throttle and 
elevator controls change. A separate operator must exist 
that specifies how the combination of these two actions 
affects the world. Compound effects cannot in general be 
deduced from the effects of the simple constituent 
operators. The domain theory implementor must have 
anticipated the need for the combination operator. 
Indeed, a separate combination operator is needed for all 
such possible composite actions. In worst case this results 
in an exponential increase in the number of operators to 
be defined (the power set of the primitive operators). The 

planning problem with all of the combination operators is 
much more difficult since many more operators will 
appear to be relevant to accomplishing any given goal. 

Even if all relevant combination operators could be 
anticipated and defined, planning is problematic. Many 
of the parameters (e.g., current engine oil viscosity) are 
difficult or impossible to know. Thus, an individual 
operator's effect may not be precisely predicted, nor can 
its preconditions be guaranteed. This greatly complicates 
planning. Somehow, people are able to successfully find 
solutions in these kinds of situations. Given a little 
practice, they have no trouble coordinating actions; they 
effortlessly ignore irrelevant parameters; they appear to 
assume reasonable values for unknowable parameters 
while implicitly relegating their planning behavior to 
those situations in which their approximations hold. 

Control theory offers an intriguing alternative model for 
world change. Instead of operators and effects, the world 
is seen as an on-going process to be controled through the 
manipulation of certain inputs. The world imposes 
inter-relatioinships among the values of a collection of 
real-valued quantities. The planning problem, in this 
light, is seen as a strategy for manipulating input 
quantities in such a way as to bring about desired changes 
in other world quantites. It is this approach to world 
change that we adopt. 

2. A Representation for Continuous Changes 
The primary techniques used to wed artificial intelligence 
and control theory are qualitative reasoning and 
explanation-based learning. Qualitative representations 
are used to mediate between numerical values and the 
symbolic domain knowledge of how they relate. 
Plausible explanation-based learning is used to 
automatically conjecture control analyses from the 
observation of an expert's behavior and later to refine 
these control strategies when deficiencies are observed in 
the course of exercising the planning system. 

The continuous aspects of the world are called quantities. 
(The term has a similar meaning in both qualitative 
reasoning [Forbus84] and control theory [Kuo87]. 
Examples of quantities are the position of the aircraft's 
throtüe, the fuel flow through the intake manifold, the 
wing's angle of attack, and the speed of the plane. 
Quantities a) take on real values, b) are continuous, andc) 
may have limited extreme values. In general many world 
quantities are changing simultaneously. Some quantities 
can be directly manipulated by the planner (for example, 
the aircraft's throtüe position or the setting of a radio's 
volume control). We call these quantities controllable 
parametric quantities (or controllable parameters). The 
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corresponding control theory term is input variables 
(which has a rather different meaning in computer 
science.) Thus, we use the new more descriptive term. As 
the controllable parameters are varied, values of other 
world quantities react in accordance with the laws of 
nature. Quantities which can only be indirectly 
manipulated are called internal quantities. Examples of 
these are the speed of the aircraft, the wing's angle of 
attack, the descentrate, etc. In control theory these values 
are usually encoded in the state of the system. One other 
kind of quantity is termed a non-controllable parametric 
quantity. These are quantities which, like controllable 
parameters, determine the values of internal quantities, 
but, unlike controllable parameters, cannot be 
manipulated by the planner. An example of a 
non-controllable parametric quantity in the aircraft 
domain is the air density. The density of the air 
surrounding the aircraft cannot be manipulated either 
directly or indirectly, but it significantly alters the 
aircraft's flying characteristics. 

Continuous world changes are more appropriately 
represented as a graph of simultaneous quantity values 
rather than as a sequence of discrete world states. We call 
these graphs quantity profiles. They are similar in spirit to 
event shape diagrams [Borchardt84, Waltz82]. Example 
quantity profiles for a simplifies automobild domain are 
shown in figures 1,2, and 3. 

The planning problem, viewed in this way, is as follows: 
given an initial state of the world (initial values of 
quantities), goal values for some internal quantities, and 
knowledge about how quantities interact, find a 
consistent profile of changes of the controllable 
parameters which when combined with the values of the 
non-controllable parameters brings about the desired 
internal quantity changes. The aircraft example above 
falls into this mold: given the initial positions of the 
aircraft controls, the heading, the altitude, etc. of the 
aircraft, find a manipulation of the controls that (for the 
current air temperature, air density, wind conditions, etc.) 
reduces the speed by 10 knots while preserving the 
current angle of descent. 

3. The Approach 
The approach we take is to rely on Explanation-Based 
Learning (EBL) over a. plausible and qualitative domain 
theory to learn about and exploit domain characteristics. 
Learning produces new planning constructs which are the 
continuous analog of EBL-acquired schemata 
[Mooney88, Segre87, Shavlik88] (generalizations of 
macro-operators). 

Briefly, the learning algorithm involves 1) observing an 
expert who solves a problem currently beyond the 
system's capabilities, 2) constructing a plausible 
qualitative explanation for why the expert's actions result 
in the desired effect, 3) generalizing the explanation in 
standard EGGS fashion [Mooney86], and 4) fitting 
observed quantitative points to the resulting general 
qualitative concept. The new concept can be used 
efficiently in planning the achievement of similar future 
goals. 

More formally, at any instant in time, the current state of 
the continuous world is given by a point in 
N-dimensional space, one dimension for each of N 
quantities in the world. As the world changes, the values 
of the quantities change in a continuous fashion, and so 
the point traces out a continuous trajectory in N-space. 
The trajectory is constrained to lie on a (possibly rather 
complicated) hyper-surface which characterizes the laws 
of Nature. Suppose there are P parameters. We can more 
conveniently characterize the constraints inherent in the 
complicated N-space world hyper-surface as N - P 
different hyper-surfaces each in P+l dimensional space 
where each of these latter hyper-surface characterizes 
ho w a single one of the N - P internal quantities depends 
on the P parameters. The relationship of the internal 
quantity to the parametric quantities is functional. That is, 
for each combination of values assigned to theparameters 
there is at most one value that each internal quantity can 
have. This derives from the assumption that the world is 
deterministic. Thus, each internal quantity is precisely 
characterized by a P dimensional functional surface in a 
P+l dimensional space. 

In general, a planning goal is the specification of a profile 
of continuous coordinated values for a subset of the 
world's internal quantities over some time interval. A 
plan is a profile over a time interval of continuous 
coordinated values for a subset of the world's controlable 
parametric quantities. It is seldom necessary or desirable 
to generate a full plan prior to execution. Rather it is better 
to make the final decisions about contolable parameter 
adjustments during execution. This reduces the need to 
accurately predict the values that relevant 
non-controlable parameters will have during execution. 
Instead, currently observed values of the non-controlable 
parameters can be used. The system's reactivity derives 
from this use of execution-time monitored values of the 
world in selecting what to do next. 

Before discussing planning in this formalism, consider 
the characterization of a particular value for a chosen 
internal quantity. Such a value corresponds to the 
intersection   in   P+l   dimensional   space   (with   P 
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dimensions for the parameters and one for the internal 
quantity) of the chosen function and a P-dimensional 
hyperplane intercepting the internal quantity axis at the 
desired value and parallel to each of the parameter 
coordinate axes. If the goal hyperplane does not intersect 
the function, then the internal quantity cannot take on that 
value. If there is an intersection, it will, in general, be a 
P-l dimensional surface capturing the constraints 
imposed by both the hyperplane and the function. The 
goal hyperplane constrains the internal quantity to the 
desired value; the surface enforces consistency between 
the internal quantity value and the parameter values. In a 
world with more than one parameter, the "solution" can 
be underdetermined; any point on the intersection 
suffices. Since the number of parameters can be very 
large indeed, the solution may be extremely 
underdetermined. 

Now consider the problem of achieving a particular value 
for a single internal quantity. Further, suppose we do not 
care what intermediate values the internal quantity takes 
on. The current state of the world is fully specified and 
specifies a point on the surface of the selected internal 
quantity's function (corresponding to the current values 
for all P parameters.) The goal, if achievable, is the P-l 
dimensional contour described above. Any countour 
along the function's surface that connects the current 
world point to the goal contour is a candidate plan. 

Mathematically, the comitment to solve a simple problem 
of the above form (achieving a particular value for an 
internal quantity) adds a constraint to the 
underdetermined system which specifies the world's 
possible futures. The resulting system will in general still 
be (grossly) underdetermined. As the goal is made more 
complex (e.g., by requiring intermediate values for the 
internal quantity or by insisting on the coordinated 
behavior of other internal quantities), additional 
constriaints are imposed on the system. 

After taking into account all of the goal's constraints, any 
remaining underdeterminism can be resolved arbitrarily. 
One obvious strategy is to select, at each time point, 
changes to the controlable parameters within the 
remaining constraints that give the greatest decrease in 
the distances (measured along the various internal 
quantity functions) to the goal. 

In fact, underdetermination is a great advantage for 
reactive planning. For if the system were determined, 
there would be only one future that achieves the goal. 
This means values for the non-controlable parameters 
have been perscribed. If it happens that Nature chooses 

other values for the non-controlables the planned 
solution fails. As long as the system is underdetermined 
there is hope for effectively reacting to unanticipatable 
changes in the values of non-controlable parameters. 

3.1. Plausible Qualitative Explanations 
The plausible explanation is constructed from the 
system's domain theory. The domain theory is loosely 
based on Forbus' QualitativeProcess Theory [Forbus84]. 
We use the qualitative predicates INCREASING, 
DECREASING, and CONSTANT which denote a 
relation between a quantity and a time interval. They are 
true in justthose cases in which the value of the quantity is 
monotonically increasing, monotonically decreasing, or 
constant respectively over the entire time interval. The 
qualitative predicates GREATER-THAN, 
LESS-THAN, and EQUAL are relations between two 
quantities and a time interval. They are true if the value of 
the first quantity has the mathematical relation >, <, = 
respectively to the value of the second quantity over the 
entire specified interval. Finally, and most interestingly 
are the two qualitative proportionality predicates Q+ and 
Q-. The names and inspiration for these are from 
Qualitative Process Theory, but the semantics of Q+ and 
Q- are somewhat different here.* In Qualitative Process 
Theory Q+ and Q- have meaning only after the world of 
qualitative relations has been closed by assumption. That 
is, drawing and inference using any is contingent on 
knowning all fo them. We are making no such 
assumption. (Q+ ql ql i) is to be thought of as the 
conjunction of: 

(INCREASING ql i) => (INCREASING ql i) and 
(DECREASING ql i) => (DECREASING ql i) 

while (Q- ql ql i) is short for 

(INCREASING ql i) => (DECREASING ql i) and 
(DECREASING ql i) => (INCREASING ql i) 

The symbol "=>" denotes plausible (not logical) 
implication. Its new semantics raises many issues that are 
only beginning to become clear but in any case cannot be 
treated here. Think of the consequent of a plausible 
implication as not logically entailed, but only plausibly 
supported. Domain knowledge is coded in the form of 
processes. Each process has preconditions and a body. 
The body specifies a set of qualitative proportionalities 
among quantities. Over intervals in which the 
preconditions of a process are met, the process is active 
and its plausible qualitative proportionalities are 
available for explanation construction. Multiple 
processes may be active at once. An explanation for an 
internal   quantity   specifies   a   set   of   qualitative 
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proportionalities from the active processes which justify 
the observed qualitative behavior ofthat internal quantity 
in terms of observed qualitative behavior of parameters. 
There may be many different explanations possible for an 
observed behavior. 

In the example below there are two processes. One, 
ENGINE-RUNNING, has as a precondition that the 
engine be running, which may be inferred if there is gas in 
the tank, ignition switch on, etc. It specifies plausible 
knowledge such as that the engine REV's are positively 
qualitatively proportional to the gas pedal position. The 
second process, CAR-MOVING, is when the car's 
speed is greater than zero. It specifies things like how the 
brakes work (we assume no power assist in braking in our 
simple automobile) and what happens going up or down 
hills. If we observe the expert's car slowing down while 
the expert simultaneously lets up on the gas, depresses the 
brake, rolls up the window, and coasts up a hill, the system 
may plausibly attribute the slow down to the hill, or the 
gas, or the brake, or any combination of them. There is no 
plausible inference chain linking rolling up the window 
to the slow down. If the expert had killed the engine (say 
he turned off the ignition) prior to slowing, the gas pedal 
manipulation would no longer be included in a plausible 
explanation since some crucial proportionalities are 
derived from the ENGINE-RUNNING process which 
is not active. 

Explanations are generated in a most-plausible-first 
ordering. The a priori plausibility of of an explanation is 
derived from the plausibility ratings of the component 
qualitative proportionalities. In the current 
implementation, all qualitative proportionalities are 
considered equally plausible and "most-plausible" 
becomes the same as "simplest". Given an observation of 
an expert's planning, such as in figure 1, the system 
constructs the simplest explanation that accounts for the 
qualitative behavior of the automobile's speed. This 
explanation is generalized and used for planning. 

Of course, the first explanation may not be the correct 
explanation. If it is incorrect or incomplete, the solution it 
proposes to solve some later planning problem may fail. 
At that time the explanation is refined to be consistent 
with both the old and new observations. It is generalized 
into a replacement planning concept. 

This refinement-on-demand of the planning concepts 
means that the system cannot guarantee that its plan 
solves the problem it is given. Any solution may be a 
failure signaling the need for further refinement. Indeed, 
there wouldseemto be thepossibility thatrefinement will 

continue indefinitely with the planner never approaching 
any level of competence. It can be shown that for a 
problem distribution, the learning algorithm converges 
although to a set of adequate (not necessarily correct) 
planning concepts. 

3.2. Quantifying the Concept 
A purely qualitative representation is not easily used to 
solve the planning problem. (Although see [Hogge87] for 
an interesting but computational intensive approach.) A 
planner must produce a solution qualitatively precise 
enough to execute in the world. 

The quantitative planning concept is an approximation to 
the internal quantity function Nature uses in the world to 
compute the quantity's value from the parameter values. 
It is approximated by numerical interpolation from 
observed points. 

The qualitative explanation provides two extremely 
important constraints on the quantitiative interpolation 
function. It A) identifies the parameters that are relevant 
to achieving the specified goal and B) assures a strong 
constraint on how the internal quantity value may change 
with parameter changes: the internal quantity's function 
must be monotonic in each of the identified parameters. 
The monotonicity is computed through transitivity of 
qualitative proportionalities (Q+ and Q-) in the 
explanation. 

Provided the qualitative explanation is correct, the 
system has identified all of the relevant arguments to the 
internal quantity function and also determined the 
function's asymptotic behavior. The original observation 
of the expert provides a number of quantitative sample 
points. About 50 such samples make up figure 1. Each 
sampled point contains numerical values of all the 
quantities at each instant. Values for the internal quantity 
of interest together with just the relevant parameters (as 
identified by the qualitative explanation) are extracted 
from each observed point. These tuples must fall on the 
function's surface and they must obey the function's 
asymptotic constraints. If any does not, the conjectured 
qualitative explanation is not adequate to describe the 
planning situation. The original explanation is rejected 
and the next-most-plausible explanation consistent with 
the new observation is substituted. 

At every planning instant the actual achieved value (from 
the finite difference simulator) is compared to the value 
predicted from the approximated surface. The surface is 
refined if the difference is beyond a pre-specified noise 
level s. This means that within trial learning occurs and, 
more importantly, that the remainder of the plan is 
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constructed reactively from the actual value rather than 
the predicted value of the internal quantity. 

The current implementation employs piece-wise linear 
interpolation among points. Observed data points that are 
within e of the interpolation surface do not contribute. 

4. An Example 

The domain that will concern us in the remainder of the 
paper (one of three that the implemented systemhas been 
tested on) is planning to achieve different speeds in a 
simplified single-gear manual transmission automobile. 
The "real world" automobile is, in fact, a finite difference 
numerical model whose difference equations directly use 
the values of controllable parametric quantities. 

The planner can directly manipulate the setting of the 
controllable parameters (gas, clutch, brake, window 
position, air conditioner setting, etc.). However, the 
settings cannot be changed instantaneously. There is a 
small maximum rate of change of the controllable 
parameters specified to the system. Any rate of change 
(positive or negative) up to that amount may be selected at 
any time point. The automobile can be "driven" by the 
system or an expert using keyboard and mouse input. 
Both are subject to the same maximum-rate-of-change 
constraints. 

The system is implemented in LUCID CommonLisp on 
an IBM RT. There is but a single explanation interval so 
the time interval arguments are omitted for simplicity. 
The background domain theory contains two processes. 
The ENGINE-RUNNING and CAR-MOVING 
processes are: 

ENGINE-RUNNING 
PRECONDITIONS: (RUNNING ENGINE) 
BODY: 

(Q+ GAS-FLOW GAS) 
(Q+ REVS GAS-FLOW) 
(Q+ SPEED REVS) 
(Q+ AIR-MOVEMENT FAN) 
(Q- AIR-TEMP A/C-SETTING) 
(Q+ ENGAGEMENT CLUTCH) 
(Q+ SPEED ENGAGEMENT) 
(Q- REVS ENGAGEMENT) 
(Q+ TEMP SPEED) 
(Q+ REVS TEMP) 

CAR-MOVING 
PRECONDITIONS: (GREATER-THAN 
SPEED 0) 
BODY: 

(Q- SPEED BRAKE) 
(Q- SPEED GRADE) 
(Q-REVS GRADE) 
(Q+ AIR-MOVEMENT 
WINDOW-SETTING) 
(Q+ AIR-MOVEMENT SPEED) 

GAS, CLUTCH, and BRAKE represent the position of 
the gas, clutch, and brake pedals respectively. These are 
controllable parameters. The zero positions of GAS and 
BRAKE are fully up, the zero position for CLUTCH is 
fully depressed. ENGAGEMENT is the percentage of 
power transmitted to the wheels through the clutch. 
REVS is the rotational speed of the engine. SPEED is the 
speed of the car. GRADE is the hill gradient, a 
non-controllable parameter. TEMP is the engine 
temperature. 

GAS 

CLUTCH 

RPM 

SPEED 

Figure 1: The Expert's Solution 
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These two processes say that while the engine is running 
increasing GAS makes REVS go up and SPEED go up; 
letting out the clutch makes SPEED go up and REVS go 
down; the engine heats up at higher speeds and allows 
more efficient combustion (REVS go up), and also a 
steeper grade causes SPEED and REVS both to go down, 
while the BRAKE decreases SPEED. 

It is important to note that the processes given above are 
not the only ones that can be used to describe the workings 
of our automobile. One of the strengths of this approach is 
that it is relatively insensitive to how the domain 
knowledge is crafted. In particular one might write a 
simpler CAR-RUNNING process if one does not know 
about engine RPM's or clutch engagement. On the other 
hand one could write a much more complicated set of 
processes specifying qualitative relations among the 
carburetor butterfly valve position, venturi flow, 
manifold pressure, vacuum advance, etc. Either of these 
alternative domain theories would work as well as the one 
above for our chosen task. The more complex theory 
would support the acquisition of additional planning 
concepts that ours does not, just as ours supports concepts 
that the simpler alternative would not. 

The system is given the goal of achieving a speed of 64 
MPH from a dead stop with the engine on and idling. It 
currently has no problem-solving concepts and thus 
cannot solve the problem alone. It asks for an expert's 
solution which is shown in figure 1. 

The simplest plausible explanation consistent with the 
expert's solution is: 

(EXPLANATION (INCREASING SPEED) 
((Q+ SPEED ENGAGEMENT) 

(Q+ ENGAGEMENT CLUTCH) 
(INCREASING CLUTCH))) 

This explanation conjectures that the speed is increasing 
because the speed is qualitatively positively proportional 
to the clutch engagement which is qualitatively positively 
proportional to the clutch pedal position which is 
observed to be increasing. 

A 2 dimensional linear quantitative interpolation 
function is created and the observed numerical values for 
SPEED, and CLUTCH are asserted. Not all observed 
points are recorded in the interpolation function. If apoint 
is already correctly interpolable by existing points, it is 
not used. The interpolation function contains 5 points. 

Next another acceleration problem is given to the system. 
It is to accelerate from 0 to 20 MPH. The system selects 
the newly constructed planning concept, but the 
interpolation surface cannot accept the third new data 
point without violating the qualitative montonicity 
constraints. 

The explanation is, in fact, not adequate. An observation 
during planning is inconsistent with the qualitative 
explanation. The system searches for the next most 
plausible explanation of the data that is not contradicted 
by the new point. The following plausible explanation is 
constructed: 

(EXPLANATION (INCREASING SPEED) 
((Q+ SPEED REVS) 

(Q+ REVS GAS-FLOW) (Q+ 
GAS-FLOW GAS) (INCREASING 
GAS))) 

In planning with this concept the system also meets with 
nearlyimmediate failure. Finally, a more adequate 
qualitative explanation is generated: 

(EXPLANATION (INCREASING SPEED) 
((Q+ SPEED REVS) 

(Q+ REVS GAS-FLOW) (Q+ 
GAS-FLOW GAS) (INCREASING 
GAS) (Q- REVS ENGAGEMENT) (Q+ 
SPEED ENGAGEMENT) (Q+ 
ENGAGEMENT CLUTCH) 
(INCREASING CLUTCH))) 

This explanation indicates thatthe SPEED is a function of 
both the GAS and CLUTCH controllable parameters. 
Notice that the explanation is not, in fact, correct. For 
example, it misses the effect of GRADE upon SPEED. 
There is an implicit assumption that GRADE can be 
disregarded when solving acceleration/deceleration 
problems . This rums out to be true in the 
Champaign/Urbana area where the only two hills are 
man-made for children's sledding pleasure in the winter. 
It is one of the great strengths of the approach that the 
solution found can take advantage of systematic 
eccentricities in the distribution of planning problems 
given to the system. Why burden a planning system with 
reasoning about driving on a hill when this information 
will never be needed? This feature insures that the 
planner will not become bogged down in planning details 
that do not matter for the problems it is given. If another 
planning problem depends on the missing GRADE or 
BRAKE parameters, the above concept also would be 
eliminated in favor of one more faithful to reality. 
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GAS 

CLUTCH 

RPM 

SPEED 

Figure 2: The Planner 
Nonetheless, this time it is sufficient to include CLUTCH 
and GAS as controllables. The system generates the 
adequate solution shown in figure 2. 

Notice that the speed is not smoothly increasing; twice it 
actually decreases. The controllable parameters' values, 
particularly the CLUTCH, also exhibit a fair amount of 
"hunting" for the right value. This is due to interpolation 
error. The trajectory traced along the surface to solve this 
problem differs from the trajectory of the observed 
expert's solution. The approximated surface is most 
accurate near the observed trajectory. 

Of the 50-odd points in the observation, the system finds 
that just 12 are sufficient to interpolate the others. There 
are many possible function surfaces that contain the 
observed points and respect the qualitative monotonicity 
constraints. The system chooses one: linear interpolation 
between the 12 selected points. Approximation error is 

GAS 

's First Solution 
due to the interpolation surface predicting one value for 
the internal quantity SPEED, while the finite difference 
model in fact yields another. The discrepancies are small 
enough and occur sufficiently far from observed points 
that there is no violation of the qualitative monotonicty 
constraints. Instead, new points are integrated into the 
interpolation approximation so that the approximate 
surface once again agrees with reality at all observed 
points. As it happens, 5 additional points are asserted to 
the interpolation function during this first successful 
solution. The function is then approximated by a total of 
17 points. After several additional acceleration and 
decelerationproblems the interpolation function contains 
21 points and produces the solution shown in figure 3 to a 
different problem. 

As can be seen, the speed is increased more smoothly. The 
system'smanipulationsofthecontrolparameters are also 
smoother. The solution in figure 3 compared to the 

CLUTCH 

RPM 

SPEED 

Figure 3: A Later Solution by the Planner 
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experts shows significantly higher REVs. As it happens 
the controls, especially the clutch, are more effective at 
higer REVs so smaller changes are required. This 
unintended effect is interesting froma planning point of 
view although not particularly desirable while driving 
real cars. 

8. Empirical Analysis 
In practice for few the domains examined convergence to 
competent problem-solving appears to be fast. 
Furthermore, planning time with the acquired constructs 
decreases with experience. The reason is that the cost of 
refining the interpolating approximation function is high 
compared to the cost of employing the function with no 
refinement. As experience with the concept increases, the 
approximation function converges to an acceptable 
function so fewer refinements are performed. 

Figure 4 shows a typical planning run of 10 randomly 
generated acceleration and deceleration problems. Each 
is successfully solved by the system and each represents 
between 20 and 100 planning points. Fewer planning 
points are needed when the randomly generated goal 
speed is near the car's current speed. Figure 2 shows the 
results from the first problem in this test sequence; figure 
3 is from the last. 

The graphs show cumulative average information. The 
heavier line plots the CPU time in seconds used (up to and 

3i  

Run Time 

(sec.) 

Error 

(MPH) 

including the xaxis labeled problem) divided by the total 
number of planed points processed. The lighter line plots 
the cumulated error in miles per hour for all planned 
points (up to and including those in the problem labeled 
on the x-axis) divided by the number of such points. 

As can be seen both CPU time and error decrease 
significantly with experience in just 10 problems. This 
graph is representative of such runs. If the graph were 
extended with additional problems, the lines would 
continue downward slightly. But this effect is due to the 
cumulative nature of the data collected - the high expense 
and error of early problems being diluted by later ones. 
Interpolation refinement is increasingly infrequent. In the 
10th and later problems with no errors, planning 
continues at about 3 planned points per second with no 
improvement. 

9. Discussion and Conclusions 
The major significance of this work is A) providing a new 
avenue to pursue planning in continuous domains, B) 
providing a model that supports efficient planning with 
simultaneous, overlapping, and coordinated actions 
without the need for the implementor to anticipate such 
interactions, and C) providing a new model of plausible 
inferencing which, incidentally, is not confined to 
continuous domains. The cost for the planning benefits is 
that learning is no w inextricably bound up with planning. 
Conversely, in this model, planning cannot be viewed as 
providing a guaranteed solution at planning time whose 

^M   Cumulative Average Time/Point 

Cumulative Average Error/Point 

Problem Number 
13 5 7 9 

Figure 4: Emperical Performance on a Sequence of 10 Random Problems 
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execution is superfluous since success is logically 
entailed. 

A major strength is in the planner's ability to acquire the 
minimal sufficient planning concept. The ability to 
control speed accurately while driving up and down hills 
is of little use in Urbana. In San Francisco, however, this 
skill may be crucial. Likewise, compensating for the 
effects of wind and air density while driving is 
unnecessary in a Detroit-built automobile, but may be 
crucial in a sun-powered ulta-light vehicle. Many many 
factors influence the speed of an automobile, or any 
internal quantity. Through experience a planner such as 
the one outlined tailors its planning concepts to 
environmental needs. The trick in planning must be to 
avoid ever thinking about most of such influences. They 
must be ruled out implicitly. If a planner must enumerate 
them all, if only to post non-monotonic assumptions that 
they are irrelevant, it cannot survive in the complexities 
of the real world. This is the well-known qualification 
problem [Genesereth87, McCarthy69, Shoham86b]. 

Of significance to the machine learning community is the 
knowledge level behavior pietterich86, Newell81] of 
the EBL system. Due to the semantics of plausible 
implication, every plausible conclusion that is drawn 
changes the knowledge level of the system. The acquired 
concepts are not in the logical transitive closure of the 
system. Of course, they are in the plausible transitive 
closure of the system. However, this is a weak statement. 
Nearly every behavior is in the plausible transitive 
closure of the domain theory. Yet, the system cannot 
acquire all such concepts. There is a learning bias 
[Utgoff86] precluding it. The bias guiding concept 
acquisition are the experiences in the real world mediated 
by the need to plausibly explain them. Also, theexpert's 
training example plays a much larger role in plausible 
EBL than in standard EBL. 

Refining the qualitative explanation can be 
computationally intensive, but its convergence is 
guaranteed. Refining the approximate surface is less 
expensive but it too is guaranteed to converge. Planning 
without refinement is efficient for achieving simple goals 
with single planning concepts because hillclimbing-like 
approaches can be used. The monotonicity constraints 
guarantee that we cannot be trapped at local extrema. 
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Abstract 

This paper provides a framework for describing 
systems which learn how to plan. In particular we 
view planning as search through a totally ordered 
space of possible plans. A control strategy de- 
scribes the behavior of a planner by defining a 
mapping from problems to ordered search spaces 
and the goal of learning is to modify this control 
strategy to reduce the combinatorics of search. We 
conclude that this framework, even in this early 
stage, provides a useful perspective for analyzing 
performance learning systems. Given this charac- 
terization, it is clear that such algorithms are en- 
gaging in a search through the space of possible 
control strategies. It is also clear that these sys- 
tems make strong assumptions about the topogra- 
phy of the search space, like guaranteed ascent, 
which we argue are violated. While our focus is on 
learning control strategies, the issues are relevant 
to the study of control knowledge in general. 

1 INTRODUCTION 

There has been widespread interest in applying ma- 
chine learning techniques to enhance strategies of auto- 
mated planning. Considerable effort has been devoted to 
the subproblem of performance learning. In this task a 
system is provided with a correct but intractable domain 
theory with which it must learn to solve problems effi- 
ciently. Progress in this approach has been challenged by 

The research reported in this paper was supported by the National 
Science Foundation under grant NSF-IRI-87-19766 

the realization of trade-offs between the power of knowl- 
edge and the cost of using it, both in storage and time. 
Resolution of this challenge lies in part on clarifying the 
nature of the problem. The goal of this research is to pro- 
vide a formal characterization of the planning process and 
the mechanisms by which this process may be modified. 
Given such a framework we can concisely describe the 
impact of knowledge and the rigorously evaluate compet- 
ing strategies for acquiring control knowledge. This pa- 
per presents a first step towards this goal. 

The focus of this paper is on learning how to plan. In 
particular we view planning as search through a totally 
ordered space of possible plans. A control strategy de- 
scribes the behavior of a planner by defining a mapping 
from problems to ordered search spaces and the goal of 
learning is to modify this control strategy to reduce the 
combinatorics of search. These modifications are judged 
with respect to some measure of efficacy the learning 
module is trying to maximize. Thus the methods by 
which the learner can modify control knowledge are natu- 
rally viewed as operators in a meta-space, the space of 
possible control strategies where the efficacy measure 
defines the topography of this space. We believe this 
view of learning as a search in a control space provides an 
appropriate framework for analyzing competing learning 
strategies. Some important questions from this perspec- 
tive include: what is the complexity of this space; what 
search strategy is employed; what information is avail- 
able to guide search; how are control operators specified. 
While our focus is on learning control strategies, the is- 
sues are relevantto the study of control knowledge in gen- 
eral. For example, similar issues are faced when a knowl- 
edge engineer is designing or modifying a control 
strategy. 
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We will first describe a declarative representation for 
a simplified model of planning and discuss how current 
techniques of control strategy learning modify this repre- 
sentation. Next we describe the utility problem within 
this framework, describe how proposed solutions impact 
the search through control space, and discuss limitations 
of these strategies. Finally we will step into the realm of 
meta-planning and describe some of the issues to be 
faced by a system which plans to learn. 

2 CONTROL STRATEGIES 

This section takes a view of planning as a mapping 
from problems to ordered search spaces. The character of 
this mapping is defined by a body of knowledge called a 
control strategy. We develop a framework for describing 
control strategies which facilitates a discussion of strate- 
gy modification. The framework is introduced and then 
used to characterize properties of performance learning 
systems. Section 3 then uses this framework to evaluate 
competing learning strategies. 

2.1 Planning 

The goal of aPlanning is: given aproblem in terms of 
a goal, an initial state, and a set of action descriptions, find 
a sequence of actions which will transform the initial state 
into a state satisfying the goal. One can measure the effi- 
cacy of a Planner (from some perspective) through the 
use of an efficacy/unction. Such a function can be based 
on the percentage of problems a Planner can solve from a 
set of problems or the average time it takes the Planner to 
solve problems in a set. By associating a learning module 
with a planner we can hope, through experience, to im- 
prove the efficacy of a planner with respect to a particular 
efficacy function. 

The framework we are describing is sufficiently ab- 
stract to apply to any search-based view of planning. 
However to draw clear connection between this frame- 
work and existing learning systems we will cast our pre- 
sentation in terms of what is considered classical plan- 
ning. This formalism uses a logic to represent states and 
actions and simple chaining as a rule of inference. Classi- 
cal planning is akin to producing a proof that a goal can be 
realized from an initial world state. The process of plan- 
ning is then one of search through possible proofs, guided 
by a control strategy. 

2.2 Planning Knowledge 

Given this characterization, we can view the plan- 
ning process as consisting of two information sources. 
First there is a structural component which defines a 
possibly infinite potential search space through the inter- 
action of a particular problem and the inference proce- 
dure embodied by the planner. For a typical backward- 
chaining system this space takes the form of a tree where 
nodes are partial state descriptions, links are partial oper- 
ator descriptions, and the goal description is the root (see 
figure 1). Structural information can be viewed as amap- 
ping from problems to potential search spaces. 

Restriction 1: For the remainder of this discussion 
we will as sume that a search space takes the form of a tree 
of partial state descriptions with a finite branching factor 
where the goal description is the root. Thus identical de- 
scriptions will be represented as different nodes if they 
are reached by distinct paths from the root. 

Next there is a ordering component which defines 
how the potential space is explored for a node meeting a 
halting criteria. For example PROLOG explores its 
search space in a depth-first order where choice points 
are resolved by the order of rules in the knowledge base 
and the order of preconditions in those rules. To represent 
the effects of the ordering component we introduce the 
notion of an ordered search space. This can be viewed as 
the presence of ordering links between nodes in the po- 
tential search space. An incomplete ordering strategy 
would then specify apartial ordering among the nodes. A 
complete ordering strategy would impose a total ordering 
over the nodes. Given a total ordering we can then restric- 
tively represent a potential search space as an order list of 
nodes - namely the order in which they will be visited by 
the planner 

Restriction 2: We assume that search must be deter- 
ministic. 

The PROLOG example highlights that the distinc- 
tion between structure and order is not necessarily re- 
flected in the implementation of these systems. It is typi- 
cally not possible to encode an inference procedure 
without implicitly defining an ordering strategy. Howev- 
er, as since we are striving for a mathematical character- 
ization we can entertain the fiction that these processes 
are independent. 

Since our focus is learning we will make an addition- 
al distinction which is meaningful to this task. A plan- 
ner 's behavior is described by its mapping from problems 
to ordered search spaces and determined by its structural 
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Figure 1 - A search space (from [Mitchell86]) 

R,: Volume(pl, vl) A Density(pl, dl) =3 Weight(pl, vl*dl) 
R2: Weightfpl. wl) A Weight(p2. w2) A Less(wl,w2) 

=> Lighter(pl, p2) 
R3: Endtable(pl) => Weightfpl. 5) 
Ri Lighter(x,y) => Safe-to-stack(x,y) 
Rs Unfragile(y) => Safe-to-stack(x,y) 

Goal: Safe-to-stack(x,y) 

Initial state: 
Volume(a, 1) 
Density(a, 1) 
Endtable(b) 

A: Safe-to-stack(x,y) 

R4 

B: ( Llghter(x,y)J 

Rs 

Unfragile(x •y>J 

E: 
Volume(x,Vi) 
Densltytx.d!) 
Volume(y,vj 
Densityty.dJ 
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and ordering knowledge. Learning changes the behavior 
of a planner by modifying or overriding this knowledge. 
Knowledge which cannot be modified, which is inherent 
to the planner, will be termed the native strategy of the 
planner. Knowledge which can be modified and new in- 
formation which is acquired through learning will be 
termed the learned strategy. Information in either of 
these strategies can be characterized as modifying the 
structural or ordering component of the planner. The na- 
tive strategy is simply the default control strategy implicit 
in the planning system (typically opaque to the learning 
module) while the learned strategy is a body of acquired 
knowledge which determines the final behavior of the 
system. 

2.3 Planning Modification 

We have sketched the basic organization of control 
strategies. We will now describe three basic classes of 
control strategy modifications. This will then provide a 
vocabulary to discuss our model of control strategies. 

The goal of a learned control strategy is to allow rap- 
id discovery of successful plans within a search space. 
Following from our dichotomy in planning knowledge 

there are two natural approaches for modifying planning 
behavior. One obvious approach is to limit the size of the 
potential search space defined by the structural compo- 
nent. Thus if we are doing a depth-first search, not 
searching below a node will effectively skip the subtree 
rooted in that node. We will call a modification to the 
structure of the potential search space a structural modifi- 
cation. 

Learning can be exploited to alter the structure of a 
search space in many ways. For example acquiring new 
domain theory operators or modifying the definition of 
existing ones will change the set of reachable states. For 
the scope of this paper we will limit ourselves to a subset 
of structural modifications termed reduction modifica- 
tions. These are modifications which prune regions of a 
potential search space. A reduction modification is com- 
plete if is guaranteed not to prune any solutions. 

In that knowledge is rarely sufficient to make these 
irrevocable modifications without disrupting complete- 
ness we may simply prefer exploring some nodes before 
others, so if the preference is wrong the alternatives will 
be eventually reached. Information which modifies the 
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ordering component of planning is termed an ordering 
modification. 

There is a third class of modification which we will 
not address in this paper. Recall that planners are re- 
source limited and that transitions in the ordered search 
space consume resources. Resource modifications are 
ways of changing the pattern of resource use. Examples 
include truth-preserving simplifications of control 
knowledge [Minton88] and non-truth-preserving tech- 
niques [Cohen, Keller]. However, in that resource modi- 
fications also serve to change structural and ordering 
components, and that we have yet to develop an adequate 
vocabulary for describing them, we will not describe 
them further. 

Given that the search may incorporate rejection 
modifications, a subset of the nodes in the search space 
will be visited. Given that the search is deterministic 
these nodes will be visited in a well defined order. Thus 
we can view planning as a mapping from problems to or- 
dered lists of nodes. Information such as where solution 
nodes lie in this ordering and the resources expended at 
each node can be used as parameters to an efficacy func- 
tion which in turn can serve as a measure of planning suc- 
cess. This is summarized in figure 2. 

Figure 2 - simplified model of planing 

m 

Efficacy 

2.4 Control Axioms 

The previous sections introduce a view of planning 
in terms of structural and ordering knowledge. Learning 
is then seen as modifications to these knowledge sources. 
In particular, we view performance learning as a search 
through a space of possible search control strategies. To 
support this perspective we must precisely define the no- 
tion of control strategy and how a learning module can 
transition between alternatives. For this purpose we will 

adopt a declarative representation of a control strategy 
based on the notion of declarative control packets used in 
[Minton88]. 

Our general approach is to view a control strategy as 
arising from the interactions of individual declarative 
packets of control information termed control axioms. 
Each axiom describes a particular search space modifier 
and the circumstances where it applies. A state in the 
space of possible control strategies is then defined by a set 
of control axioms. Thus a set of control axioms define a 
mapping from problems to ordered nodes. Movement 
through this space is through the addition, deletion, or 
modification of these axioms. 

As mentioned above we are restricting attention to 
two basic modification classes: reduction modifications 
and ordering modifications. A decision procedure con- 
tains the criteria for determining when a modification ap- 
plies. A control axiom is then a decision procedure/mo- 
dification pair, and can be a reduction axiom or an 
ordering axiom. 

It is natural to think of a control axiom as a condi- 
tion-action rule axiom. Figure 3 illustrates this with a re- 
jection axiom acting on the search space in figure 1. In 
this case the decision procedure is defined by precondi- 
tion satisfaction and the control modification is a rejec- 
tion procedure which removes individual links. Any in- 
stantiation of this rule removes one link from the search 
and indirectly discards all nodes in the subtree pointed to 
by the link. 

Figure 3 - Example reduction axiom 

Rejection Axiom: 
IF (AND [Current-node = n] 

[Endtable(?) e n]) 
Reject operator R3 

D: 
R; 

^Ri   R3     /* 

Rejected  ^ 
nodes "" 

To complete our description we must make one more 
distinction. Ordering axioms can conflict while reduc- 
tion axioms cannot. For example a control strategy may 
simultaneously recommend that node B be explored be- 
fore node P and that node P be explored before node B. 
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This property requires us to maintain an arbitration pro- 
cedure whenever potentially contradictory ordering 
modifications are allowed. 

We can now provide a first cut at defining a control 
strategy. A control strategy C is composed of two parti- 
tions: 1) a set of reduction axioms; 2) a set of ordering ax- 
ioms and an arbitration procedure (figure 4). 

Figure 4 
I CONTROL STRATEGY 

■^ Arbitrator* 
Rejection axioms 

<D2Rj> 

Ordering axioms 
<Di Oi> 
<D, o,> JJ 

To briefly summarize, planning is composed of two 
information sources. There is structural knowledge 
which defines the structure of apotential search space and 
control knowledge which defines the order in which this 
space is search. A control strategy emerges from the syn- 
ergy of individual control axioms. There are then three 
questions we can ask of a control strategy: 

1) What is the vocabulary of control modifications - what 
are the mechanisms available to alter the search space. 

2) What is the vocabulary of decision procedures - what 
information is available and appropriate to constrain the 
modifications. 

3) Ho w do local decisions interact to form a global strate- 
gy- 

2.5 Vocabulary of Modifications. 

First let us consider the vocabulary of modifications, 
modifications are the actions available to the learning 
system. To describe these modifications we must consid- 
er both their local effects (what direct impact do they have 
on the search space) and their global effects (how do the 
direct effects interact with the structure of the space and 
othermodifications to impact the space). This section de- 
fines the local effects available to systems. 

As defined, the notion of a control modification is far 
too powerful. It allows such control modifications as de- 
lete every node except a solution node and decision proce- 
dures like prefer a path if it leads to the best solution. We 
will begin by specializing the notion of control modifica- 
tion. Thus while arbitrary control modifications are pos- 
sible, we will for now restrict consideration to the three 

control axioms utilized by explanation-based learning 
research: rejection rules1, preference rules, and macros. 

The search space view we have adopted from restric- 
tion 1 defines a tree of partial state descriptions joined by 
partial operator descriptions. The primary restriction im- 
posed by these strategies is that reduction modifications 
can only directly impact the connections between nodes. 
Ordering modifications tend to be more subtle and are de- 
scribed below. Although a control modification might 
only affect a single link in the search space, figure 3 illus- 
trates a single control axiommay have several distinct in- 
stantiations and thus influence a set of links in a particular 
search space. 

2.5.1 Rejection and Preference Rules 

The PRODIGY/EBL system [Minton88] is the pro- 
totype for rejection and preference rales. Rejection con- 
trol axioms encode the further restriction that the connec- 
tions affected must be between parent and child. The 
strategy implemented in PRODIGY/EBL permits a wide 
range in flexibility in specifying connections. As Minton 
observed, constructing a link from parent to child in this 
space can be viewed as three control modifications: 
choose a parent's unsatisfied state descriptor, choose an 
operator relevant to the descriptor, choose a specializa- 
tion of the operator. PRODIGY/EBL can take advantage 
of these distinctions to subtly specify links but we will 
disregard this for the purpose of this discussion. The 
main point is that the rejection modifications are re- 
stricted in scope to deleting connections connecting apar- 
ticular parent to some set of children. 

PRODIGY/EBL allows two classes of ordering ef- 
fects. Goal, operator, and bindings preferences result in 
ordering modifications which obey the above constraint, 
changes are only made in the ordering of links between a 
parent and its children. The node preference axiom how- 
ever allows arbitrary nodes to be preferred to others as 
long as one is not a descendent of the other. 

2.5.2 Macro Operators 

Traditional  explanation-based learning  systems 
have relied on the notion of a macro operator to increase 
their efficacy. Macros can be viewed as a form of order- 
ing modification. The body of a macro encapsulates a 
particular path through the search space from which it 
was learned. This sequence is then generalized to repre- 

xMinton [Minton88] distinguishes between selection 
and rejection rules but for our purposes they are treated 
as one. The difference is one of descriptive conve- 
nience. Selection rules say discard everything but X 
while rejection rules say discard X. 
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sent a set of possible paths. Macros alter the behavior of a 
planner by presenting themselves as operators. In the 
case of backward chaining the planner can now regress a 
goal through a sequence of operators in one step. If mac- 
ros are expanded before other operators, this means that 
the node defined by the preconditions of the macro will be 
reached sooner than it would have otherwise been. Thus 
macros may order a descendent of a node before one of 
the nodes immediate children. 

Unfortunately macros impose ordering modifica- 
tions at the expense of redundancy. As is clear in figure 5, 
macros effectively copy nodes in the search space and 
change their position in the ordering. Figure 5 illustrates 
the effect of a macro on the search space from figure 1. In 
this case a redundant link has been created between node 
B and N. A depth-first strategy would then search node N 
earlier than before and then search it again in its original 
position. See [Greiner89] for arelated analysis on the im- 
pact of redundant links. 

Figure 5 - Direct macro effects 

Macro operator: 
Lighter(x,y) <= (AND VolumeCx.V!) 

Densityfx.di) 
Endtable(y) 

Ordering:        vi*di<5) 
Depth-first search     ^**   , 

R2 

Macro C: 

E£ 
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2.6 Decision Procedures 

A decision procedure determines when a particular 
control modification will be realized. While control 
modifications provide the vehicle for defining a control 
strategy, the decision procedures embody the expertise. 
There is no reason to prefer one alternative to another un- 
less there is some information which suggests this is a 
correct modification. 

The purpose of a decision procedure is to constrain a 
control modification to apply to contexts where it is ap- 

propriate. So while arbitrary rejection of nodes is unlike- 
ly to benefit a system, a more informed rejection may be. 
In the case of the input resolution example we can guaran- 
tee the decision is appropriate given the restriction of 
horn-clause theories. There are also tradeoffs involved 
in determining appropriateness. Thus a control axiom 
may be appropriate in that it trims only redundant paths 
but efficacy reducing in that it increases the resources re- 
quired to achieve a goal. Determinations of appropriate- 
ness will be discussed at length within the section on the 
utility problem. 

There are two distinctions to make about decision 
procedures: their heuristic power [Nilsson80p. 72] and 
their discriminability. The first distinction centers on 
their properties on convergence (how quickly can a solu- 
tion be found, are we guaranteed to find a solution, are 
their localmaxima). The second describes what informa- 
tion is available to make a decision (simply the goal, the 
initial state, tokens on the goal stack, ordering informa- 
tion). A decision is heuristic if under certain circum- 
stances it may lead to decreased efficacy. For example a 
decision procedure associated with a reduction modifica- 
tion will be heuristic if it sanctions the modification in cir- 
cumstances which prune solution nodes. 

Heuristic decisions have been typically acquired by 
inductive techniques. Thus LEX2 acquires preference 
heuristics by inducing the conditions under which an op- 
erator leads to success. PRODIGY/EBL on the other 
hand uses logical proofs to guarantee a control modifica- 
tion is correct with respect to the discriminability of the 
procedure. 

The view of macros as control axioms leads to an in- 
teresting conclusion when we question what decision 
procedure they use. Macros have traditionally used a 
very simple decision procedure: apply a macro iff it has 
an effect which unifies with the current goal. As we will 
argue later we believe that much of the utility problem 
with macro learning can be attributed to the unsatisfacto- 
ry nature of this decision procedure. Indeed it is impor- 
tant that many of the suggestions for improving macro 
performance can be viewed as adding more information 
to the decision procedure associated with a macro. Thus 
the inductively acquired utilization filters of [Marko- 
vitch] are directly mapped into this representation. 
[Mooney89] also suggests limitations of the use of mac- 
ros. In this case he makes the strong suggestion that one 
should not chain on the preconditions of macros. From 
our viewpoint this imposes a decisions procedure which 
is guaranteed to visit the state characterized by a macro's 
preconditions iff that state is a solution node. 
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Figure 6 - Indirect macro effects 

Macro operator: 
Lighter(x,y) <= (AND Weight(x.wl) 

Volume{y,v2) 
Density(y,d2) 
wl < v2*d2) 

2.7 Indirect Control Modification Effects 

While section 2.4 limited the direct effects of control 
modifications, it is clear from figure 6 that other nodes 
can be effected. In this case not only is a copy of node M 
moved earlier in the ordering but also copies of its descen- 
dents. These indirect effects arise from interactions be- 
tween control modifications and the current ordering 
strategy used by the planner. This means that besides the 
node direcüy affected by the control modification, the en- 
tire subtree beneath that node is impacted in some way. 
This is obvious in the case of rejection modifications 
since the subtree is completely pruned from the search. In 
the case of a preference or macro modification the effects 
can vary wildly depending on the other ordering modifi- 
cations it must interact with. 

Figure 7 illustrates the interaction of a preference 
and macro modification with the traditions ordering strat- 
egies of depth-first and breadth-first search. In the case 
of depth-first search an entire subtree is moved as a block 
before other nodes in the search. For breadth-first the 
pattern is more complex. A whole subtree is reordered 
but this is broken across levels in the search. Along with 
reordering, macro modifications have the effect of mov- 
ing subtrees to a higher level in the search. For an empiri- 
cal analysis of the interaction of ordering strategies with 
macro modifications, see [Mooney89]. 

Macros are distinct from preference rules in that they 
may also engage in interactions with reduction modifica- 
tions. This is because macros serve to insulate paths from 
other control axioms. In figure 6 amacro is created which 
corresponds to the path from B to C to M. If a rejection 
rule is later acquired which deletes C from the search 
space the macro maintains a connection to M. Thus a re- 
duction axiom which effects intermediate nodes in the 

path captured by a macro will not impact the nodes dupli- 
cated by the macro. 

2.8 Resource Bounds 

The above discussion is in terms of potential prob- 
lem spaces but only a finite subset of such a space can ac- 
tually be explored by an implemented system This is be- 
cause actual planning is resource limited and the act of 
creating and traversing the search space consumes re- 
sources. In that resource bounds serve to limit the poten- 
tial search space, these too can be described as reduction 
axioms. For our purposes it suffices to say that resource 
bounds map potential search spaces into realizable 
search spaces. A realizable search space consists of the 
set of nodes actually visited by the planner. For an in 
depth description of the impact of different resource 
bounds, see [Segre]. 

3 EBL AS SEARCH 
Section 2 described how we can represent a planner 

by a set of control axioms. We have discussed how these 
axioms interact to specify a control theory and that the 
goal of learning is to modify this control theory in such a 
way as to maximize a measure of efficacy. The methods 
by which the learning module can modify control knowl- 
edge are thus naturally viewed as operators in a meta- 
space, the space of possible control strategies. We now 
turn to describing prior learning strategies in terms of the 
search methods they employed. This will then allow us to 
characterize their utility in terms of our model. 

3.1 Guaranteed ascent assumption 

Early EBL strategies make many implicit assump- 
tions about the character of the control-space to simplify 
their search for a control strategy. The primary assump- 
tion is that any action in the control-space serves to in- 
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Figure 7 - Indirect modification effects 
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crease the output of the efficacy function, a guaranteed 
ascent assumption. With this strong assumption the effi- 
cacy function can be disregarded and backtracking is un- 
necessary. 

Early systems thus employed a single operator in the 
control-space: learn a macro. This operator was then in- 
stantiated to a particular macro or macro set which was 
concatenated to the existing control strategy. The ulti- 
mate effect of such actions is then determined by aspects 
of the native strategy, primarily the default search strate- 
gy, and any decision procedure assigned to the learned 
macros. The typical decision procedure is apply if macro 
has a consequent which unifies with the current subgoal, 
which is sometimes specialized to include no chaining on 
macros or other ubiquitous restrictions. 

Unfortunately empirical results demonstrate the fail- 
ing of such a simplistic learning method [Minton85, 
Mooney89]. There have been four main approaches to 
address this failing: 1) define a native strategy which pro- 
duces guaranteed ascent; 2) choose a vocabulary of con- 
trol axioms which produces guaranteed ascent; 3) allow 
heuristic search; 4) allow backtracking. We will elabo- 
rate this briefly. 

We can imagine a control-space which is the power 
set of all possible control axioms. As was mentionedpre- 
viously, we can view an overall search strategy as com- 
posed of a fixed native component and a modifiable con- 
trol component. The native component defines a starting 
point in control-space and the operators available to the 
learner define possible transitions beginning at this point. 
One possible approach is to identify a starting point such 

abdhiejkcflmgno 
a Id: hi bdhiejkcflmgno 

abcdefghijklmno 
ape h;:i; defghijklm.no 

that we have guaranteed ascent within the space of possi- 
ble learning actions. The recommendation to use a 
breadth-first search strategy with macro-learning [Moo- 
ney89] is a step in this direction. Such recommendations, 
however, rely onproperties which remain constant across 
different domain theories, problem distributions, and ef- 
ficacy functions. In that changes to any of these parame- 
ters can have dramatic consequences to the topology of 
the control-space we must await strong theoretical analy- 
sis before placing confidence in the generality of these 
recommendations. 

An alternative is to change the actions available to 
the learner in the hope of establishing guaranteed ascent. 
In the framework of our decision/modification represen- 
tation of control axioms this corresponds to changing the 
constraints on decision procedures and control modifica- 
tions. A fair amount of work has centered on the former. 
Thus limiting the use of macros through chaining restric- 
tions [Mooney89] can be viewed as adding more condi- 
tions to decision procedure of each macro modification. 
The utilization filters of [Markovitch] also specialize de- 
cision procedures and in that these filters can be acquired 
through learning, the control space is effectively en- 
riched. The approach to "killer chunks" in SOAR 
[Tambe] and the emphasis on non-recursive decisions 
[Etzioni] again restrict the class of decision procedures. 
To evaluate these methods one must have a sophisticated 
domain independent understanding of how they alter the 
topography of the control-space, an understanding which 
is still forthcoming. 

The above two methods avoided use of state evalua- 
tion functions to judge their progress. An alternative is to 
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use the efficacy function or an approximation to it to 
guide search through the control-space. This the ap- 
proach taken by PRODIGY/EBL [Minton88] where esti- 
mates of the utility of individual rules guides the search 
for a global solution. Only rules with high estimated util- 
ity are incorporated into the learned strategy. Thus 
PRODIGY/EBL performs a hillclimbing search for an 
effective control strategy. 

The above methods suggest irrevocable search for a 
control strategy. Given that a learning system incorpo- 
rates a state evaluation function, it becomes useful to con- 
sider backtracking. Any strategy which incorporates se- 
lective forgetting of learned rules could be viewed as a 
form of backtracking. In this sense, PRODIGY/EBL has 
implemented a hillclimbing search with backtracking. 

3.2 Efficacy Estimation 

Guaranteed ascent insures every action in control 
space increases efficacy but it seems difficult to ensure 
this property. If we relax this restriction such that some 
action increases efficacy then we are forced to specify or 
approximate some action evaluation procedure or else 
abandon convergence. In this section we will discuss 
how efficacy can be approximated to guide search. 

An efficacy function maps sets of control axioms to 
efficacy values for a given distribution of problems. 
Without further knowledge, a this function can only be 
implemented by table look-up and acquired through rote 
learning (execute a representative problem set and re- 
member the performance). Furthermore, this table must 
be as large as the power set of all control axioms to obtain 
full coverage. Instead it is profitable to take advantage of 
local properties of control axioms and to understand how 
this local information combines to produce a global mea- 
sure. 

PRODIGY/EBL exemplifies the only efficacy esti- 
mation strategy suggested by the explanation-based 
learning community. This local strategy relies on the ob- 
servation that all else being equal the contribution of one 
control axiom, its utility, is determined by the average 
savings it provides (an estimate) minus the average cost 
of its decision procedure (empirically derived). A strong 
assumption is then made that efficacy can be maximized 
solely by maintaining axioms of positive utility. 

3.3 Interactions 

Empirical studies have demonstrated the difficulty 
in obtaining guaranteed ascent. In this section we de- 

scribe properties of control operators which shed light on 
this difficulty. We will also show how these same proper- 
ties call into question local efficacy estimation strategies 
like that used in PRODIGY/EBL. 

We have presented a view of control axioms opera- 
tors in a control-space. To search this space effectively 
using the simple search strategies proposed we require 
strong constraints on the transitions between control 
strategies - either guaranteed ascent or no local maxima 
and effective evaluation functions. The previous section 
on indirect control axiom effects was the first warning 
that these restrictions may not hold. We now expand on 
that line of analysis. 

What is difficult about control operator effects is that 
efficacy is dependent on factors which are not domain in- 
dependent, calling a priori biases into question. One of 
these factors is the distributions of problems that will be 
seen. This is not an extreme problem - we could require 
that distributions are provided from the onset or assume 
that future distributions reflect past experience, the later 
requiring variable biases. More problematic is that effi- 
cacy is also dependent on the distribution of decision 
points within the search spaces of problems (this is elabo- 
rated below). This is problematic because this distribu- 
tion is dependent on the particular control strategy in use. 
Thus to correctly predict the effects of adding new control 
knowledge we must understand how this changes the dis- 
tribution of choice points within each problem space for 
every problem in the expected distribution of problems. 
A hefty task. We will now describe why efficacy is so de- 
pendent on choice point distribution and why distribution 
changes are so hard to predict. 

Appropriateness of decision procedures: As was 
illustrated in figure 3, a control axioms can be instantiated 
in multiple ways, both within and across problems. Thus 
a particular control axiom corresponds to a set of instan- 
tiated control axioms. An instantiated control axiom is 
termed appropriate if its application increases the effica- 
cy measure, all other things being equal. An interaction 
occurs when this axiom is appropriate for some members 
of its set of instantiated control axioms, but not for other 
members. This interaction is realized if nodes which 
would lead to inappropriate decisions are actually en- 
countered during the search. This last statement means 
that local utility of a control axiom is dependent on fac- 
tors which determine membership in the set of instan- 
tiated control axioms. These factors include the distribu- 
tion of problems presented to the planner and other 
control axioms. The later is because control axioms alter 
the realizable search space for an particular problem and 
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thusmay altertheclass of possible instantiations forother 
control axioms. 

Pedanticness of decision procedures: One way to 
alleviate the problem of appropriateness is to increase the 
discriminability of decision procedures. Thus if we can 
guarantee that all of the instantiations of a control axiom 
are appropriate, we have simplified determination of lo- 
cal utility. PRODIGY/EBL rejection rules only trim 
nodes which are provably irrelevant. Markovitch's utili- 
zation filters attempt to discriminate when a macro will 
lead to a solution. Unfortunately increasing the discri- 
minability of a decision procedure typically requires 
more resources for its evaluation and thus lowers its local 
utility. Thus PRODIGY/EBL learns rejection rules 
which suggest appropriate modifications but whose in- 
troduction increases the cost of the control strategy. This 
occurs when the information required to determine the 
appropriateness of a search modification is more expen- 
sive than the savings realized by it. 

Additionally in is often not realistic to derive a deci- 
sion procedure which guarantees appropriateness. An 
example of this arises in the context of conjunctive goals. 
Satisfying one subgoal in a particular way might preclude 
the simultaneous satisfaction of other subgoals. Thus a 
control axiom which is locally appropriate may be glob- 
ally inappropriate. To be appropriate such a decision pro- 
cedure must have available all the constraints which arise 
from the rest of the plan, information which may not be 
available. 

savings of R2 if Rl is eventually forgotten. One unfortu- 
nate consequence of this property is that PRODIGY/EBL 
can be stuck on local maxima in its search for the best con- 
trol strategy. 

Figure 8 - sociopathlc control rules 

Saved by Rl alone        Saved by R2 alone 

Saved by R2 given Rl Estimate of R2 after 
Rl forgotten 

Search space savings credited to rule 

In summary we feel that the utility problem is arising 
from complex and subtle properties of the control space. 
We have shown that the search methods learning systems 
have available are quite simple and in our opinion inade- 
quate to the task. Our hope in future research is to provide 
a better understanding of the control space which can sug- 
gest more appropriate learning operators or a better char- 
acterization of operator effects. 

Sociopathic control strategies: A set of control ax- 
ioms is sociopathic [Ma] if axioms are individually 
judged to be good but the global behavior is bad. If this 
property holds, any efficacy measure in terms of local 
utility can be complex indeed. Appropriateness trade- 
offs are one property which may lead to the sociopathic 
property. We will also illustrate another example which 
impacts the PRODIGY/EBL system. 

As illustrated in figure 8 the effects of reduction ax- 
ioms can overlap in the areas of search they avoid, in this 
case two rejection rales, Rl and R2, trim overlapping 
nodes. PRODIGY/EBL computes the local utility of a 
rule base on its match time and estimated search savings. 
Which rale is actually credited for the savings is deter- 
mined simply by the order in which they were learned. In 
the case where Rl is learned before R2, Rl is credited 
with all of the savings under the left subtree. This interac- 
tion makes Rl's estimate overly optimistic and R2's pes- 
simistic and Rl may be incorrectly retained over R2. Fur- 
thermore, the information is not available to update the 

4 PLANNING TO LEARN 

In that we are admitting that learning is a search 
through a meta-space, what information do we want 
available at this level. One obvious possibility is to pro- 
vide a richer vocabulary of control-space operator ef- 
fects. It is currently not possible to even express control 
axiom interactions much less reason about their impact 
on efficacy. While it is not clear such a vocabulary could 
be operationally specified, it seems a prerequisite to in- 
formed control strategy modification. 

There are also several other issues which have been 
generally avoided by the learning community and which 
might appropriately be handled through meta-reasoning. 
One important issue is when to learn. Resources con- 
sumed during learning have not generally been incorpo- 
ratedinto empirical evaluations of these systems. The ex- 
cuse has been that learning time can be amortized over all 
problems the system will solve. However in that no sys- 
temhas shown convergence and thatrecent learning strat- 
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egies are resource intensive, this excuse may not be rea- 
sonable. 

The reinforcement learning there has been the obser- 
vation that when the search space is ill-behaved a system 
can achieve better overall performance by performing a 
broader search [SammufJ. This can be viewed as a form 
of experimentation, trading off current performance in 
the hope of a future gain. Decisions to experiment could 
thus be reasoned about at this level. 

5 CONCLUSIONS 

We have presented a search space view of planning 
where the efficacy of a planner is determined by proper- 
ties of the ordered search spaces produced by it on a distri- 
bution of problems. A control strategy is a set of individ- 
ual control axioms which determine a planners mapping 
from problems to ordered search spaces. The power set of 
all possible control axioms then defines a space of all pos- 
sible control strategies and efficacy determines the to- 
pography ofthat space. 

We conclude that this framework, even in this early 
stage, provides a useful perspective for analyzing per- 
formance learning systems. Given this characterization, 
it is clear that such algorithms are engaging in a search 
through the space of possible control strategies. It is also 
clear that these systems make strong assumptions about 
the topography of the search space, like guaranteed as- 
cent, which seem to be violated. Instead we have argued 
that the operators used to transition in this space engage in 
complex and subtle interactions, resulting in a space to- 
pography which is ill-suited to the search strategies cur- 
rently emploied. 

In that current approaches to the utility problem are 
not directiy addressing control interactions we feel they 
are not well motivated. Instead we suggest characterizing 
these interactions and either reasoning about them during 
learning or utilizing them in restricting the class of con- 
trol axioms. The later should also be of interest to control 
strategy engineers. In that control interactions are com- 
plex, progress will likely result from strong restrictions 
upon the vocabulary of decision procedures. 
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Abstract 

Traditional AI planning methods often assume a well- 
modeled, predictable world. Such assumptions usually 
preclude the use of these methods in adversarial, 
multi-agent domains. This paper describes our investi- 
gation of machine learning methods to learn reactive 
plans for such domains, given access to simulation 
model. Particular emphasis is given to the task of 
assessing the effects of differences between the simula- 
tion model and the environment in which the learned 
plans will ultimately be tested. Methods for utilizing 
existing partial plans are also discussed. 

1. Introduction 
The goal of this work is to explore the application of 
machine learning techniques to reactive planning prob- 
lems arising in adversarial, multi-agent domains. In 
such domains, traditional AI planning approaches are 
usually infeasible, because of the complexity of the 
multi-agent interactions and the inherent uncertainty 
about the future actions of other agents. One approach 
to such problems is to develop a plan expressed as a set 
of condition/action rules that specify appropriate 
responses to any given situation. The behavior of a 
plan can be monitored in a simulation to discover any 
weaknesses or inadequacies. This information can be 
used to modify the rules, which can then be re- 
evaluated in the simulation. Such a generate-and-test 
cycle can be repeated until a satisfactory plan is found, 
which can then be released for application in the real 
world (see Figure 1). In many applications, off-line 
learning is the only realistic alternative for evaluating 
the performance of hypothetical plans, since testing 
plans on the "live" system is too difficult, too costly, or 
too dangerous. The current system was designed with 
off-line learning in mind. The overall objective is to 
reduce the manual effort involved in the generate-and- 
test cycle in evolving high-performance reactive plans. 

The reactive systems we consider here may be 
characterized by the following general scenario: The 
decision making agent interacts with a discrete-time 
dynamical system in an iterative fashion. At the begin- 

ning of each time step, the agent observes a representa- 
tion of the current state and selects one of a finite set of 
actions, based on the agent's decision rules. As a result, 
the dynamical system enters a new state and returns a 
(perhaps null) payoff. This cycle repeats indefinitely. 
The objective is to find a set of decision rules that max- 
imizes the expected total payoff.1 Several tasks for 
which reactive systems are appropriate have been 
investigated in the machine learning literature, includ- 
ing pole balancing (Selfridge, Sutton and Barto, 1985), 
gas pipeline control (Goldberg, 1983), and the animat 
problem (Wilson, 1987). For many interesting prob- 
lems, including the one considered here, payoff is 
delayed in the sense that non-null payoff occurs only at 
the end of an episode that may span several decision 
steps. 

2. Overview of the Approach 
SAMUEL is a system that uses competition-based 
machine learning to develop reactive plans. SAMUEL 

incorporates several assumptions selected to make the 
system broadly applicable to real-world problems. 
First, the system's perception facilities are limited to a 
fixed set of discrete, possibly noisy, sensors.2 There is 
also a fixed set of control variables may be set by the 
decision making agent. The system's decision rules are 
limited to simple condition/action rules of the form 

if 
then 

(and   Ci 
(and   ai 

where each c; is a condition on one of the sensors and 
each action a,- specifies a setting for one of the control 
variables. A reactive plan in SAMUEL comprises a set 
of such decision rules. 

The knowledge base in SAMUEL can be initialized 
with plans that provide a minimal level of competence 

1 See (Barto, Sutton and Watkins, 1989) for a good discussion of 
broad applicability of this general model. 

2 See   (Whitehead and Ballard,  1990) for a discussion of the 
problem of perceptual aliasing under such conditions. 
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Fig. 2. SAMUEL: A System for Learning Reactive Plans 

on the performance tasks. SAMUEL improves its reac- 
tive plans through the application of competition at two 
levels (Figure 2). At the rule level, each rule is 
assigned a strength that estimates its utility on the basis 
of its record of past payoff (Grefenstette, 1988). 
Conflict resolution is implemented as a probabilistic 
competition among rules based on rule strength. 
SAMUEL maintains a population of alternative plans. 
These plans compete with one another using a genetic 
algorithm (Holland, 1975): Each plan in the current 
population is evaluated on a number of tasks from the 
problem domain (typically, 20 tasks in the experiments 
described here). As a result of these evaluations, plans 

with high performance are selected and recombined, 
using genetic operators such as CROSSOVER and MUTA- 

TION, producing plausible new plans for the next itera- 
tion. 

This learning system has been tested on a sequen- 
tial decision problem first discussed by Erikson and 
Zytkow (1988), called Evasive Maneuvers (EM). In 
EM, there are two objects of interest: a prey and a pur- 
suer. The decision maker controls the actions of the 
prey to evade the approaching pursuer. The pursuer can 
track the motion of the prey and steer toward the prey's 
anticipated position. Six sensors give information 
about the current state:  the current turning rate of the 
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Fig. 3. The Evasive Maneuvers World 

prey, a clock, the pursuer range, the pursuer bearing, the 
pursuer heading, and the pursuer speed (Figure 3). 
There is a single control variable, the turning rate of the 
prey. The process is divided into episodes that begin 
with the pursuer approaching the prey from a randomly 
chosen direction. The pursuer initially travels at a far 
greater speed but is less maneuverable than the prey 
(i.e., the pursuer has a greater turning radius than the 
prey) and gradually loses speed as it maneuvers. The 
episode ends when either the pursuer captures the prey 
or the pursuer's speed drops below a threshold and it 
loses maneuverability. This requires between 2 and 20 
decision steps, depending on how many turns the pur- 
suer performs while tracking the prey. At the end of 
each episode, the critic provides a payoff defined by the 
formula: 

payoff = 1000   if prey escapes pursuer 

= lOf     if prey is captured at time t 

A plan for EM consists of a set of decision rules. A 
sample rule follows: 

if   (and (last-turn 0 45) (time 4 14) 

(range 500 1400) (bearing 3 6) 

(heading 90 180) (speed 50 850)) 

then (and (turn 90)) 

strength 750 

Each condition on the left-hand side of a rule specifies a 
range of values for a sensor, and each action specifies 
the value for a control variable. The strength is an esti- 
mate of the rule's utility and is used for conflict resolu- 

tion (Grefenstette, 1988).3 For more details, see (Gre- 
fenstette et. al, 1990). 

3. Case Studies 
This section presents a summary of a number of empiri- 
cal studies of the performance of SAMUEL on the EM 
problem. Because SAMUEL employs probabilistic learn- 
ing methods, all graphs represent the mean performance 
over 20 independent runs of the system, each run using 
a different seed for the random number generator. 
When two learning curves are plotted on the same 
graph, a vertical line between the curves indicates that 
there is a statistically significant difference between the 
means represented by the respective plots (with 
significance level a = 0.05) at that point on the curves. 

3.1. Accuracy of Simulation Model 
One important topic concerns the inevitable 

differences between the simulation model in which the 
knowledge is learned and the target environment in 
which the learned knowledge will be used (see Figure 
1). We have performed a number of experiments in 
which the rules learned in one environment were tested 
in an slightly different environment. These experiments 
give some feeling for the robustness of the rules 
learned. 

In one experiment, two environments were 
defined that differed by the initial conditions selected 
for the start of each episode (Grefenstette, Schultz and 
Ramsey, 1990). In the environment with fixed initial 
conditions, the pursuer's initial speed, distance to the 
prey, and relative heading were always the same, but 
the bearing (direction) from which the pursuer 
approached the prey was selected as random for each 
episode. In the environment with variable initial condi- 
tions, the pursuer's initial speed, distance and heading 
were randomly selected from a range of values. 

Figure 4 shows the result of learning plans under 
fixed initial conditions (dashed curve), and the results 
of testing those plans in the environment with variable 
initial conditions (solid curve). Not surprisingly, per- 
formance of the plans degraded in the less restricted 
environment. Figure 5 shows the results when learning 
occurs in the environment with variable initial condi- 
tions (solid curve), and the results of testing those same 
plans in the environment with fixed initial conditions 

3 The strength of a rule is reduced by an estimate of the rule's 
inconsistency, measured by the variance in the payoff obtained by 
the rule. A similar method is used by Whitehead and Ballard (1990) 
in their Q-learning system. 
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Fig. 5. Learning with Variable Initial Conditions 

The interesting result here is that there was no 
significant degradation of performance when the plans 
final learned in the variable environment were tested in 
the simpler environment. The evidence is that the sys- 
tem learned robust plans that perform well regardless of 
the initial conditions of the pursuer. Comparing the two 
graphs, it is obvious that one pays a price for learning 
the more robust plans, in that a longer period of learn- 
ing is required to reach equivalent levels of perfor- 
mance. 

Figure 6 illustrates some aspects of this trade-off, 
comparing the best plans learned in each of the two 
training environments. Each plan was tested on 11 
environments with differing initial conditions, ranging 
from the conditions in the fixed-initial-conditions case 
to the conditions in the variable-initial-conditions case. 
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Fig. 6. Performance of Learned Plans Tested Against 
Gradually Variable Initial Conditions 

The plan that was learned in the variable-initial- 
conditions environment performed uniformly well in all 
the tested environments. The plan learned in the fixed- 
initial-conditions environment degraded steadily as the 
environment included a greater variety of initial condi- 
tions. One interesting interpretation of Figure 6 is that 
the penalty for assuming an overly predictable environ- 
ment is far greater that the penalty for assuming the 
environment less regular than it is. 

Similar results were obtained in another set of 
experiments in which the difference between the two 
environments concerned the amount of noise in the sen- 
sors (Ramsey, Schultz and Grefenstette, 1990). Figure 
7 shows the result of learning plans with noise-free sen- 
sors (dashed curve), and the results of testing those 
plans in an environment with noisy sensors (solid 
curve). Figure 8 shows the results when training occurs 
in the environment with noisy sensors (solid curve), and 
the results of testing those same plans in the environ- 
ment with noise-free sensors (dashed curve). Again, 
there was no loss of performance when the plans 
learned in the noisy environment were tested in the 
noise-free environment. These results suggest strongly 
that, for systems like SAMUEL, it pays to make the simu- 
lation of the environment more challenging that the 
actual test environment is likely to be (see Figure 9). 

3.2. Improving Existing Plans 
One of the features of SAMUEL is that, unlike 

many previous genetic learning systems (Smith, 1980; 
Goldberg, 1983; Holland, 1986), the knowledge 
representation consists of symbolic condition-action 
rules, rather than low-level binary pattern matching 
primitives.  The use of a high level language for rules 
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explain the success of the empirically derived rules 
(Gordon and Grefenstette, 1990). Finally, it makes it 
easier to incorporate existing knowledge. A recent 
study (Schultz and Grefenstette, 1990) addressed this 
final point by comparing two mechanisms for initializ- 
ing the knowledge structures in SAMUEL. The results 
presented here show that genetic algorithms can be 
used to improve partially correct plans, as well as to 
learn plans given no initial knowledge. 

First,  a tactical  plan  for EM was  manually 
developed: 

If the pursuer is far enough away, turn so that it is 
behind the prey. When the pursuer is closing in, make 
hard turns such that the pursuer losses velocity. If the 
pursuer is heading away from the prey and going slow, 
ignore it and continue in the current direction. 
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Fig. 8. Learning with Noisy Sensors 

This plan can be expressed naturally in the rule 
representation language of SAMUEL. The manually 
generated plan successfully evades the pursuer about 
75% of the time. Three methods for initializing the 
population of competing plans were compared. In the 
adaptive initialization method, each plan in the initial 
population consisted of a set of maximally general 
rules, which are then specialized according to the sys- 
tems early experiences (Grefenstette et. al, 1990). In 
the homogeneous population method, each of the initial 
plans consisted of the heuristically generated plan, aug- 
mented by the maximally general rules. Finally, in the 
heterogeneous population method, part of the popula- 
tion is assigned the heuristic plan and the remainder of 
the population consists of the maximally general rules. 
A comparison of the three methods is shown in Figure 
10. 
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offers several advantages. First, it is easier to transfer 
the knowledge learned to human operators. Second, it 
makes it possible to combine empirical methods such as 
genetic algorithms with analytic learning methods that 
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Fig. 10. Learning from Partially Correct Plans 
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The dotted line shows the learning curve when 
the no heuristic knowledge is available, i.e., the adap- 
tive initialization method. The dashed line shows the 
learning curve when heuristic knowledge is incor- 
porated in the initial population of knowledge struc- 
tures using the homogeneous population method. The 
solid line is the learning curve for the heterogeneous 
population method, in which the partially correct plans 
compete directly with plans generated by the adaptive 
initialization heuristics. While a detailed analysis of 
the results are beyond the scope of this paper, the 
results indicate that, using the heterogeneous method, 
SAMUEL can exploit existing knowledge and leam more 
quickly when heuristic rules are available. This sug- 
gests that future work might explore the trade-offs 
between manual knowledge acquisition and machine 
learning. 

4. Summary 
These initial studies in a simple competitive environ- 
ment have shown that it is possible for learning systems 
based on genetic algorithms to develop high perfor- 
mance, robust reactive plans. Once a high performance 
plan has been learned, it can be viewed as a source of 
expert behavior. In (Gordon and Grefenstette, 1990) 
we outline an approach to applying explanation-based 
techniques to reactive plans learned by SAMUEL, in 
order to clarify the system's performance as well as 
generate new reactive rules. Current efforts are also 
aimed at augmenting the task environment to test 
SAMUEL'S ability to learn reactive plans for a variety of 
more realistic domains. Further developments along 
these lines can be expected to reduce the manual effort 
required to build systems with expert performance in 
complex, adversarial domains. 
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1    Introduction 
There is a tension in the world between complexity and 
simplicity. On one hand, we are faced with a richness of 
environment and experience that is at times overwhelm- 
ing. On the other, we seem to be able to cope and even 
thrive within this complexity through the use of simple 
scripts, stereotypical judgements, and habitual behav- 
iors. It seems that to function in the world, we have 
idealized and simplified it so as to make tractable our 
own reasoning about it. As a group and as individuals, 
human agents search for and create islands of simplicity 
and stability within a sea of complexity and change. 

In general, Artificial Intelligence has ignored this ten- 
sion. It has tended towards theories that either attempt 
to face the complexity of the world head on, or trivial- 
ize the problem through oversimplification of the world. 
The result of the former has been the production of 
"general purpose" devices that that are uniform in their 
ability to solve problems from different domains only in 
that are uniformly bad at doing so. The result of the lat- 
ter has been toy programs for toy domains that do little 
to inform us about the true structure of intelligence. 

The response to the failure of this drive towards gen- 
eral purpose problem-solvers has, unfortunately, been 
the production of domain-dependent programs that sac- 
rifice any hope of generality in return for specialized 
problem-solving skills. This has been most apparent re- 
cently in the reactive movement that has been producing 
specialized devices that are robust in their own areas be- 
cause of the skills of particular programmers rather than 
their own internal structure. 

In this paper, we will discuss an approach to relieving 
this tension that rises out of the case-based reasoning 
movement. This approach embraces rather than avoids 
this paradox of the apparent complexity of the world and 
the overall simplicity of our methods for dealing with it. 
It does this by treating the behavior of intelligent agents 
as an ongoing attempt to discover, create, and maintain 
the stability that is necessary for the production of goal- 
satisfying action. 

Our basic argument rests on the idea that general 
purpose intelligence is only possible within the confines 

'This work was supported in part by the Defense Ad- 
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Force Office of Scientific Research under contract F49620- 
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of learning and planning systems that work to establish 
functional correspondences between the world and their 
conception of it. This is not to say that we advocate the 
position that systems should be attempting to construct 
perfect internal models of the world. Our view is that 
autonomous agents must strive towards the production 
of goal-satisfying behavior—not the production of inter- 
nal categories that exist only to match the structure of 
the external world. 

Our framework for the study of agency consists of four 
basic parts: 

• Case-based planning. 

• Learning from failure. 

• Learning from execution-time opportunity. 

• Stabilizing the environment through enforcement. 

Each of these components provides a piece in the overall 
effort to establish the correspondence between the inter- 
nal world of an agent and the complex environments in 
which it must function. The starting point, case-based 
planning, provides the framework by producing stan- 
dard plans that themselves are fixed points in the world. 
The ability to learn from failure allows for the incre- 
mental search of the simplified space of variations that 
actually arise in the world as opposed to the far more 
complex space of those problems that might occur. Like- 
wise, the ability to recognize and learn from execution- 
time opportunities provides the ability to construct and 
save plans for the conjuncts of goals that actually arise 
in a problem space while avoiding the problems of ex- 
ponential search of the space itself. Finally, the ability 
to stabilize an environment with respect to an agent's 
view of the world and the plans that he has built to deal 
with it provides the ability to create niches in which the 
complexity of the world is reduced, thus making it easier 
to reason about and act within. 

Because we are concerned with goal-satisfying behav- 
ior and with the production of actual actions in the 
world, we prefer not to label our work as planning. In- 
stead, we prefer a label that links the work to our object 
of attention, the intelligent agent, and thus refer to it 
as the study of agency. We discuss our work on agency 
in the context of three programs: CHEF, TRUCKER, and 
RUNNER. 
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2 Planning and Action in an 
Open World 

Most AI work on problems of autonomous agency has 
been within the context of planning research, where a 
fairly strict separation between planning and execution 
was assumed. The classical development of the theory 
of planning and problem-solving emphasized exhaustive 
preplanning, with the goal of being able to guarantee 
that an optimal or near-optimal plan would be found if 
one existed. Planners in this paradigm required certain 
assumptions to hold: 

• The world will be stable; it will behave as projected. 

• Time consumed in planning is independent of the 
time that can be devoted to execution. 

• The information available to the planner is com- 
plete, and execution will be flawless. 

• Any initially correct plan will remain correct and 
can in fact be carried out. 

In the real world, however, these assumptions simply do 
not hold. As we relax these assumptions, new issues 
arise that researchers in the early days of planning work 
were able to avoid. This opening of the world leads us 
to a new set of constraints that apply to any agent that 
must produce plans and actions in the world. These 
constraints include: 

• An agent lacks perfect information about its world 
and the effects of its own actions. 

• An agent does not always know all of its goals in 
advance. 

• Planning    time    is    limited,    and    shared    with 
execution-time. 

• The mapping from an action in a plan to an action 
in the world is non-trivial. 

• Projection over all possible worlds is theoretically 
and practically intractable. 

• The goal of the agent is to act, not simply to plan. 

We do not make these assumptions because we want 
to. We make them because we have been forced to. Such 
is the nature of real world domains. In general, we pro- 
pose that the only way to deal with the intractability 
of exhaustive reasoning within complex domains is to 
integrate the tasks of planning and learning into a sin- 
gle agent architecture. Rather than suppose that it is 
possible to construct functional plans from scratch, we 
suggest that a dynamic case base of plans and their ef- 
fects be produced and used incrementally. In this way, 
a planner can improve itself over time through the un- 
derstanding of its own success and failure within a given 
domain. 

3 Case-based Planning 
One technological proposal for addressing both the issue 
of execution-time failure and the complexity of de novo 
plan construction comes out of emerging work in case- 
based reasoning [Hammond, 1989, Kolodner and Simp- 
son, 1984, Martin, 1990, Owens, 1990, Schänk, 1982]. 
This work has suggested an approach to problem-solving 

that seems to be a tractable alternative to the more tra- 
ditional rule-based approaches [Fikes and Nilsson, 1971, 
Sacerdoti, 1975]. Case-based planning suggests that the 
way to deal with the combinatorics of planning and pro- 
jection is to let experience tell the planner when and 
where things work and don't work. Rather than replan- 
nig, reuse plans. Rather than projecting the effects of 
actions into the future, recall what they were in the past. 
Rather than simulating a plan to tease out problematic 
interactions, recall and avoid those that have cropped 
up before. 

3.1    A framework for case-based 
planning 

This framework suggests seven basic case-based plan- 
ning processes: 

• An ANTICIPATOR that predicts planning prob- 
lems on the basis of the failures that have been 
caused by the interaction of goals similar to those 
in the current input. 

• A RETRIEVER that searches a plan memory for 
a plan that satisfies as many of the current goals 
as possible while avoiding the problems that the 
ANTICIPATOR has predicted. 

• A MODIFIER that alters the plan found by the 
RETRIEVER to achieve any goals from the input 
that it does not satisfy. 

• A PROJECTOR that uses cases indexed by plan- 
ning solutions rather than problems to predict the 
outcomes of suggested plans on the basis of the out- 
comes of similar plans in memory. 

• An INDEXER that places new plans in memory, 
indexed by the goals that they satisfy and the prob- 
lems that they avoid. 

• A REPAIRER that is called if a plan fails. It is here 
that we argue that causal knowledge is applied - if 
it is applied at all. 

• An ASSIGNER that uses the causal explanation 
built during repair to determine the features which 
will predict this failure in the future. This knowl- 
edge is used to index the failure for later anticipa- 
tion. As in repair, causal knowledge is useful in 
anticipation but not essential. 

These seven modules make up the basic algorithm for 
a case-based planner. The RETRIEVER, MODIFIER 
and INDEXER make up the central planning loop that 
allows old plans to be modified in service of new goals. 
The REPAIRER is required for those situations in which 
plans fail. And the ASSIGNER and ANTICIPATOR 
provide the learning and application modules that allow 
the planner to avoid making mistakes that it has already 
encountered. 

4    Learning from failure 
The lack of a perfect domain model and thus complete 
projection means that case-based planners are open to 
the possibility of failure. While this is problematic in 
general, we argue that this possibility must be faced 
by any reasoning system that is functioning in an open 
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world. Our way of facing the issue of failure is to allow 
that it will happen and design systems that are able to 
cope with it at execution-time and, as a result of the ex- 
perience, anticipate and avoid it in later planning. The 
product of this approach is the incremental search of 
the space of actual problems that tend to arise in any 
particular domain. The apparent complexity of possible 
worlds is reduced by allowing the planner to only con- 
cern itself with those worlds that actually exist. Our 
approach to the complexity of projection in planning is 
to learn to recognize the situations in which failures oc- 
cur and use that recognition to avoid them. The plan- 
ner uses its own failures to learn problematic features 
in a domain. These problematic features can then be 
used to predict problems in later planning situations so 
that the planner can construct its new plan knowing the 
problems it must avoid. By also storing plans in terms 
of the problems that were encountered while building 
them, the planner can use the prediction of a problem 
to find a plan in memory that avoids it. 

This idea of using failures to learn the features that 
predict them is implemented in the CHEF planner [Ham- 
mond, 1989]. CHEF uses an anticipate and avoid ap- 
proach to planning problems that is sharply contrasted 
with the create and debug approach taken by earlier 
planners [Wilensky, 1983, Sacerdoti, 1975]. CHEF at- 
tempts to predict and plan for possible failures before 
they actually occur rather than waiting for them to hap- 
pen and repairing them once they have. The ability to 
learn from its own failures allows the CHEF planner to 
anticipate and avoid those problems that it has seen be- 
fore. 

It is important to note that this type of knowledge is 
learned through an active experimentation in new do- 
mains. In particular, it is learned when the planner's 
expectations fail. The case of learning to anticipate and 
avoid problems in involves expectation failures that cor- 
respond to planning errors. As we will see in the section 
that follows, learning about specific optimizations in- 
volves expectation failures that correspond to episodes 
of the planner recognizing and exploiting opportunities. 

5    Opportunism and memory 
Despite addressing some of the problems of traditional 
planning, case-based planning still shares some of its ba- 
sic assumptions; the most central being a view of action 
as decomposable into separate planning and execution 
phases, where the execution phase is carrying out the 
dictates of the computational object called the plan. In 
recent years there has been a realization in the planning 
community that the domains that will support such a 
separation are much rarer than had previously been sup- 
posed. 

Exhaustive pre-planning for a set of goals seems to 
require at a minimum that an agent be aware of all its 
goals at plan time and that he have complete knowl- 
edge of the physics and other agents in his environment. 
Unfortunately, this is simply not true of any interesting 
domains or situations that an agent must confront. 

Just as a system that cannot fully predict the future 
must contend with those futures in which plans fail, it 
must also deal with those futures in which they succeed 

in unanticipated ways. In order to be effective, it must 
also cope with and learn from opportunities that were 
not predicted in much the same way that it deals with 
failures. 

Our approach to the problem of execution-time oppor- 
tunism uses episodic memory to organize, recognize and 
exploit opportunities. Briefly, the algorithm includes 
the following features: 

• Goals that cannot be fit into a current ongoing plan 
are considered blocked and, as such, are suspended. 

• Suspended goals are associated with elements of 
episodic memory that can be related to potential 
opportunities. 

• These same memory structures are then used to 
parse the world so that the planner can make rou- 
tine execution-time decisions. 

• As elements of memory are activated by conditions 
in the world, the goals associated with them are also 
activated and integrated into the current processing 
queue. 

In this way, suspended goals are brought to the planner's 
attention when conditions change so that the goals can 
be satisfied. Because the recognition of opportunities 
depends on the nature of its episodic memory structures, 
we call the overall algorithm presented here opportunis- 
tic memory. 

5.1     Opportunistic planning 

Our approach to opportunism builds on two views of op- 
portunism in planning—that of Hayes-Roth and Hayes- 
Roth [Hayes-Roth and Hayes-Roth, 1979], and that of 
Birnbaum and Collins [Birnbaum and Collins, 1984]. 

Hayes-Roth and Hayes-Roth presented the view that a 
planner should be able to shift between planning strate- 
gies on the basis of perceived opportunities, even when 
those opportunities are unanticipated. Their model, 
which they called opportunistic planning, consisted of 
a blackboard architecture and planning specialists that 
captured planning information at many levels of ab- 
straction. The planner could jump between strategies 
as different specialists "noticed" that their activation 
conditions were present. In this way, the planner could 
respond to opportunities noticed at planning time. 

More recently, Birnbaum and Collins [Birnbaum and 
Collins, 1984] presented a view of opportunism that in- 
cluded a role for execution. Under their model, goals 
are viewed as independent processing entities that have 
their own inferential power. When a goal is suspended 
because of resource constraints, it continues to examine 
the ongoing flow of objects and events that pass by the 
agent. If circumstances that would allow for the satis- 
faction of the goal arise, the goal itself recognizes them 
and asserts itself. We share Birnbaum's and Collins' 
philosophical stance of trying to explain complex op- 
portunistic behavior. However, we disagree that this 
behavior results from goals constantly monitoring the 
world. We believe that indexing suspended goals is a 
better explanation. 
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5.2    An example of opportunism 
It is important to understand the type of behavior we 
want to capture. We will do this by looking at a simple 
example: 

On making breakfast for himself in the morn- 
ing, John realized that he was out of orange 
juice. Because he was late for work he had no 
time to do anything about it. 
On his way home from work, John noticed that 
he was passing a Seven-Eleven and recalled 
that he needed orange juice.  Having time, he 
stopped and picked up a quart and then con- 
tinued home. 

There are a number of interesting aspects to this ex- 
ample. First of all, the planner is confronted with new 
goals during execution, making complete preplanning 
impossible.  Secondly, the planner is able to stop plan- 
ning for a goal before deciding exactly how to satisfy it. 
In effect, he is able to say "I don't have all the informa- 
tion or the time to completely integrate a plan for this 
goal into my current agenda."  Using Schank's vocabu- 
lary, we call this the ability to suspend a goal [Schänk 
and Abelson, 1977]. And third, although the goal is sus- 
pended, the planner is able to recognize the conditions 
that might lead to its satisfaction. 

There is another more subtle element to this example: 
in order to suspend planning for the goal to possess or- 
ange juice, John has to do some reasoning about what 
a plan for that goal entails. That is, he has to see that 
the goal is blocked by lack of time to go to the store. As 
a result, he has a clear idea at planning time what an 
execution-time opportunity would look like. 

In this example, our opportunistic memory algorithm 
translates into the following: 

• John's goal to possess orange juice is blocked by 
lack of time to run the default plan. He decides, 
on the basis of the preconditions he knows about, 
that being at a store would constitute an opportu- 
nity to get the orange juice. As a result, he links 
the suspended goal to the condition of being near a 
store. 

• While coming home, he sees and recognizes a Seven- 
Eleven. This activates the goal to obtain orange 
juice that he associated with this condition earlier 
in the day. 

• He then tests the preconditions on the plan and 
merges it into his current agenda. 

In our example, having money, being at a grocery 
store, and having time are all preconditions for buying 
orange juice. But there is a difference between them, in 
that having money is a normative condition and as such 
does not constitute an opportunity, while being near a 
store is a non-normative precondition and as such does 
constitute an opportunity. 

First, the planner suspends the blocked goals by asso- 
ciating them with the elements of memory that describe 
potential opportunities. This requires that the planner 
have access to a vocabulary that differentiates between 
the different types of planning problems. 

Next, the planner executes the plans for its active 
goals. During execution, it has to monitor the ongoing 

effects of its plan as well as the effects of the plans of 
others in its world. The representational elements used 
to do this parsing are the same elements with which 
suspended goals have been associated. As a result, the 
planner's general recognition of a situation that consti- 
tutes an opportunity can immediately activate any goals 
that have previously been associated with that situation. 

Finally, any activated goals are integrated into the 
current set of scheduled steps, and the plan is executed. 
This requires reasoning about resources and protections, 
as well as the effects of actions. 

5.2.1 Suspending blocked goals 
In general, opportunities to run plans can be derived 

from the preconditions on each of the steps of a plan. A 
planner could, given time, move through a plan step by 
step and collect the preconditions that have to obtain 
at that point in the plan. But this would require the ex- 
amination of many conditions that are not particularly 
useful in the context of opportunism. Some precondi- 
tions for obtaining orange juice—having money, having 
time, and being able to carry the carton—are not useful 
if we are looking for the features that will allow us to 
recall the suspended goal at the appropriate time. For 
example, having money is a strong precondition for buy- 
ing orange juice, but it is also a normative condition. As 
a result, it is a bad predictor of an opportunity to satisfy 
the goal to have orange juice. If the suspended goal is 
tied to having money, the planner will be reminded of 
the goal far too often. 

Rather than test all preconditions of a plan for these 
constraints, we propose a taxonomy of opportunity types 
to derive the conditions that will serve as opportunities 
to satisfy the plan. For a further discussion of this tax- 
onomy, see Hammond et al [1988]. 

In this example, it is possible to associate the 
blocked goal to possess orange juice with the location, 
GROCERY-STORE, and the object itself, ORANGE- 
JUICE. Associating the goal with the least likely condi- 
tions with the belief that most of the other conditions 
will obtain when the suspended goal is activated. 

5.2.2 Recalling suspended goals 
An agent usually has a wide variety of planning op- 

tions for any one goal. In our example, John can pick up 
orange juice at any grocery store, not just a particular 
one. It is necessary, then, to be able to recognize a wide 
variety of situations as opportunities for goal satisfac- 
tion. 

To deal with this, we have been using a version of 
Martin's DMAP parser [Martin, 1990] a general pur- 
pose recognition system. DMAP uses a marker-passing 
algorithm in which two types of markers are used to 
activate and predict concepts in an ISA and PART-OF 
network. Activation markers are passed from primitive 
features up an abstraction hierarchy. When any PART- 
OF a concept is active, prediction markers are spread to 
its other parts. When a predicted concept is handed an 
activation marker, it becomes active. Likewise, when all 
parts of a concept are activated, the concept itself is ac- 
tivated. For our uses, we have added a new type of link 
to the basic memory stuctures. This link associates sus- 
pended goals with concepts that represent opportunities 
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to achieve them. Pointing from concepts to goals, this 
SUSPEND link is traversed by any activation marker 
that is placed on the concept. So, the activation of a 
concept also activates any suspended goals associated 
with it. 

5.2.3     Exploiting the opportunities 

Once a suspended goal is reactivated, it has to be eval- 
uated for integration into the current execution agenda. 

In our orange-juice example, the steps required to get 
the planner to a store can be ignored, in that being at 
the store is the condition that activated the goal in the 
first place. But the planner can also ignore other steps. 
In particular, the steps that are used to "recover" from 
the precondition of being at the store once the plan is 
over can be ignored. The remaining steps—going into 
the store, buying the orange juice, and exiting—might 
be integrated in a fairly traditional way. The planner 
checks the preconditions not set by the activation con- 
ditions, and it notes the use of resources and their in- 
teractions with existing protections. The final product 
is a small change in the overall plan that takes the plan- 
ner into the store for a moment before resuming his trip 
home. 

5.3    Learning from opportunities 
As in the case of execution-time failure, an unexpected 
opportunity may indicate a chance for learning to im- 
prove future performance. Just as failure-driven learn- 
ing is an alternative to complete projection in debug- 
ging of conjunctive goal plans, learning from encoun- 
tered opportunities presents a method for constructing 
such plans without complete search of the space of pos- 
sible plans. 

This is best understood in the context of an elabora- 
tion of our example: going to the store to buy orange 
juice. The basic plan for this goal is simple: go into the 
store, find the orange juice, buy it, and go home. During 
the execution of this plan a planner will have to move 
through the store looking for the juice. As he does so, 
he may see a bottle of milk and recall the need for it. 
He also may recall that he was out of aluminum foil as 
well. 

At this point he does what any optimizing planner 
should do: he merges the separate plans for obtaining 
milk, orange juice and aluminum foil into a single plan 
for the conjunct of goals. He buys them all at once while 
at the store rather than buying them one at a time and 
returning home with each. 

We want a planner that will take this experience and 
use it to form a new plan to pick up milk when it is 
at the store getting orange juice—without also picking 
up aluminum foil each time as well. The rationale for 
this choice of items to be included in this plan is clear. 
Given the rate of use of orange juice and milk, there is 
a good chance that at any given moment you may be 
out of either. Given the rate of use of aluminum foil, 
however, there is little chance that at any one time you 
will be out of it. 

To do this the planner must face a two-fold task. It 
must evaluate the likelihood that a similar conjunction 
will ever arise again - i.e., determine if the plan is worth 
saving at all and which goals in the initial conjunct 

should be included. Then it must determine the set 
of features that predicts the presence of the conjunct. 
In the language of case-based planning, it must deter- 
mine how to index the plan in memory. This determi- 
nation can be made empirically, by trying the new plan 
when any one of the goals arises and removing links 
between it and those goals that do not predict the pres- 
ence of the other goals. Or it can be done analytically, 
using explanation-based learning methods to construct 
explanations for why the goals should or should not be 
expected to arise in concert. Regardless of the reason- 
ing involved in deciding what conjoined plan to save, 
though, the crucial point is that the possibilities for con- 
junction are suggested by the world, not by projection. 

5.4    An implementation of opportunistic 
memory: The TRUCKER program 

Our first experiments with an implementation of op- 
portunistic memory were in the TRUCKER program. 
TRUCKER'S domain is a UPS-like pickup and delivery 
task in which new orders are received during the course 
of a day's execution. Its task is to schedule the orders 
and develop the routes for its trucks to follow through 
town. A dispatcher controls a fleet of trucks which roam 
a simulated city or neighborhood, picking up and drop- 
ping off parcels at designated addresses. Transport or- 
ders are "phoned in" by customers at various times dur- 
ing the business day, and the planner must see to it that 
all deliveries are successfully completed. 

TRUCKER optimizes its planning for multiple goals 
only when it notices an opportunity to do so during ex- 
ecution. If TRUCKER notices an opportunity to satisfy 
a goal that is scheduled later in its agenda, it stops and 
reasons about the utility of merging the later plan with 
the steps it is currently running. If it is able to construct 
a plan that is significantly better than one which treats 
the plans independently, it uses the new plan. It also 
stores the new plan in memory, indexed by each of the 
separate goals. When either goal reoccurs, TRUCKER 
searches its action queue for for the partner goal and 
uses the plan that it has created for the pair. Even when 
a goal is placed on its action queue, TRUCKER treats 
it as though it were blocked. That is, it establishes 
the conditions that would allow TRUCKER to satisfy 
the goal and then associates the goal with the memory 
structures that would be active during the recognition 
of those conditions. 

TRUCKER'S apporach to this task is a serious depar- 
ture from conventional approaches. Conventional ap- 
proaches to planning, however, would be inadequate 
to this task, not just because of the intractability of 
an optimal solution, but because TRUCKER does not 
even know all of its goals before it must begin to act. 
TRUCKER must plan opportunistically, recognizing and 
acting upon opportunities for goal satisfaction as they 
arise. We argue further that since planning time is lim- 
ited, and plan construction is costly, plans should be 
stored and re-used as much as possible. Finally, pat- 
terns of opportunity that are recognized once should be 
learned, and should be easier to recognize again if they 
recur. 
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5.5    Opportunism in TRUCKER 
TRUCKER controls its fleet of trucks by deciding which 
trucks should receive given pickup-and-delivery orders, 
retrieving or calculating routes for the trucks to fol- 
low, and actually monitoring the progress of the trucks 
(the trucks are better viewed as effectors of the plan- 
ner than as autonomous agents), TRUCKER'S central 
control structure is a queue-based executor, reminiscent 
of Firby's RAP system [Firby, 1989], with planning and 
monitoring actions sharing space on the queue. In ad- 
dition to planning the agendas for the trucks, and con- 
structing routes for them to follow, the planner must 
react to new goals as they come in on the "telephone". 

7:58:00 AM      Planner Action:   (ANSWER-TELEPHONE) 
7:58:00 AM      Planner Action: 

(HANDLE-NEW-REQUEST REQUEST.41) 
- Planner relating request REQUEST.41 to memory - 
7:58:00 AM      Planner Action: 
(TRY-ASSIGN-TO-IDLE-TRUCK REQUEST.41) 
PLANNER assigning request REQUEST.41 to truck #1 

In absence of good reasons to the contrary, the plan- 
ner hands pickup and dropoff orders to trucks based on 
availability in the order they come in. 

Starting INTEGRATE-REQUEST    REQUEST.41    #1    IDLE 
Resulting new plan: 

((GOTO  (800 E-61-ST)) 
(PICKUP PARCEL.42  (850 E-61-ST)) 
(GOTO   (6200 S-C0TTAGE)) 
(DROPOFF PARCEL.42  (6230 S-C0TTAGE))) 

When TRUCKER receives a new request for a pickup 
and delivery, it attempts to satisfy the order using a va- 
riety of methods. First it checks all active requests on 
its truck's agendas for one that has a known positive in- 
teraction with the new request. If this fails, TRUCKER 
attempts to find a truck that is currently idle to take up 
the order. If this also fails, TRUCKER searches for a 
suspended request that might be usefully combined with 
the new order. If all else fails, TRUCKER is forced to 
place the request on a queue of orders waiting for idle 
trucks and must construct a new route for the truck us- 
ing its map and current information about the available 
trucks. 

7:58:39 AM 
*** Truck #2 making delivery at   1450 E-62-ST *** 
- Planner searching memory for route from 

(6100 S-W00DLAWN)  to   (800 E-61-ST)   - 
Search unsuccessful. 

=======      PLANNER consulting map 
to build route    ======== 

8:03:12 AM      *** Truck #1 has a new route:       *** 
((START N 6100-S-W00DLAWN) 

(TURN W E-61-ST) 
(STOP 800-E-61)) 

8:03:12 AM      *** Truck #1  is starting new route at 
6100 block of S Woodlawn *** 

8:05:48 AM      *** Truck #1 making pick-up at 
850 E-61-ST *** 

*** Truck #2 done with delivery *** 

Whenever TRUCKER is forced to construct a new 
route from scratch, considers the goal that is planned 
for to be blocked, and thus suspends it. To suspend a 
goal, TRUCKER marks its representation of the goal's 
pickup and delivery points with an annotation that there 

is a goal related to those locations. TRUCKER ties exe- 
cution of actions to locations, landmarks and addresses 
that they recognize in the world. It must parse and 
interpret the objects in the world. It is during this 
parse that TRUCKER recognizes and recalls previously 
suspended goals. A typical TRUCKER plan, when fully 
expanded, is a route in the form of a list of the turns 
that have to be made, described in terms of street names 
and compass directions. So the plan step (GOTO (920 
E-55th)) after a pick-up at (5802 S-W00DLAWN) ex- 
pands into: 

(START NORTH (5802 S-W00DLAWN)) 
(TURN EAST E-57TH) 
(TURN NORTH S-CORNELL) 
(TURN EAST E-55TH) 
(STOP (920 E-55TH)) 

As TRUCKER moves through its world, it parses 
the objects at its current location and responds to any 
changes that the tokens it has recognized suggest: turn- 
ing, for example, when it recognizes the 5700 block of 
Woodlawn. It also checks the token for any annotation 
of a goal that might be associated with it. If one is 
found, TRUCKER activates the suspended goal and at- 
tempts to integrate it into the current schedule. This 
allows TRUCKER to easily and effectively activate sus- 
pended goals when the opportunities to satisfy them 
arise. The same memory for places and landmarks that 
is used to tell the trucks when to turn and where to stop 
is annotated with the delivery goals that have not yet 
been satisfied. When such a location is recognized in 
the course of executing another delivery, the possibility 
of opportunistically satisfying the goal is suggested. 

8:17:12 AM      *** Truck #1  is starting new route at 
800 block of E 61st  Street  *** 

***  Truck #1 has noticed an opportunity to make the 
pickup for request REQUEST.49  *** 

*** Request REQUEST.49  is assigned — Truck 
#1    inserting reassignment request  in 
planner's agenda. 

*** Noting combination opportunity in memory *** 
8:17:45 AM      Planner Action: 

(REASSIGN-BY-N0TICED-0PP0RTUNITY    REQUEST.49 #1) 
- Reassignment  of request REQUEST.49 means that 

truck #2 need not  continue to  its destination. 
PLANNER assigning request  REQUEST.49 to truck #1 
Starting INTEGRATE-REQUEST 
Current plan: 

((GOTO   (6200 S-C0TTAGE)  »{Structure ROUTE 2}) 
(DROPOFF PARCEL.42  (6230 S-C0TTAGE))) 

Request-plan to  integrate: 
((GOTO   (6100 S-C0TTAGE)) 

(PICKUP PARCEL.50   (6150 S-C0TTAGE)) 
(GOTO  (900 E-63-ST)) 
(DROPOFF PARCEL.50  (925 E-63-ST))) 

8:17:45 AM      *** Truck #1  is stopping in 
6100 block of S Cottage Grove *** 

Finishing INTEGRATE-REQUEST 
Resulting new plan: 

((GOTO   (6100  S-C0TTAGE)) 
(PICKUP PARCEL.50   (6150  S-C0TTAGE)) 
(GOTO  (6200 S-C0TTAGE)) 
(DROPOFF PARCEL.42  (6230 S-C0TTAGE)) 
(GOTO  (900 E-63-ST)) 
(DROPOFF PARCEL.50  (925 E-63-ST))) 
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Once a suspended goal is reactivated, it has to be eval- 
uated for integration into the current execution agenda. 

Here TRUCKER uses special-purpose techniques tai- 
lored to the domain. When a suspended goal is recalled 
by the planner, it attempts to find the best placement 
in the current route for the awakened request. Schedul- 
ing the pickup is trivial, in that a truck is at the pickup 
location. The difficulty lies in scheduling the delivery. 
TRUCKER does this by stepping through each location 
already scheduled and finding the section of the route 
that will be the least altered by the insertion of the de- 
livery. In this way the full planner is invoked only when 
the recognition of an opportunity to satisfy a pending 
goal suggests that the combination of delivery orders 
may be fruitful. 

5.6    Learning in TRUCKER 

There is considerable regularity and repetition in the 
orders that the world simulation hands to TRUCKER. 
TRUCKER exploits this in a case-based manner, by sav- 
ing particular constructed routes, remembering con- 
juncts of requests that have been profitably combined, 
and remembering the particular interleavings of steps 
that these conjuncts produced. When the conjuncts of 
goals reoccur, TRUCKER recognizes them as a known 
conjunct of goals for which it has a plan and uses the 
plan for that conjunc that it has saved in memory. When 
TRUCKER receives a request, the request's long-term 
record is inspected to see if there are any notations about 
combinations with other requests. If so, the planner 
looks to see if the other requests are currently active. If 
it finds the requests that it has previously been able to 
merge with the current one, the plan for the conjunc- 
tion is added to the agenda rather than those for the 
individual requests. It is important to note that plans 
for combination of requests are only activated when all 
the requests are active. 
[Day#2] 
8:17:00 AM      Planner Action:   (ANSWER-TELEPHONE) 
- Planner relating request 

REQUEST.73 to memory - 
8:17:00 AH      Planner Action: 
(TRY-ASSIGN-TO-USEFUL-TRUCK REQUEST.73) 
- Truck #1  is pursuing a request that has been 

previously associated with route of request 
REQUEST.73 
PLANNER assigning request REQUEST.73 to truck #1 

Starting INTEGRATE-REQUEST 
Current plan: 

((GOTO  (6200 S-C0TTAGE)) 
(DROPOFF PARCEL.72 (6230 S-C0TTAGE))) 

Request-plan to integrate: 
((GOTO (6100 S-C0TTAGE)) 
(PICKUP PARCEL.74 (6150 S-C0TTAGE)) 
(GOTO (900 E-63-ST)) 
(DROPOFF PARCEL.74 (925 E-63-ST))) 

Resulting new plan: 
((GOTO (6100 S-COTTAGE)) 
(PICKUP PARCEL.74 (6150 S-COTTAGE)) 
(GOTO (6200 S-COTTAGE)) 
(DROPOFF PARCEL.72 (6230 S-COTTAGE)) 
(GOTO (900 E-63-ST)) 
(DROPOFF PARCEL.74  (925 E-63-ST))) 

This automatic combination of requests that have 
been joined in the past will obviously not necessarily 

lead to an optimal assignment of requests to trucks, at 
least in a sense of optimality that ignores the cost of the 
work done in arriving at the assignment. There is an 
side benefit to this standardization, however, which is 
that using step interleavings that were previously calcu- 
lated means that the routes between internal points of 
the schedule can also be reused. 

========      PLANNER consulting map 
to build route    ======== 

8:17:12 AM      *** Truck #1 has a new route:       *** 
((START W 800-E-61) 

(TURN S S-COTTAGE) 
(STOP 6100-S-COTTAGE)) 

8:17:12 AM      *** Truck #1  is starting new route at 
800 block of E 61st Street  *** 

8:17:39 AM      *** Truck #1 making pick-up at 
6150 S-COTTAGE *** 

- Planner searching memory for route from 
(6100 S-COTTAGE)  to  (6200 S-COTTAGE)   - 

Search successful. 
========      PLANNER knows route from 

6100S-C0TTAGE to 6200S-C0TTAGE ======== 

Given some regularity in the orders it receives, 
TRUCKER builds a library of planned routes, and a li- 
brary of conjoined plans for groups of requests that have 
occurred together. Learning from these encountered 
opportunities advances TRUCKER'S background goal of 
learning about interesting regularities in its environ- 
ment, and helps amortize the complexity over the long 
term of satisfying its goals. 

Our discussion up to now has focussed on how an 
agent can learn about regularities in its world, both fa- 
vorable and unfavorable, and change its long-term be- 
havior in response to them. In the next section we turn 
to the question of how an agent can create such regular- 
ities and profit from them. 

6    Enforcement and the 
stabilization of environments 

There is a direct relationship between the overall stabil- 
ity of an environment and our ability to predict and plan 
within it. The greater the stability, the more certain our 
predictions; and the more certain our predictions, the 
more powerful our plans. 

Both as individuals and as societies, we respond to 
this by trying to increase the stability of our world. 
We segment our schedules of work, play and relaxation 
so that each day will tend to look very much like the 
last. We organize our homes and workspaces so that 
objects will be in predictable places. We even organize 
our habits so that particular conjuncts of goals will tend 
to arise together. In all aspects of our lives, we make 
moves to stabilize our different worlds. 

In this section, we discuss this concept of enforcement 
and examine a few of the different forms that it takes. In 
particular, we outline a basic taxonomy of classes of sta- 
bility and presents the strategies for increasing overall 
stability that are associated with each class. We ex- 
amine its relationship to learning and argue that both 
learning and enforcement are strategies for building up 
a correspondence between an agent's mental model of 
the world and the actual physical reality. We also dis- 
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cuss the learning and planning trade-offs that have to 
be made when stability is optimized. 

6.1    Opportunism and enforcement: An 
example 

Recall for a moment the example we discussed in the last 
section involving an agent going to the grocery store to 
pick up a quart of orange juice and noticing that he 
needs milk as well. One element of this process that 
interests us is the notion that the more likely it is that 
that goals will show up in conjunction with each other, 
the more useful the plan will be. In this example, the 
utility of saving and attempting to reuse the plan to buy 
both the orange juice and the milk is maximized when 
the two goals are guaranteed to show up in conjunction 
whenever either of the two recurs. This suggests the 
idea that one of the steps that an agent could take in 
improving the utility of his plans would be to force the 
recurrence of the conjuncts of goals over which these 
plans are optimized. In terms of the orange juice and 
milk example, this means making sure that the cycles 
of use of each resource are synchronized. This can be 
done by either changing the actual use of the resources 
to bring them into synchronization or by changing the 
amounts purchased such that they would be used up at 
the same time. In either case, the idea is to alter cir- 
cumstances in the world such that the long term utility 
of a plan that already exists is optimized. This is done 
by stabilizing the world with regard to the relative use 
of the two resources. This type of enforcement is aimed 
at controlling what we call RESOURCE CYCLE SYNCHRO- 

NIZATION in that its goal is to stabilize the use cycles of 
multiple resources with respect to one another. 

Adjusting the amount of orange juice purchased so 
makes cycle of use match the cycle of use of the milk. 
This increases the utility of the plan to buy the two 
together in three ways: optimization of planning, opti- 
mization of indexing, and optimization of execution. 

• In terms of planning optimization, the agent now 
has available a plan for a conjunct of goals that he 
knows will recur so he never needs to recreate it. 
This means never having to reconstruct the GET- 
ORANGE-JUICE-AND-MILK plan again. 

• And in terms of indexing optimization, the plan 
can be indexed by each of the elements of the 
conjunct—rather than by the conjunct itself—thus 
reducing the complexity of the search for the plan 
in the presence of the individual goals. This means 
that the plan will be automatically suggested when 
either the HAVE-MILK goal or the HAVE-ORANGE- 
JUICE goal arises even when the other element of 
the goal conjunct does not. 

• In terms of execution optimization, the agent can 
decide to commit to and begin execution of the 
new plan when either of the two goals arises. It 
can do this because it is able to predict that the 
other goal is also present, even if it is not explic- 
itly so. This means that the agent can begin to 
run the GET-ORANGE-JUICE-AND-MILK plan when 
he notices that he is out of either milk or orange 
juice without being forced to verify that the other 
goal is active. 

One way of viewing enforcement is as an extension of 
planning itself. As in planning, the conditions that are 
enforced are fixed in the world using the same sorts of 
actions that result in the satisfaction of goals. The dif- 
ference is that the actions associated with enforcement 
result in changes to the actual structure of a domain. 

Likewise, enforcement can be seen as an active cousin 
of learning. Just as learning techniques in planning are 
designed to build up an effective set of plans and opera- 
tors for a domain, enforcement techniques are designed 
to do so as well. The difference here is that learning at- 
tempts to satisfy this goal by changing the learner and 
enforcement attempts to do so by changing the world. 

6.2    Stability and enforcement 
While RESOURCE CYCLE SYNCHRONIZATION was one of 
the first instances of stability we encountered, it is by 
no means the only kind. In the sections that follow, 
we present two other basic types of stability and related 
enforcement strategies. 

The question is, is it possible to explicate this taxon- 
omy of stability in a way that would allow a system to 
actually recognize and enforce the different types? The 
following sections outline this taxonomy with respect to 
this question by breaking each type down in terms of 
the following issues: 

• What types of stability are useful in and of 
themselves? 

• Over what goals do they allow optimization? 

• What  strategies  can  be formed  to enforce 
them? 

• How  can opportunities  to apply  these en- 
forcement strategies be recognized? 

6.2.1     Stability of location 

The most common type of stability that arises in ev- 
eryday activity is that of location of commonly used 
objects. Our drinking glasses end up in the same place 
every time we do dishes. Our socks are always together 
in a single drawer. Everything has a place and we en- 
force everything ending up in its place. 

Enforcing STABILITY OF LOCATION serves to optimize 
a wide range of processing goals. First of all, the fact 
that an often used object or tool is in a set location re- 
duces the need for any inference or projection concerning 
the effects of standard plans on the objects or the cur- 
rent locations of objects. Second, it allows plans that 
rely on the objects locations to be run without explicit 
checks (e.g., no need to explicitly determine that the 
glasses are in the cupboard before opening it). Third, it 
removes the need at execution-time for a literal search 
for the object. 

The final question in terms of STABILITY OF LOCA- 
TION, then, is the issue of when to attempt enforcement. 
As in many instances of standard learning, failure is a 
good indicator. Here, the problem will take the form of 
an execution-time failure to actually find an object that 
is both known to exist and is a object essential to a plan 
being run. 
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6.2.2     Stability of cues 

One effective technique for improving plan perfor- 
mance is to improve the proper activation of a plan 
rather than improve the plan itself. For example, plac- 
ing an important paper that needs to be reviewed on his 
desk before going home, improves the likelihood that an 
agent will see and read it the next day. Marking calen- 
dars and leaving notes serves the same sort of purpose. 

One important area of enforcement is related to this 
use of visible cue in the environment to activate goals 
that have been suspended in memory. The idea driving 
this type of enforcement is that an agent can decide on 
a particular cue that will be established and maintained 
so as to force the recall of commonly recurring goals. 
One example of this kind of enforcement of STABILITY 
OF CUES is leaving a briefcase by the door every night 
in order to remember to bring it into work. The cue 
itself remains constant over time. This means that the 
agent never has to make an effort to recall the goal at 
execution-time and, because the cue is stabilized, it also 
never has to reason about what cue to use when the 
goal is initially suspended. The advantage of this sort 
of enforcement is that an agent can depend on the ex- 
ternal world to provide a stable cue to remind it of goals 
that still have to be achieved. This sort of stability is 
suggested when an agent is faced with repeated failures 
to recall a goal and the plan associated with the goal is 
tied to particular objects or tools in the world. 

These are only three of the types of stability and en- 
forcement that we have uncovered. For a broader discus- 
sion of these and other instances of stability, see Ham- 
mond [1990]. 

6.3    The point 
In order to plan at all in an environment, it must at 
least be stable with respect to its basic physics. In 
order to reuse plans in any interesting way at all, the 
environment—including the agent—must be stable with 
respect to other aspects as well. In particular, it must 
be stable with regard to the physical structure of the en- 
vironment, the goals that tend to recur and the times at 
which events tend to take place. While many environ- 
ments have this sort of stability, it is often the product 
of the intervention of agents attempting to stablize it so 
as to increase the utility of their own plans. The goal of 
this enforcement parallels the goal of learning—the de- 
velopment of a set of effective plans that can be applied 
to satisfy the agent's goals. The path toward this goal, 
however, is one of shaping the world to fit the agent's 
plans rather than shaping the agent to fit the world. 

7    A Model of Agency 
These four elements, case-based planning, learning from 
failure, learning from opportunity and enforcement of 
stability are now coming together in an overall model 
of planning and action. This model of agency rises 
out of three pieces of work: Schank's structural model 
of memory organization [Schänk, 1982] our own work 
in case-based planning and dependency directed repair 
[Hammond, 1989], and the work of Martin and Riesbeck 
in Direct Memory Access Parsing [Martin, 1990].   The 

model is currently under development in the RUNNER 
program. 

During execution, the agent performs an ongoing 
"parse" of the world in order to recognize conditions 
for action execution. Following DMAP [Martin, 1990], 
this parse takes the form of passing markers through 
an existing episodic memory. Because suspended goals 
are indexed in the memory used for understanding the 
world, the goals are activated when the conditions fa- 
voring their execution are recognized. Once active, the 
goals are then reevaluated in terms of the new condi- 
tions. Either they fit into the current flow of execution 
or they are again suspended. 

In TRUCKER, and later in RUNNER, we tried to ad- 
dress the specific problem of recognizing execution-time 
opportunities. We now use the term agency to comprise 
the spawning of goals, selection of plans, and execution 
of actions. Our process model of agency is based on 
Martin's DMAP understander [Martin, 1990]. DMAP 
uses a memory organization defined by part/whole and 
abstraction relationships. Activations from environmen- 
tally supplied features are passed up through abstrac- 
tion links and predictions are passed down through the 
parts of partially active concepts. Subject to some con- 
straints, when a concept has only some of its parts ac- 
tive, it sends predictions down its other parts. When 
activations meet existing predictions, the node on which 
they meet becomes active. Finally, when all of the parts 
of a concept are activated, the concept itself is activated. 
The architecture provides a computational mechanism 
for specifying and applying domain-dependent informa- 
tion to a general memory search process. (For an expo- 
sition of the DMAP architecture, see [Martin, 1990]). 

To accommodate action, we have added the notion 
of PERMISSIONS. PERMISSIONS are handed down the 
parts of plans to their actions. The only actions that 
can be executed are those that are PERMITTED by the 
activation of existing plans. Following McDermott [Mc- 
dermott, 1978], we have also added POLICIES. POLICIES 
are statements of ongoing goals of the agent. Some- 
times these take the form of enforcement goals, such as 
"Glasses should be in the cupboard." or "Always have 
money on hand." The only goals that are actively pur- 
sued are those generated out of the interaction between 
POLICIES and environmental features. We would argue 
that this is, in fact, the only way in which goals can be 
generated. 

7.1     Goals, plans, and actions 
Goals, plans, and actions interact as follows: 

• Features in the environment interact with POLICIES 
to spawn goals. 
For example, in RUNNER, the specific goal to HAVE 
COFFEE is generated when the system recognizes 
that it is morning. The goal itself rises out of the 
recognition of this state of affairs in combination 
with the fact that there is a policy in place to have 
coffee at certain times of the day. 

• Goals and environmental features combine to acti- 
vate plans already in memory. 
Any new MAKE-COFFEE plan is simply the activa- 
tion of the sequence of actions associated with the 
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existing MAKE-COFFEE plan in memory. It is re- 
called by RUNNER when the HAVE-COFFEE goal is 
active and the system recognizes that it is at home. 

• Actions are permitted by plans and are associated 
with the descriptions of the world states appropri- 
ate to their performance. Once a set of features has 
an action associated with it, that set of features (in 
conjunct rather than as individual elements) is now 
predicted and can be recognized. 
Filling the coffee pot is permitted when the MAKE- 
COFFEE plan is active; it is associated with the fea- 
tures of the pot being in view and empty. This 
means not only that the features are now predicted 
but also that their recognition will trigger the ac- 
tion. 

• Actions are specialized by features in the environ- 
ment and by internal states of the system. As with 
Firby's RAPs [Firby, 1989], particular states of the 
world determine particular methods for each gen- 
eral action. 
For example, the specifics of a GRASP would be 
determined by information taken from the world 
about the size, shape and location of the object 
being grasped. 

• Action level conflicts are recognized and mediated 
using the same mechanism that recognizes informa- 
tion about the current state of the world. 
For example, when two actions are active (such as 
filling the pot and filling the filter), a mediation 
action selects one of them. During the initial phases 
of learning a plan, this can in turn be translated into 
a specialized recognition rule which, in the face of 
a conflict, will always determine the ordering of the 
specific actions. 

• Finally, suspended goals are associated with the 
descriptions of the states of the world that are 
amenable to their satisfaction. 
For example, the goal HAVE-ORANGE-JUICE, if 
blocked, can be placed in memory, associated with 
the conjunct of features that will allow its satisfac- 
tion, such as being at a store, having money and 
so forth. Once put into memory, this conjunct of 
features becomes one of the set that can now be 
recognized by the agent. 

7.2    The study of agency 
We do not see this model as a solution to the problems 
of planning and action. Instead, we see this as a frame- 
work in which to discuss exactly what an agent needs 
to know in a changing world. Advantages of this frame- 
work include: 

1. A unified representation of goals, plans, actions and 
conflict resolution strategies. 

2. Ability to learn through specialization of general 
techniques. 

3. A fully declarative representation that allows for 
meta-reasoning about the planner's own knowledge 
base. 

4. A simple marker-passing scheme for recognition 
that is domain and task neutral. 

5. Provision for the flexible execution of plans in the 
face of a changing environment. 

The basic metaphors of action as permission and 
recognition, and planning as the construction of descrip- 
tions that an agent must recognize prior to action, these 
fit our intuitions about agency. Under this metaphor, 
we can view research into agency as the exploration of 
the situations in the world that are valuable for an agent 
to recognize and respond to. 

8    An Implementation of 
Agency: RUNNER 

Most of our work in studying this architecture has been 
within the context of the RUNNER system. The RUNNER 
project is aimed at modeling the full spectrum of activity 
associated with an agent—goal generation, plan activa- 
tion and modification, action execution, and resolution 
of plan and goal conflict—not just the more traditional 
aspect of plan generation alone. 

8.1 RUNNER'S world 
The agent in RUNNER currently resides in a simulated 
kitchen, and is concerned with the pursuit of such goals 
as simulated breakfast and coffee. Such commonplace 
goals and tasks interest us in part because they are 
repetitive and have many mutual interactions, both neg- 
ative and positive. We are interested in how plans for re- 
curring conjuncts of goals may be learned and refined, as 
part of view of domain expertise as knowledge of highly 
specific and well-tuned plans for the particular goal con- 
juncts that tend to co-occur in the domain [Hammond et 
a/., 1988]. We are also interested in the issue of exactly 
how these plans can be used in the guidance of action. 

8.2 RUNNER'S representation 
The knowledge and memory of the agent is captured 
in the conjunction of three types of semantic nets, rep- 
resenting knowledge of goals, plans and states. Nodes 
in these networks are linked by abstraction and pack- 
aging links, as in DMAP. In addition, we propose an 
additional SUSPEND link, which connects suspended 
goals to state descriptions that may indicate opportuni- 
ties for their satisfaction. For example, the goal to have 
eggs would be suspended in association with the descrip- 
tion of the agent being at a grocery store. In addition 
to being passed to abstractions of activated concepts, 
activation markers are always passed along SUSPEND 
links. 

In general, the only other way in which these nets are 
interconnected is via concept sequences. A node may 
be activated if all of the nodes in one of its concept se- 
quences is activated - a concept sequence for a given 
node can contain nodes from any of the parts of mem- 
ory. The following is a partial taxonomy of the types of 
concept sequences we currently allow: 

• Activation of a goal node can activate a node rep- 
resenting a default plan. 

• Activation of a plan node and some set of state 
nodes can activate a further specialization of the 
plan. 
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• Activation of a goal node and some set of state 
nodes can activate a further specialization of the 
goal. 

• Activation of any state node that has a SUSPEND 
link will activate the associated goal. 

8.3    An example: Making coffee 
The above discussion of representation may make more 
sense in the context of an example, currently imple- 
mented in RUNNER, of how a particular action is sug- 
gested due to conjunction of plan activation and envi- 
ronmental input. 

One of the objects in RUNNER'S simulated kitchen is a 
coffeemaker, and one of the plans it has available is that 
of making coffee with this machine. This plan involves 
a number of subsidiary steps, some of which need not 
be ordered with respect to each other. Among the steps 
that are explicitly represented in the plan are: fetching 
unground beans from the refrigerator, putting the beans 
in the grinder, grinding the beans, moving a filter from a 
box of filters to the coffeemaker, filling the coffeemaker 
with water from the faucet, moving the ground beans 
from the grinder to the coffeemaker, and turning the 
coffeemaker on. 

The subplans of the coffee plan are associated with 
that plan via packaging links. In this implemented ex- 
ample, the agent starts out with a node activated which 
represents knowledge that it is morning. This in turn is 
sufficient to activate the goal to have coffee (this is as 
close as the program comes to a theory of addiction). 
This goal in turn activates a generic plan to have cof- 
fee. This turns out to be nothing but an abstraction of 
several plans to acquire coffee, only one of which is the 
plan relevant to our kitchen: 

"Visual" input, in terms of atomic descriptions of 
recognizable objects and their proximities, is passed to 
memory. For example, the agent "sees" the following 
visual types: 

countertop,  white wall,  box of filters 
Among sets of possible visually recognized objects 

are concept sequences sufficient for recognition that the 
agent is in the kitchen. The recognition of the white wall 
and the countertop completes one of these sequences. 
The "kitchen" node in turn passes activation markers 
to its abstractions, activating the node corresponding 
to the agent being at home: 

The activation of this node in conjunction with the 
activation of the generic coffee goal completes the con- 
cept sequence necessary for the goal for making coffee 
at home, which in turn activates the default plan for 
that goal. In this way a specialized plan is chosen in 
response to a conjunction of a recognized state and a 
more generic goal: 

MEMORY: 
concept sequence 

([GOAL:   drink-coffee]   [at-home]) 
for node 

[GOAL:   drink-coffee-at-home]   is  completed, 
sending activation marker to 

[GOAL:   drink-coffee-at-home] 
Activating concept: 

[GOAL:   drink-coffee-at-home] 
Asserting new goal: 

[GOAL:   drink-coffee-at-home] 
sending activation marker to 

[PLAN: make-coffee-at-home] 
Node [PLAN: make-coffee-at-home] 
has both permission and activation: 

((MARKER  [GOAL:   drink-coffee-at-home])) 
(TOP-LEVEL-PLAN) 

Activating concept: 
[PLAN:  make-coffee-at-home] 

The activation of the coffee-plan causes permission 
markers to be sent down packaging links to the nodes 
representing the parts of the plan. The activation of the 
other object concepts from the "visual" input in turn 
have sent activation markers to the actions that contain 
them in their concept sequences. Among these is the 
plan step for taking a filter from the box and installing 
it in the coffeemaker, which is activated by seeing box 
of filters itself. In this way a sub-plan is suggested by 
the intersection of permission from its parent plan and 
cues from the environment that indicate that it is easily 
satisfiable: 

Asserting new plan: 
[PLAN:   make-coffee-at-home] 

Sending permissions to steps of plan 
Sending permission markers from 

[PLAN:   make-coffee-at-home] 
to steps 

FILL-CARAFE    PUT-BEANS-IN-GRINDER 
MOVE-GROUNDS-TO-COFFEE-MAKER 
TURN-ON-COFFEE-MAKER    GRIND-BEANS 
PUT-IN-FILTER    GET-COFFEE-BEANS 

concept sequence 
([filter-box] 

[PLAN:  make-coffee-at-home]) 
for node  [PLAN:  put-in-filter]   is completed, 
sending activation marker to 

[PLAN:   put-in-filter] 
Node   [PLAN:  put-in-f ilter] 
has both permission and activation: 

((MARKER  ([filter-box] 
[PLAN:  make-coffee-at-home]))) 

((MARKER  [PLAN:  make-coffee-at-home])) 
Activating concept: 

[PLAN:  put-in-filter] 
Asserting new plan:   [PLAN:  put-in-filter] 
Sending permissions to steps of plan 
Sending permission markers from 

[PLAN:   put-in-filter] 
to steps 

PUT-FILTER-IN-COFFEEMAKER GET-FILTER 
concept  sequence 

([filter-box]   [PLAN:  put-in-f ilter]) 
for node   [PLAN:   get-filter]   is completed, 
sending activation marker to 

[PLAN:   get-filter] 
Node   [PLAN:  get-filter] 
has both permission and activation: 

((MARKER  ([filter-box] 
[PLAN:  put-in-filter]))) 

((MARKER   [PLAN:  put-in-filter])) 
Activating concept:   [PLAN:   get-filter] 

After another level of passing permission markers to 
sub-plans, the process "bottoms out" in the suggestion 
of the primitive action of picking up the box of filters. 
With no suggestions to the contrary, the action is taken: 

Asserting new plan: 
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[PLAN:  get-filter] 
Sending permissions to steps of plan 
Sending permission markers from 

[PLAN:   get-filter] 
to steps 

TAKE-OUT-FILTER        PICK-UP-BOX 
LOOK-FOR-FILTER-BOX 

concept sequence 
([filter-box]   [PLAN:  get-filter]) 

for node  [PLAN:  pick-up-box]  is  completed, 
sending activation marker to 

[PLAN: pick-up-box] 
Node [PLAN: pick-up-box] 
has both permission and activation: 

((MARKER  ([filter-box]   [PLAN:   get-filter]))) 
((MARKER  [PLAN:   get-filter])) 

Activating concept:   [PLAN:  pick-up-box] 
Suggesting action:   (GRASP   'FILTER-BOX) 

ACTION: 
Performing action: (GRASP   'FILTER-BOX) 

To the left  is a countertop,  up close 
To the right,  there's a countertop,  up close 
Straight  ahead,  there's a countertop,  up close 
Result  of action:   I'm holding onto a filter-box 

The final action is chosen both on the basis of ac- 
tive plans and goals, and in response to the immediate 
circumstances in which the agent finds itself. Given a 
change in either the top-down guidance or the bottom- 
up recognition, the selection of plan and action will 
change in response. 

9    Conclusion 

Intelligence is an ongoing process. It does not begin and 
end with one example. It is not exercised through tricks 
or puzzles. It is instead a constant battle to sometimes 
find, often establish, and eventually exploit the order 
that lies within the rich complexity of the natural world. 

Our study of agency rests on this idea that intelligent 
behavior is a long-term activity and that much of it is 
aimed at learning and enforcing order within a domain. 
Our central premise is that the stability of the world in- 
cludes stability over the collections of goals that we will 
be called upon to satisfy, the types of difficulties we will 
encounter and the kinds of conditions that we will be 
forced to overcome. It is only by learning or enforcing 
these, that an agent can develop a true expertise in any 
domain. And it is only through an ongoing attempt to 
satisfy goals in a dynamic world that opportunites for 
learning and enforcement can ever be encountered. In 
this paper, we have tried to extend the core idea of case- 
based plannning to include learning from execution-time 
failure and opportunity, in an effort to also extend the 
kind of order that a system can learn and utilize. Like- 
wise, we have proposed the idea of enforcement as a 
means to impose order in those situations where it can 
help the system in the later application of its own plans. 
In all, we have tried to present a picture of an agent that 
is able to cope with the complexity of its environment 
by learning and using the order that lies within it. 
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Abstract 

One goal of Artificial Intelligence is to develop 
and understand computational mechanisms for 
solving difficult real-world problems. Unfor- 
tunately, domains traditionally used in gen- 
eral problem solving research lack important 
characteristics of real-world domains, making 
it difficult to apply the techniques developed. 
Most classic AI domains require satisfying a 
set of Boolean constraints. Real-world prob- 
lems require finding a solution that meets a 
set of boolean constraints and performs well 
on a set of real-valued constraints. In addi- 
tion, most classic domains are static while do- 
mains from the real world change. In this pa- 
per we demonstrate that SteppingStone, a gen- 
eral learning problem solver, is capable of solv- 
ing problems with these characteristics. Step- 
pingStone heuristically decomposes a problem 
into simpler subproblems, and then learns to 
deal with the interactions that arise between 
the subproblems. In lieu of an agreed upon 
metric for problem difficulty, we choose signifi- 
cant problems which are difficult for both peo- 
ple and programs as good candidates for eval- 
uating progress. Consequently we adopt the 
domain of logic synthesis from VLSI design to 
demonstrate SteppingStone's capabilities. 

1    Introduction 

Problem solving research in AI attempts to discover 
and understand general computational mechanisms for 
solving problems. Traditional planning research has fo- 
cused on finding general mechanisms and demonstrating 
them in classic AI problem domains. This approach has 
been used to develop the general techniques of nonlin- 
ear planning [Sacerdoti, 1977, Täte, 1977, Vere, 1983, 
Wilkins, 1984], hierarchical planning [Sacerdoti, 1974, 
Rosenschein, 1981, Stefik, 1981], and learning from plan- 
ning experience [Fikes et al, 1972, Porter and Kibler, 
1986, Minton, 1988, Ruby and Kibler, 1988, Laird et 
al, 1986]. Unfortunately, these traditional problem do- 

*This work was partially supported by a grant from the 
Hughes Artificial Intelligence Center. 

mains lack important characteristic of real-world prob- 
lems. Real-world problems require solutions that are op- 
timized for real-valued performance constraints as well 
as satisfying Boolean constraints. In addition, real-world 
problems have large search spaces and subgoals with 
strong interactions. Traditional domains have only re- 
quired meeting Boolean constraints. These differences 
in the character of the problems have made it difficult 
to transfer research results to real-world problems. 

While general problem solvers have largely ignored 
real-world problems, applications research has produced 
domain-specific systems for solving these types of prob- 
lems [Ow et al, 1988, Lin and Gajski, 1988, Zanden 
and Gajski, 1988]. The success of application systems 
depend on encoding large amounts of domain-specific 
knowledge. One approach for acquiring this knowledge 
is to encode it by hand. This approach is costly both 
in time and human resources. A better approach is to 
use a learning problem solver. A learning problem solver 
acquires the appropriate knowledge by abstracting from 
its problem solving experience. 

In this paper, we demonstrate that SteppingStone is a 
general learning problem solver for real-world problems. 
We show that by decomposing a problem into subprob- 
lems and learning to deal with interactions that arise be- 
tween them, SteppingStone scales to difficult real-world 
problems. In the following sections we outline the Step- 
pingStone approach and examine how it applies to im- 
portant real-world problems, such as logic synthesis from 
VLSI design. We demonstrate SteppingStone's capabil- 
ities with empirical results. 

2     Steppingstones for Problem Solving 

SteppingStone [Ruby and Kibler, 1989] uses a means- 
ends analysis component to break a problem into sub- 
goals. SteppingStone initially assumes that the ordered 
subgoals are independent and can be solved without un- 
doing them once solved. Although an entire problem 
cannot usually be solved with this assumption, some 
problem subgoals usually can be solved. 

An impasse occurs when a subgoal is encountered that 
cannot be solved under the independence assumption. 
SteppingStone then searches its knowledge base for a 
new sequence of subgoals we call steppingstones. Step- 
pingstones allow the problem solver to pursue a different 
set of subgoals then that suggested by means-ends anal- 
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ysis. These steppingstones comprise the domain-specific 
knowledge that the system learns. If steppingstones for 
resolving an impasse do not exist, the system resorts to 
a localized brute-force search. This search is anchored at 
the impasse state and is only used to resolve the current 
impasse. SteppingStone generalizes the solution found 
for the impasse to generate additional steppingstones for 
resolving similar impasses. 

The problem-solving control knowledge acquired in 
SteppingStone is organized as sequences of subgoals 
(steppingstones) for resolving impasses. A sequence of 
subgoals consists of an ordered set of partial state de- 
scriptions, or subgoals. Means-ends analysis uses these 
subgoals as steppingstones to lead it through the im- 
passe. These steppingstones are indexed by the subgoal 
difference they reduce and the previously solved subgoals 
that are undone and resolved. After following a sequence 
of steppingstones, any previously solved subgoals remain 
solved and the subgoal difference generating the impasse 
is reduced. 

Steppingstones reduce the distance between problem 
states and goal states by introducing intermediate steps. 
Since the steppingstones are only used when impasses 
are encountered, they do not increase the branching fac- 
tor of the problem. Since steppingstones are domain- 
specific sequences of subgoals that lead from one par- 
tial state description to another partial state descrip- 
tion, they are not tied to either the initial state or the 
final goal. Consequently steppingstones naturally apply 
to different problems. This flexibility allows stepping- 
stones to achieve generalizations that are impossible for 
fixed sequences of operations. 

An initial version of SteppingStone was implemented 
and applied to the classic tile-sliding domain [Ruby and 
Kibler, 1989]. Although, this is a difficult and classic 
domain in AI, it lacks many important characteristics of 
real-world problems. This paper describes extensions to 
SteppingStone that allow it to solve more realistic prob- 
lems. In the following sections we outline some charac- 
teristics of real-world problems and describe how Step- 
pingStone will operate on this new class of problems. We 
then describe how the logic synthesis task of VLSI design 
is an example domain for this new class of problems. 

2.1     Steppingstones for Optimization 

Real-world domains are characterized by large search 
spaces, many subgoal interactions, and a variety of con- 
straints. Real-world domains are difficult for people be- 
cause there are no general heuristics that allow solving 
them. They require experience with the domain to be- 
come proficient. In addition, real-world problems change 
over time and any approach for solving them must be 
able to adapt to these changes. 

Constraints used in real-world problems fall into two 
classes. Hard constraints must be met and usually out- 
line key aspects of the problem. Soft constraints measure 
the quality of a solution. Soft constraints are often real- 
valued performance measures and meeting them is an 
optimization task. SteppingStone learns to optimize soft 
real-valued constraints as well as solve hard constraints. 

We view problem solving as moving to states where 

Order Problem Subgoals g(l),...,g(n) using Openr 
For i=l to n do 

While g(i) unsolved do 
Apply MEA without undoing g(l) g(i-l) 

If MEA fails to solve g(i) 
Then Apply Steppingstones from Memory 
Elself Steppingstones Fail 

Then Apply Local Search 
If Local Search finds Improvement 

Then Learn New Steppingstones 
Elself Search Fails and g(i)  is Sc 

Then Assume g(i)  Solved 
Else Fail 

End While 
End For 

Figure 1: Pseudo-code for SteppingStone 

the goal is successively closer to completion, or improved. 
For an unsolved Boolean constraint, the only way to 
improve it is by finding a state where the constraint is 
solved. Soft real-valued constraints can be improved by 
finding a state with a better value for the constraint. 
Problem solving with both hard and soft constraints 
requires finding a solution that meets all of the hard 
constraints and optimizes the soft constraints. Figure 1 
provides pseudo-code for the SteppingStone approach to 
problems with both hard and soft constraints. 

Soft constraints are treated as subgoals by Stepping- 
Stone and are ordered by an openness heuristics [Ruby 
and Kibler, 1989] along with the other problem sub- 
goals. Means-ends analysis initially attempts to solve 
these subgoals without undoing any of the previously 
solved subgoals. When this approach fails SteppingStone 
switches to a knowledge-based approach. This approach 
operates by searching memory for a sequence of sub- 
goals (steppingstones) for improving upon the current 
subgoal. Once indexed, means-ends analysis is used to 
follow these steppingstones from the current state to a 
new state. If in this new state the current subgoal is 
not closer to being solved or all of the previously solved 
subgoals do not remain solved, the current state is kept 
and memory is searched for additional steppingstones. 
If in this new state the current subgoal is improved and 
the previously solved subgoals are still solved then this 
state becomes the new current state and problem solving 
continues. 

When memory has no knowledge for reducing the cur- 
rent subgoal, SteppingStone falls back on local search. If 
this search produces further improvement, the sequence 
of moves used to generate the improvement is generalized 
into new steppingstones. Problem solving continues un- 
til the subgoal is solved. For optimization subgoals it is 
often impossible to determine when the subgoal cannot 
be improved. In these cases, problem solving continues 
until no further progress within the current resource limi- 
tation is possible. At this point the subgoal is considered 
solved. 

During the search for a problem's solution, the irrel- 

367 



Critical Path Delay Impasse 

States Leading to Improvement 

_«.6-i>i       _sD^-^i       _    %:°\> 

Stepping Stones 

Jj»z -    x*Y-t>~z -    ^O-O-fr-z -    $l>z 

Figure 2: Steppingstones for Optimizing Critical Path 

evant aspects of the state can greatly increase its diffi- 
culty. For example, adding more blocks to a blocks world 
problem can make the problem more difficult even if the 
blocks are independent of the problem solution. The 
local search procedure used by SteppingStone mitigates 
this problem by beginning the search within the region 
most likely to have a solution. Initially, only those parts 
of the state involved in the subgoals generating the im- 
passe are allowed to be changed. If the solution cannot 
be found in this space, it is enlarged until the search 
space includes a solution or the search is terminated. 

When a sequence of moves is found to improve an 
impasse, the sequence is generalized to generate a new 
sequence of subgoals or steppingstones in the following 
way. The sequence of moves generates a corresponding 
sequence of states. This sequence of states can be re- 
garded as a very specific sequence of subgoals. Since 
these subgoals are used to reduce an impasse, those 
parts of the state uninvolved in the impasse are re- 
moved. This is determined by the parts of the state 
involving the subgoal being solved, and those parts of 
the states involved in the previously solved subgoals that 
were changed during the sequence of moves. From this 
generalized sequence of subgoals repeating subgoals are 
removed, yielding the final set of steppingstones [Ruby 
and Kibler, 1989]. 

In the past, problem-solving knowledge has primar- 
ily been represented as macro-operators or control rules. 
Macro-operators reduce the distance between states, but 
also increase the branching factor. Unless these macros 
occur often between problem states and goals states, 
their cost can outweigh their benefit. Control rules re- 
duce the branching factor but leave the distance between 
problem states and goals states fixed. Control rules must 
also be evaluated at every problem-solving step. Unless 
they are applicable often, or result in large search reduc- 
tions, their cost can also outweigh their benefit [Minton 
1988]. 

2.2     Logic Synthesis 

One important domain that requires optimizing real- 
valued constraints as well as meeting a set of Boolean 
constraints is that of integrated circuit design. A large 

portion of integrated circuits consists of combinational 
logic. Optimizing the performance of this circuitry is a 
difficult and time-consuming task. Manual optimization 
is often applied to only the most critical portions of a de- 
sign because of the cost and time required. This results 
in circuits that are larger and slower than necessary. 

In logic synthesis, a functional specification of a cir- 
cuit is mapped into combinational logic using a library 
of available components. These components are taken 
from a technology-specific library. These libraries vary 
depending upon the technology and particular manufac- 
turer chosen. The synthesized circuit is optimized for a 
set of constraints which vary with the application. 

Operating SteppingStone on the logic synthesis task 
requires a state space representation of the problem. 
Logic synthesis can be represented with a start state de- 
fined by a functional description of a circuit, along with 
a set of constraints. Boolean algebra provides a good 
language for the functional description of a circuit. The 
goal is a realizable circuit, using components from an 
available library, that satisfies a set of hard constraints 
and optimizes a set of soft constraints. 

Operators for this domain map parts of the functional 
description to components from the technology-specific 
library. These mappings are well-defined and ensure the 
correctness of the resulting design. Mapping a functional 
description to a realizable design is a simple task. Find- 
ing a realizable design that satisfies a set of hard and soft 
constraints is much more difficult. To ensure global opti- 
mality requires an exhaustive enumeration of the design 
space, which is computationally intractable. 

Figure 2 gives an example from the logic synthesis do- 
main. The initial state for this problem is the boolean 
expression a * b * c. The goal is a circuit that is real- 
izable and optimized for critical path delay time. The 
library of components consists of nand-gates, nor-gates, 
and inverters. For each component there are two types 
of operators, those mapping a boolean expression to that 
component and those mapping the component into its as- 
sociated boolean expression. Although it is always pos- 
sible to map from boolean expressions to components 
and from components back to boolean expressions, the 
domain does not have to be invertible.   It may not be 
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possible to map a component back to all of the possible 
boolean expressions that can be mapped into it. Thus, 
it may not always be possible to apply a sequence of 
operators to move to a previous state. 

Given the problem specified by the boolean equation 
a * b * c, SteppingStone produces the realizable circuit 
at the top of Figure 2. This is an impasse for Stepping- 
Stone since it cannot improve the critical path without 
undoing the goal of realizing the circuit. Local search 
is used to find a circuit with an improved critical path 
delay time. The states shown are those generated by the 
sequence of moves leading from the impasse state to the 
improved state. The steppingstones are generated by re- 
moving from these states all but those portions involved 
in the previously solved subgoal (realizable) that were 
modified while generating the improved state. These fi- 
nal steppingstones appear at the bottom of Figure 2. 

Note that the steppingstones presented in Figure 2 are 
goals and can match many states. The only requirement 
is that the bound variables remain consistently bound 
through the steppingstones. Since steppingstones are 
used heuristically and only if grounded operations can 
achieve them, this type of generalization is effective. 

2.3     Macro-operators and Steppingstones 

Macro-operators are a common representation for prob- 
lem solving knowledge. By combining a useful sequence 
of operations into a new operator, problem solving per- 
formance can be improved. Steppingstones differ from 
macro-operators in several ways. 

Some types of generalizations are difficult with macro- 
operators. For example, the sequence of operations ap- 
plied in Figure 2 map a nor-gate with inverters on the 
inputs and output to a nand-gate. Unfortunately, these 
operations will only work when the nor-gate is a 2-input 
nor-gate. This same transformation may also work with 
a 3-input nor-gate, but this requires a different set of 
operations. To achieve this generalization with a macro- 
operator requires generalizing outside of the knowledge 
closure, creating a new operator that cannot be deduced 
from the original sequence of operations. Furthermore, 
this form of generalization can introduce illegal and in- 
correct states. In most situations this cannot be toler- 
ated. For example, in logic synthesis the final circuit 
must meet the functional specification and this cannot 
cannot be guaranteed if there are illegal transformations. 

Steppingstones do not have the same generalization 
difficulty as macro-operators. A sequence of subgoals 
only partially specify a path between states, and the se- 
quence does specify the particular operators required. 
The operators are selected through search after the sub- 
goals have been instantiated. For example, the sequence 
of subgoals given in Figure 2 can also be used when the 
nor-gate is a 3-input nor-gate. Given a 3-input nor-gate 
with inverted inputs a, b, c, two of the inputs (a, b) would 
bind with the variables X and Y. SteppingStone would 
then search for an operator that could map the 3-input 
nor-gate with the inverted inputs to the conjunction a*b. 
This is possible by mapping the 3-input nor-gate and in- 
verters to a * b * c. The remaining transformations are 
achieved in similar fashion.   If there wasn't an opera- 

tor for mapping this 3-input nor-gate and inverters to 
a * b * c, or any of the other subgoals, the subgoal se- 
quence would fail. The subgoal sequence would also fail 
if after achieving all of the subgoals the final state did not 
improve the original difference being solved. In any case, 
the knowledge gained by SteppingStone can never gener- 
ate an incorrect or illegal circuit since this knowledge is 
only used heuristically to guide the search process. The 
actual generation of the circuit is done using the basic 
operators whose correctness is assumed. 

Macro-operators must also be tested for applicabil- 
ity on each problem solving cycle. Unless the macro- 
operator is used often, or provides a particularly large 
search savings, its cost may outweigh any benefit it pro- 
vides. Steppingstones are only tried when the initial 
domain definition and search procedure prove unable to 
solve a subgoal. By reducing the need to test the appli- 
cability of learned knowledge, its cost is greatly reduced. 

3    Steppingstones for Logic Synthesis 
To demonstrate SteppingStone's capabilities in real- 
world domains we conducted a series of experiments in 
the domain of logic synthesis. These experiments were 
designed to demonstrate that SteppingStone could learn 
to optimize soft constraints in circuit design. We also ex- 
plored SteppingStone's ability to adapt to different opti- 
mization tasks and changes in the domain. To estimate 
the quality of the solutions found by SteppingStone we 
built a custom program for solving the problems and 
compared the performance of SteppingStone to our cus- 
tom approach. Furthermore, we applied SteppingStone 
to the solution found by our hand-crafted approach and 
to determine if further improvements were possible. This 
demonstrates that SteppingStone could be used as a 
post-processor to an externally derived design, whether 
human or machine generated, and still yield performance 
improvements. 

3.1    Learning Space Optimizations 

In our first test of SteppingStone's ability to learn op- 
timization knowledge we began with a domain used by 
CPS design system [Tong and Franklin, 1989]. The de- 
sign system was provided with a functional specification 
using a Boolean equation. The system synthesized a cir- 
cuit that met the specification and was optimized for 
the space required. The components used to build the 
circuits were inverters, two input and gates, or gates, 
and nand gates. The space required for each of these 
components was: and=5, or=5, int;erier=3, nand=l. 

SteppingStone was initially trained on problems small 
enough for local search to produce optimal designs. 
Small random Boolean equations with independent in- 
puts were used. These equations used the connectives 
and, or, and not. There are 22 different equations of 
this type with n inputs. With the given library of com- 
ponents, there are three distinct ways of implementing 
an and gate or an or gate, and two distinct ways of im- 
plementing a not. Thus, for a problem of size n there 
are of order 3n_1 different possible solutions. This large 
search space makes this problem difficult for brute-force 
methods. The subgoals described earlier are both highly 
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Figure 3: Average Performance on Problems of Size 30 

interacting and different in character from those tradi- 
tionally used, making the problem difficult for goal-based 
approaches. 

SteppingStone was trained on five successive sets of 
problems with an increasing the number of inputs. The 
first training set had 2-input problems. The number of 
inputs increased until the last training set had 6-input 
problems. Training in a set finished after ten succes- 
sive random problems were solved without any learning. 
Testing was done after finishing each set of training prob- 
lems. The system was tested on three sets of twenty-five 
random problems. These sets were drawn from prob- 
lems with 10, 20, and 30-inputs respectively. Learning 
and local search were turned off during testing. Note, 
the random test problems with 30-inputs were actually 
larger than example problems we were given from local 
industry. 

With this particular library of components, it is easy 
to determine if a solution is optimal. Figure 3 plots the 
average optimal value for the random 30-input problems 
along with the other data. Note, SteppingStone quickly 
converges on the knowledge needed to generate the op- 
timal solutions for these problems. These same results 
occurred with the test set of 20-input problems and 10- 
input problems. 

SteppingStone learned five subgoal sequences for find- 
ing the optimal solution to any problem in this domain. 
This is less than half the number of problem decomposi- 
tion rules learned by SCALE [Tong and Franklin, 1989] in 
this same domain. SCALE finds a set of rules for decom- 
posing any problem into non-interacting subproblems, a 
difficult and often impossible task. In contrast, Step- 
pingStone learns heuristic decompositions. In addition, 
unlike SCALE, the generalizations made by Stepping- 
Stone could be overgeneral. Although SteppingStone's 
knowledge is heuristic, it is still effective. 

To demonstrate that learning greatly reduced the 
amount search required to find the optimal solution, a 
second test was conducted. SteppingStone was tested on 
the 30-input problems with learning turned off and local 
search turned on. Using only localizing search, Step- 
pingStone's found the optimal solutions, but averaged 

28,695 nodes expanded. The most difficult problem re- 
quired 82,827 nodes expanded. The amount of search re- 
quired after learning to find optimal solutions averaged 
only 1,806 nodes expanded. 

3.2    Real-World Circuit Design 

Like most real-world domains, the specifics of a logic 
synthesis task can vary. For example, the components 
available to synthesize a circuit will vary depending upon 
the technology chosen. These changes affect how a cir- 
cuit should be synthesized. In addition, the set of con- 
straints to be met or optimized can vary from problem 
to problem. To demonstrate that SteppingStone could 
learn to synthesize high quality circuits regardless of the 
constraints or library of components chosen, we created 
a second component library for experimentation. 

An important performance constraint neglected from 
the previous problem was the critical path delay time. It 
is usually more important to optimize the critical path 
delay time of a circuit then the space required. The sec- 
ond set of problems were defined with the goal of first op- 
timizing critical path delay time and then space (number 
of gates) required. This second task demonstrates that 
SteppingStone learns to optimize multiple constraints si- 
multaneously. Note there were no fixed set of rules for 
decomposing this new problem into non-interacting sub- 
problems. 

The space required for the components from the pre- 
vious library were artificial. The performance charac- 
teristics for this second library were taken from the 
components available from the LSI Logic Corpora- 
tion. The following list contains the components cho- 
sen for this second library and their critical path de- 
lay time/gates required: 3-input nand=A.2ns/2 gates, 
2-input nanrf=2.9ns/l gate, 3-input nor=2.4ns/2 gates, 
2-input 7ior=2.2ns/l gate, mi>er*er=2.9ns/l gate. 

SteppingStone was trained on this second task in the 
same way as used for the first task. It was given small 
problems that it could solve optimally with local search. 
It was then tested on the same three sets of test prob- 
lems. Figure 4 shows how the average critical path delay 
time of the circuits synthesized decreased as learning in- 
creased for the random thirty-input problems. Figure 4 
also shows how the space required for the circuits de- 
creased with learning. Similar results were found for the 
other test problems. 

With this second library it was not possible to gener- 
ate the optimal circuit. In order to judge the difficulty of 
these problems and the quality of the solutions generated 
by SteppingStone, we developed a custom approach for 
generating solutions to these problems before beginning 
any experimentation. Note that we did not hand-code 
knowledge for SteppingStone, but actually wrote a cus- 
tom program for solving problems in this domain. 

Our best approach for finding a good design operated 
by first generating a design using the components avail- 
able. The program preferred to use the largest com- 
ponents possible. It then used a special procedure to 
improve this design. This procedure pushed inverters 
through the design towards the inputs. Inverters are 
pushed through components by defining rules for switch- 
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ing from an inverter into a component to some other 
component with the inverters on the inputs. These in- 
verters could then be eliminated whenever two appeared 
next to each other. Heuristics were used to attempt to 
determine situations where pushing an inverter through 
the design would not provide improvement because of 
the other components that would be changed. Although 
a relatively simple approach, it provided a good base for 
comparison. The results of our best approach are plot- 
ted in Figure 4 along with the SteppingStone results. 
Note that SteppingStone quickly learns enough to pro- 
duce circuits close to that of our best approach and, for 
the critical path delay, eventually improves upon it. 

To further estimate the difficulty of these problems 
a simple brute-force approach was also tried. The best 
solution found using the brute-force approach with a cut- 
off of 500,000 search tree nodes was recorded for each of 
the test problems. The averaged results are also plotted 
in Figure 4. Note that although SteppingStone initially 
produces solutions that are much worse than that pos- 
sible with an exhaustive approach, it soon outperforms 
exhaustive search. 

With this second set of components SteppingStone did 
not converge upon a set of knowledge for always gener- 
ating the optimal solution. This does not seem unusual 
since application systems for doing logic synthesis are 
unable to generate optimal solutions to arbitrary ran- 
dom problems and resort to heuristic knowledge to gen- 
erate good solutions. SteppingStone generates its own 
heuristic knowledge by recognizing recurring features of 
impasses and using local search to learn steppingstone 
for resolving the impasses. 

Instead of converging upon a set of steppingstones for 
this domain, SteppingStone continued to acquire new 
knowledge as the size of the training problems increased. 
After training on problems up to size five, 34 subgoal 
sequences were acquired. Given that the number of ran- 
dom Boolean functions with n inputs is 22 , or 232 for 
problems of size five, the amount of learning is extremely 
small. As with the tile-sliding domain [Ruby and Kibler, 
1989], this small amount of learning is due to Stepping- 
Stone's decision to learn only when reaching an impasse. 
After learning these 34 steppingstones,  the amount of 

search required to find the solutions to the thirty input 
problems averaged 2,841 nodes expanded. Even after ex- 
panding over 30,000 nodes without learning, Stepping- 
Stone was unable to generate solutions as good as those 
found quickly after learning. 

This set of experiments clearly demonstrates the gen- 
erality of the SteppingStone approach. Learning pro- 
vides the mechanism to easily adapt to changes in the 
domain. This provides the system with the flexibility 
needed for real-world problems. 

3.3    Learning to Improve Solutions 

In our final set of experiments, we tested SteppingS tone's 
ability to take the solution from our best approach and 
improve upon it. This experiment was designed to show 
that the knowledge acquired by SteppingStone was dif- 
ferent from the knowledge we encoded in our hand-coded 
approach. It also demonstrates that Steppingstone can 
be usefully combined with other means for generating 
initial solutions. 

For this second set of results we used the library of 
components and goal specification from experiment two. 
The problems were given to our best approach and the 
solutions generated. The solutions were then given as 
initial states to SteppingStone using the knowledge it 
had acquired after being trained on problems with up to 
five inputs. Table 1 shows the averaged performance re- 
sults for the solutions generated to the test set of random 
problems with thirty inputs. Note that SteppingStone 
was able to improve upon both the average critical path 
delay time and the amount of gates required. Improving 
upon both critical path delay and space required is espe- 
cially surprising since improving one often comes at the 
cost of a decline in the other. This clearly demonstrates 
the knowledge acquired by SteppingStone was different 
from that we derived and encoded in our best approach. 

Table 1 also includes the average quality of the solu- 
tions generated by SteppingStone alone. Here the results 
show that beginning with a good solution did allow Step- 
pingStone to generate better final solutions. The im- 
provement was not large for the critical path delay time, 
but was more significant for the space required. Learning 
space optimization was difficult for SteppingStone since 
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Critical Path Delay Gates 
Our Best 23.75 43.68 

SteppingStone 22.97 45.76 
Best+SteppingStone 22.70 43.04 

Table 1: SteppingStone Improvements on Our Best 

they only occurred in larger training problems. Yet, by 
beginning with a solution that was already good, the 
knowledge acquired improved upon this solution. 

This experiment again demonstrated the generality 
and power of SteppingStone. Not only was Stepping- 
Stone able to acquire knowledge and generate high qual- 
ity solutions, it was able to take solutions that we gen- 
erated and improve upon them. This type of flexibility 
is critical to any problem solver that will operate in a 
real-world setting. 

4    Related Work 

To better understand SteppingStone we compare it with 
other learning problem solvers. Like SOAR [Laird et al., 
1986] and Prodigy [Minton, 1988], SteppingStone learns 
on failure. However these systems are more dissimilar 
than similar. 

SOAR learns new rules, or chunks, whenever overcom- 
ing an impasse. For SOAR an impasse occurs whenever it 
cannot make an unambiguous decision. SteppingStone 
also learns when overcoming an impasse, but its def- 
inition of an impasse is different from that of SOAR. 
For SteppingStone, an impasse occurs when its means- 
ends analysis component is unable to solve a subgoal 
while maintaining all of the previously solved subgoals. 
Means-ends analysis serves to funnel large numbers of 
problems states into a few impasse states. This means 
that learning will occur rarely. While SOAR is an eager 
learner, perhaps because it attempts to match human 
learning, SteppingStone is a lazy learner, only learning 
when forced to. 

SOAR incorporates its learned knowledge into its prob- 
lem solving rules. Consequently SOAR will try all learned 
rules on every elaboration cycle, firing them whenever 
appropriate. This prevents the impasse from ever occur- 
ring again. SteppingStone separates its learned knowl- 
edge from the rest of its problem solving knowledge. Af- 
ter learning to resolve an impasse, that impasse will con- 
tinue to be encountered. The system ignores its learned 
knowledge until the impasse occurs. When an impasse 
is encountered SteppingStone searches its learned knowl- 
edge to see if it has encountered a similar impasse in the 
past. If it has, it uses this knowledge to try to resolve the 
current impasse. In this way, an impasse operates like an 
exception for the system with the steppingstones behav- 
ing as exception handlers. Since the learned knowledge 
is only used when an exception is encountered, its cost 
is reduced. 

When SOAR encounters an impasse it changes to a 
new problem space and searches for the solution to the 
impasse. A new problem space is generated in response 
to an impasse and SOAR uses weak-methods to search 

this problem space. When SteppingStone encounters an 
impasse it does not know how to solve, it does not change 
its problem space. It changes its search method to a 
localized forward search method. It remains in the same 
state-space with the same domain operators. 

SOAR learns a new rule when it solves an impasse. 
This new rule generalizes the sequence of rules required 
to resolve the impasse. Thus, the new rule is essentially 
a macro-operator. SteppingStone learns a new sequence 
of subgoals. Some of the distinctions between macro- 
operators and subgoal sequences are discussed in Section 
2.3. Briefly, subgoal sequences appear to allow more 
flexibility than macro-operators and do not increase the 
branching factor. 

Korf [Korf, 1985] showed that if macros are learned 
for solving each subgoal of a problem and these macros 
depend only on the value of that subgoal and the pre- 
viously solved subgoals, problems can be solved easily. 
Unfortunately this approach only works if a complete set 
of these macros can be learned. This requires that the 
problem state space be operator decomposable and that 
states are represented as a vector of discrete state vari- 
ables. SteppingStone uses a related approach but adopts 
a heuristic view. SteppingStone does not require com- 
plete knowledge, since it is able to use search to bridge 
the gap between the abstract form of generalized knowl- 
edge and its specific application on a particular problem. 
Since it uses search to determine if a piece of knowledge 
is applicable, it does not need to index its knowledge on 
the particular value of a subgoal. This eliminates the 
need for a state consisting of a vector of discrete vari- 
ables. In addition, rather than learning macro-operators, 
SteppingStone learns subgoal sequences. On the nega- 
tive side, by adopting a heuristic approach the strong 
analytical results no longer hold. 

Prodigy [Minton, 1988] learned control rules for a 
STRIPS style problem solver. These control rules can 
suggest differences to reduce, operators to reject, or op- 
erators to try. Unfortunately, all control rules must 
be tested on each problem solving cycle. In addition, 
Prodigy depends upon a single search strategy, means- 
ends analysis. When subgoal interactions make this a 
poor strategy problem solving performance suffers. Step- 
pingStone uses two different search strategies to offset 
the weaknesses of each. 

5     Conclusions and Future Work 
The goal of this research is to develop a general learn- 
ing problem solver for real-world problems. Real-world 
problems are defined by both hard boolean constraints 
and soft real-valued constraints. SteppingStone operates 
on problems with both types of constraints by taking a 
different view of problem solving. We view problem solv- 
ing as successively improving upon individual problem 
subgoals until they can no longer be improved. Step- 
pingStone demonstrated that this approach allows it to 
solve problems with both hard and soft constraints by 
learning to optimize multiple constraints in the logic syn- 
thesis task of VLSI design. 

Operating on real-world problems also requires scaling 
to large search spaces. SteppingStone derives much of its 
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power to scale by decomposing a problem into simpler 
subproblems and learning to treat these subproblems as 
though they were independent. Breaking a problem into 
independent subproblems provides an exponential de- 
crease in problem difficulty [Korf, 1987]. SteppingStone 
demonstrate is ability to scale by solving large logic syn- 
thesis problems with two different component libraries. 

SteppingStone represents the problem solving knowl- 
edge it learns as a sequence of subgoals, or stepping- 
stones. These steppingstones reduce the distance be- 
tween problem subgoals without increasing the branch- 
ing factor of the problem. They provide a heuristic de- 
composition for portions of the problem made difficult by 
subgoal interactions. The steppingstones learned effec- 
tively generalize the problem solving knowledge by using 
a small amount of search for their application. Unlike 
many learning problem solvers, SteppingStone is a lazy 
learner - learning only when forced to. Moreover, the 
number of situations when learning is necessary is lim- 
ited by the means-end analysis problem solver. 

SteppingStone derives its problem solving ability from 
the integration of a problem solver that uses domain 
general and domain specific problem solving knowledge 
and a learner to generate the domain specific knowl- 
edge. In particular, means-end analysis applies general 
weak problem solving knowledge to solve the easy por- 
tions of the problem. On hard portions of the prob- 
lem, specialized knowledge in the form of steppingstone 
are used to guide the problem solving process. Local- 
ized search on problem solving impasses is used to learn 
the domain-specific steppingstone knowledge. We now 
plan to explore SteppingStone's ability to solve addi- 
tional VLSI design tasks and other real-world domains 
such as scheduling. 
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Artificial intelligence (AI) is dedicated to the search for the 
nature of intelligence. As with all sciences, it starts not with 
definitions but with phenomena, clues and hunches. And the 
end result will not be a single thing or principle, but a rich 
body of scientific knowledge that will join with the rest of our 
scientific knowledge of the universe. Thus, the science 
comprises many searches, not just one. 

The quest of interest to me here is for the nature of a single 
system capable of general intelligence. The phenomena that 
gives shape to that quest arises from ourselves. We both 
observe and experience ourselves to be capable of performing 
a vast and unfolding array of tasks, continuously acquiring 
further knowledge from our experiences, and operating 
autonomously without some other seemingly more intelligent 
oracle at hand to do our intelligence work for us. 
Scientifically, such knowledge, even about ourselves, serves 
only as clues and hunches. We also know our intellectual 
powers to be limited, the world of tasks we encounter to be 
restricted, and our dependence on our social milieu and 
education to be pervasive. Withal, our autonomously 
exercised intelligence delimits for AI a central scientific 
phenomena. To discover the nature of such systems is one 
central quest within AI. This quest does not gainsay the many 
other quests that comprise our science. Indeed, it is important 
not to make this one quest co-extensive with the field, for 
there are many other paths that must be followed if we are to 
fully understand intelligence. But this is the quest that 
beckons me. 

To pin down somewhat the sort of system we seek, it helps 
to list some of our own capacities: 

1. Behave flexibly re the environment 

2. Exhibit adaptive (rational) behavior 

3. Operate in real time 

4. Operate in a rich environment: 

Perceive immense changing detail 
Use vast amounts of knowledge 
Control multiple-freedom movement 

5. Use symbols and abstractions 

6. Use language (natural and artificial) 

7. Learn from environment and experience 

8. Acquire capabilities by development 

9. Live autonomously in a social world 

10. Have self awareness and sense of self 

These are not all distinct capabilities — coverage is more 
important than partition. Further, these are capabilities, not 
mechanisms. To believe a truly intelligent agent should be 
able to exhibit these characteristics, is not to understand how. 
A few may be so uniquely human that we might consider 
abstracting away from them. Development, social 
dependence and self awareness are candidates. However, we 
should not be too hasty to avoid any of them. 

This particular quest is not new, neither for the field nor 
myself. Its roots go back to the late fifties, where it emerged 
as soon as indications began accumulating that the digital 
computer had opened a brand new approach to intelligence. 
Thus, the quest has a thirty year history. That history presents 
two faces. One is a waxing and waning of the quest itself, as 
AI uncovered one aspect after another of intelligent 
phenomena, so that various quests vied with each other for 
attention. From this face, each major development in AI 
increased or decreased interest in the quest for a general 
intelligent agent. The other face is a steady accumulation of 
the knowledge necessary to advance the question. From this 
face, all the major developments, whether their rhetoric aided 
or denigrated the quest for a general intelligence, have added 
to what we know about the mechanisms and component 
functions required for such an agent. 

Thirty years of science have given substantial shape to the 
quest. We have good bets about the nature of a general 
intelligent agent, backed by substantial empirical explorations 
and discoveries, and with some supporting theory. Principal 
among these is that such an agent will be a symbol system, 
hence its structure will be that of an architecture with 
memories that contain encoded representations of the task 
environment and the agent's own operations. This 
specification narrows the quest to discovering the nature of 
the architecture of a general intelligent agent.   Indeed, the 

JThis is the abstract of my talk on receiving the IJCAI Award for Excellence in Research at the 1991 Conference. 
Inadvertantly, it was not published in the IJCAI Proceedings. Though brief, it seems useful to publish it here, since it 
indicates an important direction for research. Over the years my research has been supported by the Defense Advanced 
Research Projects Agency (DOD). 
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quest has generally been formulated in these terms in recent 
years. Substantial progress has been made in understanding 
the basic mechanisms that go into such an architecture, 
although as yet there is no convergence to a single structure. 

However, the quest is not just for the architecture, although 
it might seem that way to those of us engaged in trying to get 
the architecture right. Indeed, the rhetoric of expert systems 
takes the inference engine to be relatively unimportant 
compared to the knowledge base it services. But given 
candidate architectures that have some promise and stability, 
it is important to raise our sights to the goal of obtaining the 
total system that such architectures are to support. Let us call 
this ultimate target an integrated intelligent system. We need 
to inquire exactly what such a target system should comprise. 
In any event, only when we have such target systems will we 
find out many of the essential characteristics of the candidate 
architectures. Only then will we find out whether our 
proposed architectures have their requisite capabilities. 

The current state in the quest in mid 1989 presents us with 
an interesting collection of candidate architectures, with 
enough experience and understanding of them so they are 
indeed candidates. But even though we talk of the many 
things we have done with these architectures, none of them 
has yet been put at the center of a genuine integrated 
intelligent system. Thus, I take the appropriate current 
characterization of the quest to be that of attempting to 
discover whether we have architectures capable of supporting 
integrated intelligent systems. Several years ago, the focus 
was almost entirely on discovering the architectures 
themselves. Some years hence, the emphasis may shift to 
being entirely on integrated intelligent systems — on how 
powerful or capable they are or fail to be, and on questions of 
scale. Our present point is poised between the two. I have 
selected my title accordingly. 

My objective here is to characterize our present moment in 
this quest and to set the task that seems to me the interesting 
next step to attempt. The starting place, as always, is with the 
AI systems that capture this present moment. I will focus on 
three: Soar, developed by John Laird, Paul Rosenbloom, 
myself and our colleagues, Prodigy, developed by Jaime 
Carbonell, Steve Minton and their colleagues, and Theo, 
developed by Tom Mitchell and his colleagues. These 
systems, all centered or with substantial presence at CMU, are 
the ones I judge most ready for this next step. In part, this is 
objective judgment, biased somewhat by familiarity and 
participation. But it is also that these systems, by being 
located together, are developing a symbiotic relation that 
augers well for the next step. It is a form of close-in 
cooperation-competition that promises to drive these systems 
forward at a rapid pace, expose their limitations mercilessly, 
and foster the borrowing of good solutions. 

Other systems are also important for defining our current 
position, for instance, BB* by Barbara Hayes-Roth, CYC by 
Doug Lenat and Icarus by Pat Langley (all with colleagues, 
since all such efforts involve cooperative teams). All these 
systems embody lessons of the last thirty years, though in 
different combinations and ways. This cumulation of existing 
science is important, and it is worthwhile to be sure we 
understand it. The ways these architectures formulate tasks 
and structure data and control to bring knowledge to bear are 
all late-generation versions of much-studied mechanisms. 
Also, these architectures (especially Prodigy, Soar and Theo) 
are part of the recent intensive concentration in AI on 

learning. In fact, the incorporation of learning as a pervasive 
characteristic of these architectures is what makes putting 
together integrated intelligent systems the right next 
challenge. 

We need to set out what the step to integrated intelligent 
systems involves. In one sense, it is easy to do so, since we 
have the list above for guidance. But we must be guided also 
by what we know of the difficulty of attaining various 
subgoals, given the current AI art. Some difficulties we must 
insist upon, for to avoid them is tantamount to avoiding to 
attempt the next step. Other difficulties we must essentially 
dodge because the time is not yet ripe to confront them. 

The first major concern, then, is autonomy — getting the 
system to live in the world, interacting with it by conventional 
channels, which means both robotically and linguistically, and 
for the latter, via natural languages, graphic figures and 
formal specification languages. More functionally, autonomy 
means the ability to acquire tasks and knowledge from the 
external world while interacting with it, whether via guidance, 
instruction, observation or experimentation. The second 
major concern is to be able to employ a rich repertoire of 
methods, both general and specialized to the occasion. It is 
not necessary that a system perform all methods, only those 
congenial to it, so to speak; but certainly method flexibility is 
necessary, as is the acquisition of methods from the external 
world, as well as tasks. The third major concern is that such a 
system have a substantial body of competence with respect to 
its world. It should know a lot about its place of interaction 
and what it contains, it should have number and reading 
skills, and it should have much experience with its world. 
Which actual tasks should be accomplished is less important 
than that there be diversity and that the tasks reflect the scale 
and complexity of the natural world. However, some tasks 
need to involve the use of external devices and facilities, such 
as computational simulators, and cooperative activity with 
other intelligent agents. It goes without saying that routine 
and continual learning from experience should occur. 

The above paragraph of specifications is unremarkable, in 
being simply one way of casting what we know of our own 
competence, though with some priorities about what should 
be attained first. However, many of these specifications occur 
as independent items on AI's current research agenda. A 
standard argument says that research should occur bottom up 
— components should be understood before systems of 
components are attempted. It is certainly easy to enumerate 
difficulties, uncertainties and prematurities. Clearly the 
argument for attempting the step is not that we know we are 
ready to succeed. Rather, it is my assessment that we are 
ready to find out about the difficulties experimentally. In the 
world of integrated systems, we only find out about many key 
difficulties by forcing ourselves to put together experimental 
systems. But possibly more than that is at stake. At some 
point the total system wins from the synergy of its 
mechanisms, rather than just getting tangled up in itself. In 
part that is what it means to have an integrated system. 
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ABSTRACT 

This paper presents a new approach to 
planning in dynamic and uncertain 
environments. Planning is viewed as a 
process in which an agent's long term 
goals are transformed into short term 
tasks and objectives, given the context 
of planning. The developed model 
allows for a dynamic balance between 
long term strategic planning and short 
term tactical planning. A combination 
of rules and scripts is used. Rules are 
used for reasoning about long term 
strategic choices. Scripts are used for 
representing short term tasks and 
objectives. The uncertainty calculi of 
RUM/PRIMO [3,4] are used for 
supporting reasoning under 
uncertainty. In the proposed model, it 
is also possible to achieve a seamless 
integration of case-based reasoning 
into the planning process. These ideas 
have been implemented in a system 
called MARS, which plans in the 
financial domain of mergers and 
acquisitions. 

1.   Planning  in  Dynamic  and  Uncertain 
Domains 

In this section, we motivate the need for 
dynamic planning, describe relevant prior 
research, emphasize the contributions of 
this research and outline the structure of 
the paper. 

1.1 Introduction  and Prior Research 

Most   of the   early   research   in   planning 

*This work was partially supported by the Defense 
Advanced Research Projects Agency (DARPA) under 
USAF/Rome Air Development Center contract 
F30602-85-C-0033.Views and conclusions contained 
in this paper are those of the authors and should not 
be interpreted as representing the official opinion or 
policy of DARPA or the U.S. Government. 

considered static domains, in which the 
state of the world was given at any instant 
and the emphasis was on devising plans 
(provably correct sequence of actions) to 
achieve certain goals. Two assumptions 
were common during the planning phase: 
the environment was static and the effects 
of various actions on the world were fully 
predictable. These assumptions ensured 
that the devised plan sequences could be 
executed successfully in the idealized 
world. However, such planners often 
generated plans that were not executable in 
the real world. Usually, this failure was 
caused by the plan's dependencies on states 
whose values were changed before the plans 
execution. In the planning literature, this 
planning process is usually referred to as 
strategic planning. However, within the scope 
of this paper, we will refer to it as static 
planning, since we want to use the term 
strategy in the typical military or business 
connotation. 

Many researchers [1,19,24] have noted the 
limited capabilities of early planning 
systems [14,22] and have proposed models 
for planning in dynamic and uncertain 
environments. Such models have adopted 
different approaches for dealing with these 
environments. Some researchers [8,13] 
have interleaved plan formation and 
execution. Brooks [7] has proposed the 
decomposition of the problem into task- 
achieving units realizing distinct 
behaviors. Georgeff and Lansky [18] have 
emphasized the need for a rich vocabulary 
for reasoning about the intentions of the 
planner during reactive reasoning. 
Rosenchien, Kaelbling and Pack [23] have 
adopted a formal approach to describing 
reactive planning, based on the 
compilation of situated automata from 
specifications of the knowledge of these 
automata. Firby [17] has proposed a 
reactive planning model based on the 
concept of independent entities (RAPS) 
pursuing goals in competition with many 
others in execution time. Bresina and 
Drummond    [6]    have    investigated    the 
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Entropy Reduction Engine Architecture, 
composed of a reactor (to produce reactive 
behavior), a projector (to explore possible 
future states and to advise the reactor) and 
a reductor (to reason about behavioral 
constraints and to advise the projector). 
Yang et. al. [30] have proposed a conceptual 
clustering of "similar" operators and plans 
to reduce replanning costs in real time. 

Agre and Chapman [1], Schoppers [26] and 
Nilsson [21] have adopted different, but 
related approaches to reactive planning. 
Agre and Chapman use combinational logic 
(a "table look-up" mapping from 
"situations" to "actions") to select the 
action to take depending on the situation 
on hand [2]. Schoppers has introduced the 
notion of universal plans for reactive 
planning. A universal plan is "equivalent to 
a decision tree whose outcomes are names 
of effector actions and whose decision 
nodes are labeled with environmental 
conditions" [2]. Planning is achieved by 
repeatedly cycling through the decision 
tree. Nilsson [21] has proposed the concept 
of action networks for reactive planning. 
Action networks are based on 
combinational logic and can be 
represented by decision trees (as in 
universal planning). Action networks differ 
from universal plans in that they allow the 
formation of action hierarchies. 
References [2,10,22] further elaborate on 
these recent approaches to planning in 
dynamic and uncertain environments. 

1.2 Highlights and Contributions of the 
Paper 

In this paper, we view planning as the 
process by which the long term goals and 
aspirations of an intelligent agent are 
translated into short term tasks, given the 
constraints imposed by the context of 
planning. This process must consider both 
the strategic and tactical aspects of 
planning. Strategic planning focuses on 
the selection of strategies for achieving 
long term goals, i.e., on reasoning about 
alternative paths to achieve long term 
goals. Tactical or incremental planning 
emphasizes tasks/actions which achieve 
short term goals. Both aspects are critical 
for successful planning. Pure tactical 
planning would increase reactivity at the 
expense of strategic goal directed behavior. 
Pure strategic planning would lead to 
inadequate flexibility in reacting to a 
changing world. While tactical planning 
can (and should) react quickly to a dynamic 

environment, strategic planning should in 
general be more stable and change only 
when required by a drastically altered 
environment or long term goals. This 
behavior ensures that an intelligent 
planner will be able to move steadily 
towards a strategic goal. This paper 
addresses the important issue of how a 
planner can balance strategic and tactical 
planning in an uncertain and dynamic 
environment. 

The notion of a strategy hierarchy is 
introduced to represent the varying 
strategic and tactical aspects of planning. A 
strategy hierarchy is similar to a decision 
tree. However, the decision tree does not 
represent base level situation-action pairs 
(as in universal plans) or a hierarchy of plan 
representations (as in hierarchical 
planning [9]). Rather, the tree represents a 
continuum of decision points, ranging from 
the strategic to the tactical/incremental. 
The nodes close to the root node are highest 
in "strategic intent", while the nodes 
closest to the leaf nodes have maximum 
"tactical details". The higher nodes 
represent various strategic choices, while 
the leaf nodes represent plan details in the 
form of scripts or skeletal plans. In our 
approach we use a production rule system. 
However, unlike the systems of Chapman 
and Agre, Schoppers and Nilsson, where the 
plans themselves are represented by 
production rule like structures, we use 
rules for encoding the complex reasoning 
associated with each node in the strategy 
hierarchy. This gives us a greater degree of 
flexibility to account for the dynamic world 
and the changing context of planning (see 
section 3 for more details). 

Most models use Boolean matches for 
taking planning decisions (e.g., testing 
pre-conditions of plans). This restriction 
limits the capability of the system to 
handle uncertainty in domain knowledge. 
Usually, these systems have no capability 
for representing varying degrees of 
confirmation, refutation and ignorance about 
a given decision variable. It is also the case 
that these systems cannot usually 
aggregate the contributions of different 
proof paths for a single decision variable. 
This feature, essential to exploit the 
redundancy in the knowledge base, allows 
the reasoner to use multiple deductive 
paths to obtain a distribution of values 
(with their associated uncertainty 
qualification) for a given decision variable. 
The planning mechanism described in this 
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paper uses the uncertainty calculi of 
RUM/PRIMO [3,4] to support such a 
representation of uncertainty and an 
aggregation of multiple proof paths (see 
section 3.1). 

Another important issue addressed in this 
paper is the integration of case-based 
reasoning into the planner. Case-based 
planning is a relatively new but important 
planning methodology that considers the 
effect of prior experiences while 
formulating new plans. In our approach, 
fragments of cases are interpreted and 
represented by rule templates. The same 
mechanism used to aggregate multiple 
deductive paths provides a seamless 
integration of case-based with rule-based 
reasoning [14] (see section 3.6). 

We have highlighted the important aspects 
of our research and have identified our 
contribution to the field of planning in 
dynamic and uncertain environments. The 
domain chosen to illustrate our ideas is the 
financial domain of mergers and 
acquisitions (M&A). M&A is a rich and 
interesting domain and is of high 
importance to businesses today. The 
planning scenario chosen is that of the 
various players [raider, target and 
arbitrageur - see section 2.1) in the context 
of a hostile merger attempt. Our ideas have 
been implemented in a prototype system 
called MARS (see section 2.2). 

1.3 Structure of Paper 

The paper contains three additional 
sections. The next section describes the 
domain of M&A and introduces the MARS 
system. Details of the planning 
mechanisms in MARS are given in section 3. 
Section 4 summarizes the characteristics 
of our planning methodology and describes 
our future work. 

2. Mergers and Acquisitions 

This section introduces the domain of 
mergers and acquisitions (M&A) and gives a 
brief overview of the MARS system. 

2.1 M&A: An Introduction 

The structure of corporate USA has been 
changed dramatically by the flood of 
mergers and acquisitions witnessed over 
the past decades. Annually, these deals 
total tens of billions of US dollars. To lend 
some useful conceptual abstraction, we can 

consider two players of interest in simple 
M&A deals: the raider (who usually 
initiates a take-over attempt) and the 
target (which is the company of interest to 
the raider). Another player of interest who 
is outside the structure of the actual M&A 
deal, but has a keen interest in the entire 
process is the professional arbitrageur (who 
tries to make arbitrage profit by wisely 
shifting his investments during the merger 
process). While the actions of each of these 
players vary from deal to deal, it is possible 
to identify certain basic actions associated 
with their individual roles. For example, 
some of the representative actions of a 
raider are target monitoring, target 
evaluation and selection, merger strategy 
selection, target response evaluation and 
attack strategy modification. Sophisticated 
planning and reasoning is required by every 
player in the M&A domain. Even in simple 
M&A deals, other complicating factors, 
such as multiple bidders and legal 
complications, often arise. Although each 
M&A deal is special and uniquely complex, 
we can still identify two types of M&A deals: 
friendly (agreed to by friendly companies for 
mutual benefit) and hostile (involving 
forcible takeovers). In this paper, we focus 
on hostile takeover attempts, as the 
planning and reasoning requirements for 
such M&A are much more interesting (from 
a computational perspective). The reader 
may consult references [15,20] for more 
details on various aspects of M&A. 

2.2 Overview of MARS 

MARS (A Mergers and Acquisitions 
Reasoning System) is a prototype AI 
reasoning system that both simulates and 
provides expert advice regarding the 
actions of the raider, the target and the 
arbitrageur. There are four independent 
simulators in MARS. The global simulator 
generates the values and changes of the 
macro-economic variables affecting the 
M&A deal (e.g., the interest rate and the 
price of Treasury Bills). The other three 
simulators generated and execute the 
reasoning and planning of the raider, the 
target and the arbitrageur respectively. 
There is a fusion of different reasoning 
techniques in all four simulators. Each of 
them is capable of integrated reasoning 
and planning with uncertain, incomplete 
and time varying information. MARS is 
implemented in Common LISP using 
RUM/PRIMO, and runs on the Symbolics. 
More      details      on      the      structure, 
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implementation and use of MARS can be 
found in reference [5]. 

3. MARS: Planning Details 

This section provides details on the 
planning mechanisms implemented in 
MARS. As MARS is implemented using 
RUM/PRIMO [3,4], the section begins with 
a short summary of the relevant features of 
RUM/PRIMO. 

3.1 Uncertainty Calculi & Belief Revision 
in RUM/PRIMO 

Both facts and rules in RUM/PRIMO can 
represent uncertainty. Facts are qualified 
by a degree of confirmation and a degree of 
refutation. For a fact A, the lower bound of 
the confirmation and the lower bound of 
the refutation are denoted by L(A) and 
L(—iA) respectively. As in the case of 
Dempster's [12] lower and upper 
probability bounds, the following identity 
holds: L(-iA) = 1 - U(A), where U(A) denotes 
the upper bound of the uncertainty in A and 
is interpreted as the amount of failure to 
refute A. Note that L(A) + L(-iA) need not 
necessarily be equal to 1, as there maybe 
some ignorance about A which is given by (1 - 
L(A) -L(—iA)). The degree of confirmation 
and refutation for the proposition A can be 
written as the interval [L(A), U(A)]. 

RUM/PRIMO provides a natural 
representation for plausible rules. Rules are 
discounted by sufficiency (s), indicating the 
strength with which the antecedent implies 
the consequent and necessity (n), indicating 
the degree to which a failed antecedent 
implies a negated consequent. Note that 
conventional strict implication rules are 
special cases of plausible rules with s = 1 
and n = 0. Each rule has an associated 
context which represents the set of 
preconditions determining the rule's 
applicability to a given situation. This 
mechanism provides an efficient screening 
of the knowledge base by focussing the 
inference process on small rule subsets. 

RUM/PRIMO provides an uncertainty 
calculus based on a set of five Triangular 
norms (T-norms) [4] for inference in the 
rule graph. Each T-norm Ti(a, b) lies within 
the interval [Ti (a, b),T3(a, b)], where 
Ti(a,b)=max(0,a+b-l)and T3(a,b)=min(a,b) 
respectively. Their corresponding 
DeMorgan dual T-conorms, denoted by Si 
(a,b), are defined as: 

Si(a.b) = 1 - Ti(l-a,  1-b). 

For each calculus (represented by the five 
T-norms), the following four operations 
have been defined in RUM/PRIMO: 

Antecedent Evaluation: To determine the 
aggregated certainty range [b, B] of the n 
clauses in the antecedent of a rule, when 
the certainty range of the ith clause is given 
by [bi.Bil: 

[b,B] = [Ti(bi,b2, ... ,bn). Ti(Bi,B2, ,Bn)l 

Conclusion Detachment (Modus Ponens): 
To determine the certainty range, [c, C] of 
the conclusion of a rule, given the 
aggregated certainty range, [b,B] of the 
rule premise and the rule sufficiency, s, 
and rule necessity,   n: 

[c, C] = [Ti(s,b), 1 - (Ti(n, (1-B) ))] 

Conclusion Aggregation: To determine the 
consolidated certainty range [d, D], of a 
conclusion when it is supported by m (m> 1) 
paths in the rule deduction graph, i.e., 
by m rule instances, each with the same 
conclusion aggregation        T-conorm 
operator. If [ci,Ci] represents the certainty 
range of the same conclusion inferred by 
the ith proof path (rule instance), then 

[d, D] = [Si(ci,c2, ... cm), Si(Ci,C2, ... ,Cm)] 

Source Consensus: To determine the 
certainty range, [Ltot(A), Utot(A)] of the 
same evidence. A, obtained by fusing the 
certainty ranges, [Li(A), Ui(A)], of the ith 
information source out of a total of n 
different possible information sources: 

[LtotlA), Utot (A)] = 
[Maxi=i,... ,n Li(A), Mini=1 n Ui(A)] 

The theory of RUM/PRIMO is anchored on 
the semantics of many-valued logics and is 
possibilistic in nature. References [3,4] 
describe a comparison of RUM/PRIMO with 
other uncertainty systems, such as 
Modified Bayesian, Certainty Factors, 
Dempster-Shafer,  and Fuzzy logic. 

RUM/PRIMO supports a belief revision 
mechanism to support reasoning under 
dynamic environments. The belief revision 
mechanism detects changes in the input, 
keeps track of the dependency of the 
intermediate and final conclusions on 
these inputs, and maintains the validity of 
these inferences. For any conclusion made 
by a rule, the mechanism monitors the 
changes   in  the   certainty  measures  that 
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Figure 1: Simplified Strategy Hierarchy for the Raider 

constitute the conclusion's support. 
Validity flags are used to reflect the state of 
the certainty. For example, a flag can 
indicate that the uncertainty measure is 
valid, unreliable (because of a change in 
support), too ignorant to be useful, or 
inconsistent with respect to the other 
evidence. A lazy evaluation is performed on 
the changes propagated by changes in the 
environment. 

3.2 Aims & Goals of Planning 

We define dynamic planning as the process 
by which long term goals are transformed into 
short term objectives and tasks. The planner 
has to continuously select and fine-tune 
the most desirable short-term objectives 
and tasks, given the long term goals, the 
past history of actions, the current world 
state and the predicted future course of 
events. Such a description of planning has 
its similarities and differences with the 
models considered by other researchers. It 
is similar to the models of Agre [1], 
Schoppers [26], and Nilsson [21] in 
stressing the need to continuously react to a 
changing environment. It is different in 
emphasizing the importance of strategy 
formulation in the planning process. 
Strategy formulation refers to something 
more than the mere determination of a goal 
hierarchy; it refers to the process of 
determining the best way to achieve a long 
term goal. The emphasis is not just on 
finding the sequence of steps on a path to a 
goal, but on choosing between different 
paths by reasoning about the various 
attributes of each solution path given the 
context of planning (goals, resource 
constraints,   etc.) 

The process of strategy formulation is, in 
general, a hierarchical process. Choices 
made at a given level influence subsequent 
strategic choices and the selection of 
tactical tasks. For example, a raider can 
adopt many different strategies in taking 
over a target company. His choice of a 
general attack strategy will influence his 
choice of sub-strategies for subsequent 
actions in the takeover attempt, as his 
strategy gets translated into shorter term 
(tactical) objectives and tasks. 

3.3 Representation of Plans 

The planning model developed in this paper 
provides for an explicit representation of 
various strategic choices and tactical 
tasks. The underlying representation is 
that of a strategy hierarchy. A strategy 
hierarchy is a decision tree like structure. 
At each node of the decision tree, certain 
choices have to be made relative to the 
context, i.e., the current goals of planning 
and the state of the dynamic world. These 
choices vary in their strategic vs. tactical 
content depending upon the level in the 
strategy hierarchy. The strategic content 
is highest in decisions closer to the root 
node and gradually decreases to the leaf 
nodes where the tactical content is the 
highest. Complex reasoning is required for 
evaluating the desirability of alternative 
strategic choices at a node. This reasoning 
is encoded by rules. Planning scripts 
represent tactical tasks or task sequences 
necessary to be executed once certain 
strategic choices have been made. Most 
scripts are located closer to the leaf nodes 
as they represent the tactical aspects of 
planning and are dependent on the 
strategic  choices made  higher up  in the 
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Figure 2: Strategic Choice at Node 

decision tree. These concepts are explained 
below with the aid of an example. 

Figure 1 depicts the simplified conceptual 
structure of the partial strategy hierarchy 
for the raider in MARS. At the top level, the 
raider can only adopt one of the two possible 
strategies: attack the target or retreat and 
concede defeat. Assuming that the raider 
chooses the attack strategy, there are 
several different sub-strategies available: 
toe-hold (slowly acquiring stock in the 
target), bear-hug (making a private merger 
offer to the company), or tender-offer 
(making a public merger offer). After this 
choice is made, the raider must select 
among further options. For example, the 
bear hug sub-strategy leads to two options: 
to contact the target management either 
directly or indirectly (through intermediate 
contacts). Based on his choice of 
appropriate strategies, the raider has to 
execute certain actions to achieve short 
term goals in consonance with his long term 
strategy and goals. These actions are 
represented by plan scripts (shown as 
rectangles at the leaf nodes in Figure 1). 

The strategy hierarchy in Figure 1 depicts 
the hierarchical process of strategy 
formulation. Each dark circle in the 
decision tree indicates a point at which 
certain strategic choices must be made by 
reasoning about the current state, the 
goals and constraints, the known history 
and the predicted future states. This 
reasoning process has to include expert 
domain knowledge, constraints (on 
resources, goals and actions), uncertainty 
(in knowledge of current and predicted 
states of the world) and analogical 
knowledge (comparisons with other similar 
situations). This has been depicted in 
Figure 2 where the enclosed box to the right 
of the decision node shows the context in 
which the decision is made. 

We represent the reasoning processes at 
each node by RUM/PRIMO rules as shown in 
Figure 2. The evaluation of these rules 
yields (on applying the uncertainty calculi 

of PRIMO) an interval valued measure of the 
desirability of the various strategic choices 
at that node (shown numerically in Figure 1 
and graphically in Figure 2). Thus the 
choice at each node of the decision tree is 
no longer a simple YES/NO decision, but is 
decided by the degrees of "desirability" 
and "undesirability" of various strategies 
as given by PRIMO rules. Fairly complex 
reasoning mechanisms can be incorporated 
into this architecture. 

The concept of a strategy hierarchy 
described here is different from that of a 
goal/sub-goal decomposition or a 
plan/sub-plan hierarchy as typically 
described in the planning literature [9]. 
The decision nodes in Figure 1 do not 
specify an order of goals and sub-goals or a 
hierarchical abstraction of plans/sub- 
plans. Rather they specify choices about 
how to plan and react so as to achieve the 
long term goals, given the context of 
problem solution. 

The level of abstraction of strategy 
formulation is highest at the level of the 
root node and is incrementally refined as 
one moves towards the leaf nodes. Close to 
the leaf nodes, strategic choices have been 
refined down to a level at which they 
directly impact short term goals and 
actions. These short term goals and tasks 
are represented by scripts. For example, let 
us assume that the raider has decided to 
attack a particular target and has opted for 
a direct bear hug strategy. After this 
strategy selection, the raider must perform 
certain atomic actions in accordance with 
his choice: he must determine the details 
of an offer (based on his evaluation of the 
company's assets and management) and he 
must choose how to approach the target 
management with the offer. These actions 
are included in the script associated with 
the choice of the direct bear hug strategy. 

Each script box (of Figure 1) has three 
parts: begin strategy script (actions 
executed when a strategy is initially 
chosen), continue strategy  script (actions 
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executed in current planning cycle when 
the strategy has already been chosen), and 
end strategy script (actions executed when 
the strategy is closed, either successfully 
or unsuccessfully). The begin and end 
strategy scripts are selected for execution 
only once, while the continue strategy 
script can be selected for many contiguous 
planning cycles. Each script contains a 
sequence of steps or tasks which are 
executed once the script is selected for 
execution. There is no required ordering on 
the tasks within a script. The only 
requirement is that the script report back 
to the planner any failure in executing a 
particular task or task sequence. In the 
event of such a failure, it is the planner's 
responsibility to replan to avoid the failed 
state. The scripts that encode the tactical 
task details are similar to skeletal plans 
and scripts, as described in the planning 
literature   [25,27]. 

3.4 Simulation Cycle 

We have tested our planning approach 
within the simulation facilities of the 
MARS system. The MARS simulation cycle 
begins with an initialization phase in which 
attributes of the various players are 
entered (e.g., the assets and goals of the 
raider). After this initialization phase, the 
simulation cycle in the autonomous mode of 
operation consists of four steps: 

1) the raider makes a move; 
2) the target responds to the raider's move; 
3) the arbitrageur shifts assets in response 

to the observed raider and target actions; 
4) the global simulator modifies the macro- 

economic parameters    appropriately. 

This cycle is repeated continuously until 
the raider is either successful or concedes 
defeat. Each simulator plans and executes 
one or more tasks/actions during each 
simulation  cycle. 

MARS can operate in three different modes, 
all of which can be arbitrarily interleaved: 
autonomous (in which all simulators plan 
and operate autonomously), I am target (in 
which the user plays against the raider) and 
I am raider (in which the user plays against 
the target). Variable values and planning 
choices can be changed interactively by the 
user at any time. These three modes of 
operation produce a rich variety of planning 
behaviors and reactions on the part of the 
raider, the target and the arbitrageur. 

3.5 Strategic Planning Process 

The planning and execution of actions is 
done in a dynamic environment. The 
process of strategic planning requires the 
selection of the most desirable strategies, 
by moving down the strategy hierarchy (as 
illustrated in Figure 1), and the execution 
of the scripts associated with the chosen 
strategies. The complexity arises from the 
fact that the choice of various strategies 
must account for various goals, resources, 
constraints, and other features of the 
domain, such as uncertainty and prior 
cases. As the world is dynamic, the planner 
must also ensure that, at every stage of 
planning, its choices are in agreement with 
the current evaluation of the world. The 
dynamic nature of the world may 
necessitate the change of earlier choices, 
making the ability to replan a necessary 
feature. In the example below, the raider 
simulator is used to explain this process. 

Various factors affect the choice between 
the attack and retreat strategies for the 
raider. RULE 1 is a PRIMO rule that reflects 
the importance of the financial strength of 
the raider on this decision. Leaving aside 
details of PRIMO's syntax (see [3,4]), RULE 
1 states that, given a highly desirable 
target, if the raider is financially stable 
and has adequate financing, he should 
choose the -.attack strategy to take over 
such a target. Lines 3 and 4 describe the 
context, i.e., the prerequisite for 
evaluating this rule. In this example, the 
context is the identification of a target 
company that is highly desirable to the 
raider. Line 5 represents the premise. 
"Adequate-financing" and "financial- 
stability" are two user-defined functions 
returning interval valued qualifications of 
the degree to which the raider has adequate 
financing and is financially stable, 
respectively. Lines 6 & 7 represent the 
conclusion. The contribution of RULE 1 to 
the desirability or undesirability of the 
•.attack strategy is computed using the T2 
T-norm operator in accordance with 
PRIMO's uncertainty calculi. The degree of 
importance of the premises for the 
conclusion is expressed by the sufficiency 
and necessity measures (*extremely-likely* 
and *likely* respectively - line 7) and by 
the choice of the appropriate T-Norm 
operator (T2 in this case). 

Consider the decision node in Figure 1 at 
which the raider must decide whether to 
attack   or   retreat.   RULE   1   is   one   rule 
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;;; RULE 1 

(def-rule   (adequate-financing-available company-data ;;; line #1 
(raider-strategies.rules)) (?raider   ?target) ;;; line #2 

(lb-pass-threshold ;;; line #3 
(most-desirable-target ?raider ?target)   1000) ;;; line #4 

(t2 (adequate-financing ?raider) (financial-stability ?raider)) ;;; line #5 
((raider-strategy   ?raider) ;;; line #6 
 ((:attack (d2   *extremely-likely*   *likely*))   intersect))) ;;; line #7 

contributing to the degree of 
confirmation/refutation of the desirability 
of the strategy -.attack. In general, there 
may be other PRIMO rules contributing to 
the desirability of the strategy -.attack. 
These rules yield, on the application of 
PRIMO's uncertainty calculus (section 
3.1), a net interval valued measure of 
desirability of the -.attack strategy for the 
raider. Similarly another set of rules (such 
as RULE 2 below) yield an interval valued 
measure of the desirability of the -.retreat 
strategy for the raider. These desirability 
measures are represented graphically in 
Figure 2 (the black band delimits the lower 
and upper bounds on the desirability 
measures). The strategic choice made by 
the raider depends on the chosen selection 
mode. The default mode in MARS is to 
choose the strategy with the highest degree 
of confirmed desirability (i.e., with the 
highest lower bound). 

3.6 Integrating Case-Based Reasoning in 
the Planning Process 

The presence of adequate financing is one 
feature that is considered by the raider 
while deciding whether or not to attack the 
target. The possibility of a successful anti- 
trust move is another relevant factor, 
specially if the raider and target are in 
similar industry sectors. The relevance of 
this factor is represented by RULE 2. An 
important factor in the determination of 
the success of an anti-trust move is the 
presence of similar prior situations (cases), 
in which the merger move either succeeded 
or was blocked. The relevance of prior cases 
is represented by Rule 3. 

When the premise of RULE 3 is evaluated, 
the planner accesses the case library of 
MARS to determine the presence or 
absence of similar precedents. Cases are 
stored in the MARS case library by rule 
templates (of the same form as RULEs 1, 2 
and 3) and hence when accessed by the 
premise of RULE 3, yield an interval valued 
answer expressing the degree of 
confirmation/refutation of the presence of 

a similar precedent. RULE 3 expresses the 
degree of relevance of the presence of prior 
cases to the conclusion of whether an anti- 
trust move shall succeed (i.e., to the 
premise of RULE 2). In general, other rules 
will also contribute to the estimation of the 
the premise of RULE 2. RULE 2 in turn, 
contributes (along with other rules) to the 
evaluation of the desirability of the 
strategy -.retreat for the raider simulator. 
The inference engine of the planner 
remains unaffected by the use of or lack of 
use of case-based reasoning. Whenever, 
rules (such as RULE 3) explicitly mention 
the importance of prior cases for the 
current conclusion, the planner accesses 
the case library and evaluates the rule 
graph corresponding to the relevant 
instantiated case templates. This process 
makes it possible to seamlessly integrate 
case based reasoning into the planning 
process. More details on case based 
reasoning as implemented in MARS and its 
integration with rule based reasoning are 
given in reference [14]. 

3.7 Tactical Planning Process 

The scripts associated with nodes in the 
strategy hierarchy represent the tactical 
details of planning. As the external world is 
assumed to be dynamic and uncertain, the 
ability to detect failures and to replan is 
crucial. Replanning may be necessary due 
to two reasons: scripts may fail (one or more 
script actions may be non-executable) or 
chosen strategies may be sub-optimal 
(choices made higher up in the strategy 
hierarchy are no longer optimal). In the 
first situation, it is fairly simple to detect 
the need for replanning. Since each script 
associated with a selected decision node in 
the strategy hierarchy is executed before 
exploring any other decision nodes, the 
planner waits for the successful completion 
of the script before making any more 
strategic choices. If the script fails, then 
the planner selects the next best 
alternative path at the same level and 
continues. If there are no other alternative 
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;;; RULE 2 (Abridged version) 
(def-rule   (anti-trust-possibility     

(t2 (value (anti-trust-success ?raider) :yes)) 
((raider-strategy  ?raider) 

((rretreat  (d2   *very-likely*   *likely*))   intersect))) 

;;; RULE 3 (Abridged version) 
(def-rule   (precedent-anti-trust     

(t2 (successful-precedent ?raider ?target)) 
((anti-trust-success ?raider) 

((:yes  (d2  *very-likely*  *likely*))   :intersect))) 

;; rule details omitted 
;; premise 

;; conclusion 

;; rule details omitted 
;; premise 

;; conclusion 

paths at that level, the planner moves one 
level up in the strategy hierarchy and picks 
the next best alternative (i.e., relative to 
the alternatives already seen) at that level. 
There is no explicit repair mechanism 
which is invoked when a script fails. Each 
script contains the information to explore 
different methods to achieve a certain 
short term goal and any necessary 
knowledge for repairing possible failures. A 
script fails only if all methods and repair 
procedures are exhausted (similar to RAPS 
[17]). 

The second cause of plan failure occurs due 
to dynamic changes in the world. Certain 
strategies chosen earlier (higher up in the 
strategy hierarchy) may no longer be the 
best strategy (i.e., the strategy with the 
highest degree of desirability) at a later time 
(when the planner has reached lower levels 
in the strategy hierarchy) due to a changed 
environment. The planner detects this 
change with the help of a belief revision 
mechanism supported in PRIMO (section 
3.1). A strategic decision at any node in the 
strategy hierarchy is made in a given 
context (Figure 2). The PRIMO rules (such 
as RULEs 1, 2 and 3) used for evaluating the 
desirability of different alternatives at that 
node form a rule-graph. The belief revision 
mechanism keeps track of the 
dependencies of these rules and flags any 
changes in the values affecting these rules. 
At every decision node, before moving down 
the strategy hierarchy, the planner checks 
to see if the strategic choices made until 
now are still optimal, i.e., if the path from 
the root node to the current node is still 
optimal. This test ensures that the context 
under which planning is being done is still 
valid. If the world has changed causing an 
earlier strategic choice to become sub- 
optimal, then the planner backtracks up 
the strategy hierarchy to the node where 
the strategic choices have to be 
reevaluated. The planner must terminate 
the open strategies along the backtracking 
path, i.e., it must execute the end strategy 

scripts of the terminated strategies. 
Replanning can then proceed from that 
node. 

The planner balances the strategic vs. 
tactical aspects of planning by introducing 
thresholds for changing strategies which 
vary according to the strategic importance 
of the choice. These thresholds are higher 
for strategically important choices (closer 
to the root node in Figure 2) than for 
choices more intimately related to tactical 
planning (closer to the leaf nodes in Figure 
2). For example, consider the desirabilities 
of certain strategic choices during a 
particular execution cycle as shown by the 
numbers in parentheses (e.g., (.8, .9)) in 
Figure 1. Based on the depicted measures 
of desirabilities, the script for the indirect 
bear hug attack strategy has been selected 
and is in progress (the begin indirect bear hug 
strategy script has been executed). Assume 
that during the next execution cycle the 
desirability of various strategic choices for 
the raider has changed to the numbers 
shown in squared brackets (e.g., [0.8, 0.9]) 
in Figure 1. The degree of desirability of 
the direct bear hug strategy is now higher 
than the currently chosen indirect bear hug 
strategy (0.85 > 0.8). Thus the indirect bear 
hug script should be closed and the direct 
bear hug script should be started. At this 
point, the degree of desirability of the 
■.retreat strategy is also greater than that of 
the '.attack strategy. However, we may 
decide not to change to the -.retreat strategy 
as this decision is intimately related to the 
long term goals of the raider and the 
difference in the desirabilities (0.05) is 
perhaps not large enough to warrant a 
change during this cycle. This allows the 
planner to achieve a balance between 
strategic and tactical planning. The 
change thresholds can either be fixed or 
dynamic. In the latter case, the planner can 
dynamically vary the strategic and tactical 
contents of its actions. In this example, the 
magnitude of change in the desirability of 
the   two   changes     has  been   deliberately 
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chosen to be the same (0.05) to emphasize 
that different change thresholds can be 
adopted at different levels in the strategy 
hierarchy to account for varying impacts of 
strategic vs. tactical planning. 

4 Conclusion 

In this paper, we have described an 
approach to merging the strategic and 
tactical aspects of planning. We view 
planning as the process by which the long 
term goals of an agent are translated into 
short term objectives and tasks. We have 
used the term strategic planning to refer to 
reasoning about and choosing between 
alternative means to achieve the long term 
goals, given the context of planning (goals, 
constraints, etc.). This interpretation 
differs from the one common in the 
planning literature, in which strategic 
planning is often viewed as planning in a 
static, predictable world. Our 
interpretation of strategic planning 
reflects the use of the term in the military 
and business domains. The concept of a 
strategy hierarchy has been introduced to 
explicitly represent the varying strategic 
and tactical aspects of planning. The 
identification, selection and structuring of 
possible strategic choices is a domain 
dependent task. A rule based approach is 
used for reasoning about and evaluating the 
degrees of desirabilities of the various 
strategic choices at different nodes in the 
strategy hierarchy. PRIMO's uncertainty 
calculus provides a thorough treatment of 
uncertainty in the domain, which is 
reflected in the execution of such rules. 
The tactical details of planning are 
represented by scripts, which are usually 
found close to the leaf nodes of the strategy 
hierarchy. We have also demonstrated a 
methodology for incorporating case based 
reasoning into the strategic planning 
process. Our planning model emphasizes a 
dynamic balance between the strategic vs. 
tactical aspects of planning. This balance 
is achieved by introducing dynamic and 
flexible thresholds in the strategy 
hierarchy. These thresholds vary with the 
amount of strategic vs. tactical content of 
the planning choices. Such a balance is 
important for achieving coherent goal 
directed  behavior. 

We have successfully tested our planning 
approach in the domain of Mergers and 
Acquisitions (M&A), and we have 
implemented it in the MARS system. A 
characteristic  of the  M&A domain  is  the 

competitive nature of planning under 
partial and imprecise information. The 
raider and the management of the target 
company can be seen as two players in a 
multi-player game. Each player has a set of 
strategies, which are determined and 
conditioned by the player's assets 
(constraints), high level goals, attitude, 
and the current macro-economic 
environment. These strategies may be 
altered when drastic changes occur to the 
environment or to the high level goals. 

The implementation of the strategies is 
determined by the selection of sub- 
strategies and by their refinements until 
specific tactics are executed. Because of 
the competitive nature of the domain, 
planning is followed by counter-planning, 
whose effects may cause the modification, 
interruption, or termination of the adopted 
tactic. These tactical changes occur much 
more frequently than the strategic ones. 

The planning requirements described 
above are similar to those of many military 
applications. Our next experiment will be 
the testing and validation of our planning 
approach in the domain of military 
transportation planning, within the 
context of crisis management. 
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Abstract 
We are interested in the role of prediction in planning 
and control. Our research has focussed on the prob- 
lems involved in making predictions under uncertainty 
and time pressure. In this paper, we consider two ideas 
from related disciplines that have had an important in- 
fluence on our work. The first idea is from estimation 
and control theory and is concerned with integrating 
observation and prediction. The second idea is from de- 
cision theory and experimental design and is concerned 
with computing the expected value of information. We 
provide brief introductions to each of these ideas, and 
attempt to provide some insight into their utility for ar- 
tificial intelligence applications by supplying examples 
from our recent research. 

Introduction 
Prediction and modeling are important in building 
planning systems. Indeed, one informal characteriza- 
tion of planning is in terms of predicting possible fu- 
tures so as to select among them by performing certain 
actions. Much of our research is aimed at improving the 
technology available for predicting possible futures. We 
have developed techniques for reasoning about causal 
relationships and metric time [Dean and McDermott, 
1987, Dean, 1988, Dean, 1989], dealing with uncertainty 
in the order of events [Dean and Boddy, 1988b] and the 
persistence of propositions [Dean and Kanazawa, 1989], 
and reasoning about continuously changing quantities 
[Dean and Siegle, 1990]. 

Recently, we have begun to pay greater attention 
to two issues that are critical in applying such tech- 
niques to real-world planning problems. The first issue 
concerns controlling the computational costs associated 
with prediction. In many applications, it is important 
to carefully control the time spent performing inference 

*This work was supported in part by a National Sci- 
ence Foundation Presidential Young Investigator Award 
IRI-8957601 with matching funds from IBM, and by the 
Advanced Research Projects Agency of the Department of 
Defense and was monitored by the Air Force Office of Sci- 
entific Research under Contract No. F49620-88-C-0132. 

in order to ensure that the system responds to its envi- 
ronment in a timely manner. This control of inference 
can be compiled into the system by making tradeoffs 
at design time to guarantee a specific response time. 
Alternatively, control of inference can be made part of 
the run-time system to enable the system to allocate 
computational resources based on current demands. 

The second issue concerns the role of observation and 
sensing in designing useful predictive systems. Predic- 
tive models are generally poor at making long-term pre- 
dictions. In addition, the accuracy of both near- and 
long-term predictions are critically dependent on the 
system's estimate of the current conditions. By making 
frequent measurements, a predictive system can main- 
tain an accurate estimate of the current conditions in 
order to make more accurate predictions. For the most 
part, research in planning has focussed on open-loop 
feedforward techniques that rely on precise models and 
accurate information regarding initial conditions. For 
many applications, closed-loop feedback techniques ap- 
pear to be more appropriate. 

In the following, we consider some ideas drawn from 
other disciplines and show how they bear on the two 
issues mentioned above. In particular, we look at the 
theory of Kalman-Bucy filters in control theory for ideas 
about how to treat observations that differ from current 
expectations. From decision theory and experimental 
design, we consider how to assign value to various infor- 
mation sources, including observations we might make 
and computations we might perform. In each case, the 
goal is to show how these ideas from other disciplines 
can inform research on planning in artificial intelligence. 

Observation and Prediction 
We begin with a very brief introduction to Kaiman fil- 
tering to illustrate how observation and prediction can 
be combined to complement one another. We then 
show how to apply the basic intuitions underlying the 
Kaiman filter to problems in mobile robotics. 

In the following, we assume a discrete-time, dynamic 
system. Let x(k) be a vector representing the state of 
the system at time k. Let u(k) be the known input (or 
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control action) to the system at time k. The state of 
the system at time k + 1 is determined by 

x(A + l) = /(x(*)Iu(*)) + v(A)> 

where / models the response of the dynamic system to 
a given input, and v(fc) is a vector of Gaussian-process 
noise, modeling the input disturbance or process noise. 

Let z(k) represent the (observable) output of the sys- 
tem at time k, so that 

z(k) = h(x(k)) + w(jfe), 

where h models the physics of the measurement process 
and w(Äj) is a vector of Gaussian-process noise, model- 
ing the measurement errors. 

The objective is to maintain an accurate estimate of 
the current state of the system. The estimate of the 
system state at time k given all the measurements up 
until time j is denoted x{k\j). At each time k, all of 
the past measurements are summarized by an estimate, 
X(äI|&) and an associated covariance matrix. 

There are three basic steps performed in updating the 
estimate of the system state to reflect the measurement 
made at k -+- 1. In the first step, called the prediction 
step, we compute what we expect to observe at k + 1. 
This involves first computing an estimate of the state 
at k + 1 given all the measurements up until k: 

x(fc+l|fc) = /(x(Jb|Jb),u(ib)). 

We then use this estimate to compute the predicted 
measurement: 

z(k + l\k) = h(x(k + l\k)). 

In the second step, called the observation step, we make 
the observation and compare the resulting measurement 
with what we expected. The difference between the ex- 
pected and actual measurement is called the innovation: 

u(k + 1) = z(k + 1) - z(k + l\k). 

In the third and final step, called the estimation step, we 
take x(& + 11Ä; + 1) to be the vector sum of our estimate 
given the measurements up until k and a correction 
factor g(v(k + 1)) which reflects our confidence in the 
measurement at k + 1: 

x(/t + l|jfe + 1) = x(k + l\k) + g(u(k + 1). 

The details concerning g are not important.1 What is 
important is how the information from prediction and 
observation are combined. 

lWe have sketched here the basic ideas involved in 
Kaiman filtering. In general, the information regarding the 
estimated state of the system is summarized by the first two 
moments of a statistical distribution: the mean vector and 
the covariance matrix for the state variables. The correction 
function g takes into account of the covariance information 
to discount measurements that deviate significantly from ex- 
pectations. See Bar-Shalom [1988] or Brammer and Siming 
[1989] for introductions to the theory of Kaiman filters. 

First, note that we have models for predicting not 
only the current and future states of the system, but 
also the current and future measurements made in ob- 
serving the system. These models account for uncer- 
tainty in the underlying process by incorporating prob- 
abilistic noise models for disturbances in the dynamical 
system and errors in measurement. At each point in 
time, we compare what we expect to observe with what 
we actually observe in order to determine how much 
weight we want to attribute to each, based on what 
sort of errors we expect from the noise models. In the 
following, we provide some examples to illustrate how 
we are applying this basic idea. 

The mobile robots in our lab use sonar as the primary 
means of sensing the surfaces of objects for naviga- 
tion purposes. A sonar sensor consists of an ultrasonic 
transducer, a receiver, and some signal-processing hard- 
ware. Information about the distance from the sensor 
to nearby surfaces is obtained by measuring the round- 
trip time of flight of an ultrasonic pulse that is emitted 
by the transducer, bounces off an object surface, and 
returns to the receiver. 

If the transducer is pointed along a line perpendic- 
ular to a nearby planar surface, then the sensor can 
be modeled as the actual distance to the surface cor- 
rupted by zero-mean Gaussian noise. However, if the 
transducer is not pointed perpendicular to the near- 
est object surface, then there is some chance that not 
enough of the energy from the ultrasonic pulse will be 
returned to the receiver to determine the true time of 
flight to the nearest surface. Instead, the pulse may be 
reflected, bouncing off possibly several objects before a 
signal with enough energy is detected by the receiver. In 
this case, the information returned by the sensor may 
deviate significantly from the distance to the nearest 
object. 

Kaiman filtering techniques can be used to maintain 
estimates of the distance separating a mobile robot from 
nearby walls, corners, and other environmental features 
that exhibit well-behaved sonar signatures [Leonard 
and Durrant-Whyte, 1989]. We use these estimates to 
update the robot's position with respect to a global 
map, and to track walls in negotiating corridors in the 
computer science building [Lee, 1990]. The navigation 
system identifies features and then tracks them over 
time using the Kaiman filtering equations to discount 
misleading sonar measurements due to multiple reflec- 
tions. 

The basic Kaiman filtering equations are also cen- 
tral to the stochastic geometric modeling techniques de- 
veloped by Smith and Cheeseman [1986] and Durrant- 
Whyte [1988]. In [Hayahsi and Dean, 1988], we describe 
a method for locating an autonomous mobile robot us- 
ing local observations and a global satellite map. The 
satellite map provides approximate elevation data for 
an area within which the robot is known to be located. 
The map consists of a coarse grid of rectangular regions 
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Figure 1: The probabilistic model for map learning 

annotated with upper and lower bounds on the eleva- 
tion within the region. In exploring its environment, 
the robot makes measurements to extract information 
about the relative position and orientation of local land- 
marks. These landmarks are integrated into a stochas- 
tic map which is then matched with the satellite map 
to obtain an estimate of the robot's current location. 

We employ the Kaiman filtering equations directly 
in a number of our navigation routines, but the basic 
intuitions underlying the Kaiman filter are applicable 
to wide variety of problems including problems that do 
not involve reasoning about continuous quantities. 

In our research on learning representations of large- 
scale space, we have adopted Kuipers' [1978] approach 
to map learning as inducing a graph that captures cer- 
tain qualitative features of the environment [Basye et 
al., 1989]. In recent work, we have cast the problem of 
combining measurements to support hypotheses con- 
cerning the configuration of such qualitative features in 
terms of Bayesian inference [Dean et al., 1990a]. Our 
methods involve encoding the underlying decision prob- 
lem as a Bayesian probabilistic network.2 

We assume that the robot trying to learn the map 
can enumerate the set, M = {Mi, M2,. -., Mm}, of all 
possible maps, where each Mi is just a labeled graph. 
Since the size of M is potentially quite large, we re- 
strict it in a number of ways. In particular, we assume 
that the system of junctions and corridors that make 
up our robot's environment can be registered on a grid, 
so that every corridor is aligned with a grid line and 
every junction is coincident with the intersection of two 
grid lines. 

The Bayesian network is defined as follows. Let H 
be a random variable corresponding to the actual con- 
figuration of the environment; H takes on values from 

M. Let JXjy be a random variable corresponding to the 
label of the intersection at the coordinates, (x,y), in 
the grid; Jx>y can take on values from the set of possi- 
ble junction types (e.g., T junctions and L junctions). 
Let XfiW correspond the presence of a feature, /, at a 
particular position, w. Let SXtV be a random variable 
corresponding to a possible measurement taken at the 
coordinates, (x,y), in the grid. The complete proba- 
bilistic model is shown in Figure 1. 

Even after restricting M, the model shown in Fig- 
ure 1 is prohibitively expensive to evaluate.3 To ease 
the computational burden, we heuristically select a sub- 
set of M to use as the sample space for H. The problem 
with this is that the space of possible maps chosen may 
not include the map corresponding to the actual con- 
figuration of the environment. 

To handle the possibility of excluding the real map, 
we add a special value, ±, to the sample space for H, 
and make all of the PT(JXIV |_L) entries in the conditional 
probability tables 1/s where s is the number of junction 
types. If the posterior probability for H = _L given 
the evidence ever exceeds a fixed threshold, then the 
system assumes that it has excluded the real map, and 
dynamically adjusts its decision model by computing a 
new sample space for H guided by the results of the 
exploratory actions taken thus far. 

In the estimation step of the Kaiman filter, we use 
the innovation to discount measurements that are un- 
likely to be relevant to the current estimate. In the map 
learning approach described above, we use the poste- 
rior probability for _L as an indication that the current 
sample space for the hypothesis is inadequate. In both 
cases, we use knowledge about the accuracy of our pre- 
dictive model and our ability to observe the environ- 
ment to reason about the weight to attach to each in 
making decisions. In Kaiman filtering, this knowledge 
takes the form of the innovation and covariance. In map 
learning, this knowledge is condensed in the form of the 
threshold used to determine if the real map has been 
excluded from the sample space for H, and the condi- 
tional probabilities of the form Pi(SXiy\Xf^w) used to 
quantify the dependency between observations and fea- 
tures in the real world. 

Value of Information 
In the real world, information costs. Every time that 
you get operator assistance in dialing a long-distance 
number or consult an accountant about your income 
tax you are paying for information. It is often useful 
to be able to assess the value of information so as to 
make reasonable decisions regarding whether or not to 
pay for it. In this section, we consider a theory due to 
Howard [1966] concerned with quantifying the value of 

2 See [Dean et al., 1990b] in this volume for a brief intro- 
duction to Bayesian probabilistic networks. 

3See [Dean et al., 1990b] in this volume for a discus- 
sion of some of the complexity issues involved in evaluating 
Bayesian probabilistic networks. 
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Figure 2: Alternative routes to the beach 

information in decision-theoretic terms. 

Suppose that you live in the city and are taking your 
summer vacation at a beach some distance from the city. 
Suppose further that there are two routes to the beach: 
a direct route that takes six hours and roundabout route 
that takes ten hours. We will call these the direct and 
detour routes. The direct route requires that you cross 
a bridge which, as luck would have it, is undergoing 
major repairs this summer. There is a 50% chance that 
the bridge will be closed at the time you wish to cross 
it. If you attempt the direct route and find the bridge 
closed, you will have to backtrack to the detour route, 
and your total transit time will be twelve hours. 

You decision involves choosing whether to try the di- 
rect or detour route first. Figure 2 shows the three 
possible outcomes of your decision. If you choose the 
detour route, the trip will take ten hours. If you choose 
the direct route, the trip will take either six hours or 
twelve hours depending on whether or not the bridge is 
closed. We need to assign a value or cost to each of the 
possible outcomes, and, in this case, a natural measure 
of cost is time spent in transit. A decision-theoretic 
analysis would conclude that the optimal decision (one 
that minimizes cost) is to take the direct route with an 
expected transit time of 9 hours. 

Now we extend the example to consider issues in- 
volving the value of information. Suppose there is a 
state police station located near the highway prior to 
the point at which we have to decide between the direct 
and detour routes. We will assume that the state police 
can provide us with information about the current sta- 
tus of the bridge. Suppose that stopping at the police 
station requires getting off the highway and traveling 
to a nearby town, and that the total time spent in ac- 
quiring the information about the bridge is estimated 
to be 30 minutes. 

In this extended example, we have an additional deci- 
sion to make besides simply whether to take the direct 
or detour route. You can think of the trip to the po- 
lice station as particular type of test with two possible 
findings: the bridge is open or the bridge is closed. We 
can reason about the expected value of obtaining this 

be the expected travel time, T, for the optimal course 
of action based on the background information, £. In 
reasoning about whether or not to stop at the state po- 
lice station, we compute the expected travel time given 
the additional information obtained from the police: 

E(T|Js,£), (2) 

where Is represents the event of obtaining information 
from the police regarding the status, S, of the bridge, 
either open or closed. The expected value of the infor- 
mation obtained from stopping at the police station is 
just the difference between Equations 2 and 1 

E(Val(Is)|£) = E(T|/S, S) - E(T\£), 

where 

E(T\IS,£)    =    E(T\S = closed, £)Pi(S = closed\£) + 

E(T\S = open, £) Pr(5 = open\£). 

In the example, E(Val(Js)|£) = 1.0, implying that we 
should be willing to spend up to one hour to obtain the 
information regarding the status of the bridge. 

More generally, let E(V|f) be the expected value of 
carrying out your present plan or policy. Suppose that, 
prior to carrying out your present policy, someone offers 
to sell you information pertaining to some variable, X, 
used in calculating E(y|£). To be more specific, sup- 
pose that the informant is clairvoyant and knows the 
actual value of X. Let Ix correspond to the event of 
obtaining the information regarding X. 

The expected value of obtaining this information is 
given by 

E(Val(/x)IO = E{V\IX, £) - E{V\£). (3) 

To compute E(V\Ix,£), we evaluate the expectation 
given knowledge about X for each possible value of X 
provided by the informant, summing over these expec- 
tations weighted by our prior on X 

E(V\IX,£)=   Y,  V(V\X = x,S)Pi{X = x\£).   (4) 
xenx 

It is important to note, as did Howard in the 1966 pa- 
per [Howard, 1966] in which he introduced Equations 3 
and 4, that we use the prior distribution Pr(_X"|£) for X 
because, until the informant provides the information 
about X, our knowledge of X is based entirely on our 
background knowledge £. 

In the map learning problem described earlier, at 
each point in time, the robot has to decide between 
two alternatives, PK and Pu, corresponding to taking 
paths through known and unknown territory. It is as- 
sumed that at all times the robot has some current task 
(e.g., to take a parcel from one office to another). The 
robot has to balance the demands of its current task 
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against the demands of future tasks. In the case of the 
path through unknown territory, the robot will learn 
something new about its environment; it may end up 
taking longer to complete its current task, but it may 
also learn something that will enable it expedite future 
tasks. In [Dean et al., 1990a], we describe how to com- 
pute the expected value of exploration, in order to guide 
the actions of the robot in exploring its environment 
and carrying out its tasks. 

In [Dean et al., 1990b] in this volume, we describe 
how a robot might take into account the expected value 
of perceptual actions in tracking moving objects. In the 
tracking problem, the robot has to consider sequences 
of actions, and the prediction and modeling issues are 
more complicated than in the map learning problem. 

In the map learning and tracking problems, the robot 
reasons about the value of performing physical actions, 
including perceptual actions, that provide valuable in- 
formation, but there is a hidden cost associated with 
acquiring such information: the cost of processing the 
information once you have it. In fact, inference is never 
without cost, and in time-critical applications it is im- 
portant that we are careful not to squander precious 
computational resources. 

In recent years, there has been considerable in- 
terest in reasoning about the costs and benefits of 
computation4 [Boddy and Dean, 1989, Horvitz et al., 
1989, Russell and Wefald, 1989]. In particular, re- 
searchers have focussed on the properties of algorithms 
and decision procedures. For instance, in time-critical 
applications, it is useful to build decision procedures 
that can be interrupted at any time to return an answer 
such that the answer returned gets better, in some de- 
cision theoretic sense, the more time allowed. This sort 
of behavior is a fundamental property of the anytime 
algorithms of Dean and Boddy [l988a] and the flexible 
computations of Horvitz [1988]. 

While it is important to design decision procedures 
that are better suited to interacting with the real world, 
we believe that the more interesting and important is- 
sues involve devising better ways of allocating scarce 
computational resources to decision making in time- 
stressed situations. 

In [Dean and Boddy, 1988a], we define the notion 
of deliberation scheduling in terms of scheduling any- 
time decision procedures on a uniprocessor. The key 
idea is that, given a set of anytime decision procedures 
and expectations about their performance as a func- 
tion of time spent in computation, it is possible to op- 
timally allocate resources to those procedures in some 
well-defined decision-theoretic sense. 

If the time spent in deliberation scheduling is neg- 
ligible in comparison with the time spent in delibera- 
tion, then the cost of deliberation scheduling can be 

See Dean [1990] for an overview of decision-theoretic 
techniques for controlling inference in time critical 
applications. 

ignored. In some cases, however, the decision prob- 
lem of optimally allocating computation is itself com- 
putationally complex and hence the cost of deliberation 
scheduling cannot be ignored. In this case, if the de- 
liberation scheduling algorithm can also be cast as an 
anytime algorithm, it is still possible in certain cases to 
optimally allocate computational resources to both the 
meta-level deliberation scheduling procedure and the 
base-level decision procedures. 

These basic methods have been applied to dynamic 
planning problems in which the planning system has 
to continually reevaluate its computational commit- 
ments as new information becomes available [Boddy, 
Forthcoming]. 

Conclusion 

In this paper, we have considered two basic ideas re- 
garding planning in uncertain domains. The first idea 
concerns reasoning about how to combine information 
from predictive and perceptive modules given expecta- 
tions about the performance of each. You should not be 
overly influenced by what you expect to see, but neither 
should you always believe what you think you see. The 
Kaiman filter provides an elegant tool for combining 
observation and prediction. 

The second idea concerns reasoning about the value 
of information, including both perceptual and compu- 
tational information sources. In time-critical applica- 
tions in which the time and effort involved in gathering 
and processing information are significant, one has to 
make decisions regarding what to look at and what to 
think about. Bayesian decision theory provides a ba- 
sis for making such decisions, and Howard's value-of- 
information theory provides insight into computing the 
value of such information sources. 

It should be noted that Bayesian methods do not 
themselves provide the solutions to the problems we are 
interested in. We view the invocation of Bayesian deci- 
sion theory as a basis for posing problems, and the use 
of Bayesian networks as a convenient means of analyz- 
ing the complexity issues involved in applying Bayesian 
decision theory. The Bayesian methods require that we 
enumerate and assign values to a set of possible states 
of affairs and that we quantify certain dependencies 
involving state variables. In satisfying these require- 
ments, the combinatorial issues and potential problems 
involved in gathering the necessary statistics become 
apparent. The underlying decision method is quite sim- 
ple algorithmically, as it involves exhaustively evaluat- 
ing a potentially large set of possible states of affairs. 
The real contributions are concerned with the repre- 
sentations used for characterizing the possible states of 
affairs. In an important sense, Bayesian methods pro- 
vide a discipline for systematically exploring represen- 
tational issues. 
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Abstract 
Generalized Partial Global Planning is an 
attempt to extend Partial Global Planning 
(PGP) to other domains and provide a frame- 
work for new coordination algorithms. It is 
based on the observation that the relation- 
ships the PGP mechanism uses to measure 
increased network coordination can be de- 
fined for, and detected in, arbitrary cooper- 
ating systems. This paper describes several 
issues that will be important in extending 
the PGP mechanism to heterogeneous, dy- 
namic, and "real-time" agents, and in devel- 
oping new mechanisms such as negotiation. 
A scenario is described that illustrates these 
issues and which can be used as a basis 
for experimenting with solutions to them. 
The approach taken emphasizes the detec- 
tion and classification of goal relationships 
between agents. 

1   Introduction 
The partial global planning (PGP) approach to dis- 
tributed network control increased the coordination 
of agents in the network by avoiding redundant ac- 
tivities, shifting tasks to idle nodes, and providing 
predictive results that reduced overall problem solv- 
ing time by estimating the duration of tasks to allow 
schedules to be built from interleaved plans [Durfee 
and Lesser, 1987b]. Generic Partial Global Planning 
tries to extend this approach by communicating more 
abstract information (goals, capabilities) and detect- 
ing the relationships that are needed by the par- 
tial global planning mechanisms. In the same way 
that contract nets [Davis and Smith, 1983] provide a 
domain-independent task allocation mechanism, we 
are proposing to build a generic network control sys- 
tem that will provide support for: modeling agents' 
capabilities, desires, and intentions; modeling the 
relationships between these; and building network 
controllers based on these models. 

'This wqrk was supported by DARPA contract N00014- 
89-J-1877, and partly by the Office of Naval Research under 
a University Research Initiative grant, number N00014-86- 
K-0764, NSF-CER contract DCR-8500332. 

The global coherence problems we would like to 
address occur in many systems, such as the Pilot's 
Associate system [Smith and Broadwell, 1987], where 
situations occur that cause potentially complex and 
dynamically changing goal relationships to appear 
in goals that are spread over several agents. Each 
agent in the Pilot's Associate system has subgoals 
that other agents must fulfill, and receives subgoals 
from other agents that only it can fulfill. 

For example, assume that we are in a tactical sit- 
uation, so the tactical planner is in control (see Fig- 
ure 1). It has two ordered subgoals: turn on the active 
sensors (request to situation assessment), and get a 
detailed route of the plane's movements during the 
tactical maneuver (request to the mission planner). 
Turning on active sensors causes a plane to become 
a transmitter, and thus become easily detected (most 
of the time the plane uses passive sensors). Since 
this is dangerous, the situation assessment agent 
will ask the pilot-vehicle interface (PVI) to ask for 
pilot confirmation of the use of active sensors. The 
pilot, upon seeing the request, asks the PVI to plot 
the escape route of the plane on the screen in case 
things go wrong. The PVI passes this goal to the 
mission planner. 

Meanwhile, the tactical planner has asked the mis- 
sion planner to produce the detailed route for the 
tactical maneuver. Which task does the mission 
planner act on first? From a local view, it may per- 
haps do the tactical planner request first because the 
tactical planner goals are a high priority. But from 
a global perspective, we see that unless the mission 
planner plans the escape route, which is needed by 
the pilot in order to authorize turning on the active 
sensors, which is needed for the tactical planner to do 
its job, the whole system goal of handling the tactical 
situation is in jeopardy. Hence the mission planner 
should do the escape route plan first. 

To handle these interactions, we are developing 
a set of generic relationships among goals that fall 
into four general categories: domain relations, graph 
relations, temporal relations, and non-computational 
resource constraints. By communicating goals at dif- 
ferent levels of abstraction we can reduce the amount 
of communication required between agents by com- 
municating detail only when necessary. 

396 



Turn on 
active 
sensors 

Sii 
As 

'uation 
sessment 

Mission 
Planner 

Tactical 
Planner 

<3 
Plan escape 
route 

Plan new 
tactical route 

Respond to 
tactical 
situations 

PILOT 

N 
\j Show pilot 

escape route 

~Z_ 

Get pilot 
confirmation 

Pilot-Vehicle 
Interface 

Figure 1: Dynamic Situations in Pilot's Associate 

Section 2 briefly reviews the existing PGP mech- 
anisms and why they work. However, we want not 
only to apply the PGP approach to other areas, but 
also to extend it. In developing a complete approach 
to distributed coordination, we found several other 
areas in which we would like to extend the PGP 
mechanisms. These issues include heterogeneous 
agents (which may have different problem solving cri- 
teria), dynamic agents (which have several different 
strategies available for problem solving and several 
different methods for accomplishing goals), real-time 
agents (which have hard goal deadlines), and negoti- 
ating agents (which are a consequence of the conflicts 
inherent in any and all of the other issues). Section 3 
discusses these issues in greater detail, defining them 
and how they relate to the original PGP mechanisms. 
A scenario is presented in Section 4 that illustrates 
these issues in the Distributed Vehicle Monitoring 
Testbed (DVMT). Finally, an initial approach is out- 
lined in Section 5 that describes how we intend to 
integrate the goal relationship mechanisms into the 
DVMT and how to use them to achieve a more flexible 
PGP mechanism. 

2   Partial Global Planning 
Partial global planning [Durfee and Lesser, 1987b, 
Durfee and Lesser, 1989] was developed as a dis- 
tributed control technique to insure coherent network 
problem solving behavior. It is a flexible approach 
to coordination that does not assume any particular 
distribution of subproblems, expertise, or other re- 
sources, but instead lets nodes coordinate in response 
to the current situation. Each node can represent and 
reason about the actions and interactions of groups of 
nodes and how they affect local activities. These rep- 
resentations are called partial global plans (PGPs) 
because they specify how different parts of the net- 

work plan to achieve more global goals. Each node 
can maintain its own set of PGPs that it may use 
independently and asynchronously to coordinate its 
activities. 

A PGP contains an objective, a plan-activity-map, 
a solution-construction-graph and a status: 

• The objective contains information about why 
the PGP exists, including its eventual goal (the 
larger solution being formed) and its importance 
(a priority rating or reasons for pursuing it). 

• The plan-activity-map represents what the 
nodes are doing, including the major plan steps 
the nodes are concurrently taking, their costs, 
and expected results. 

• The solution-construction-graph contains in- 
formation about how the nodes should interact, 
including specifications about what partial re- 
sults to exchange and when to exchange them. 

• The status contains bookkeeping information for 
the PGP, including pointers to relevant informa- 
tion received from other nodes and when that 
information was received. 

A PGP is a general structure for representing coordi- 
nated activity in terms of goals, actions, interactions 
and relationships. 

When in operation, a node's PGPlanner scans its 
current network model (a node's representation of 
the goals, actions and plans of other nodes in the 
system) to identify when several nodes are work- 
ing on goals that are pieces of some larger network 
goal (partial global goal). By combining information 
from its own plans and those of other nodes, a PG- 
Planner builds PGPs to achieve the partial global 
goals. A PGPlanner forms a plan-activity-map from 
the separate plans by interleaving the plans' ma- 
jor steps using the predictions about when those 
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steps will take place. Thus, the plan-activity-map 
represents concurrent node activities. To improve 
coordination, a PGPlanner reorders the activities in 
the plan-activity-map using expectations or predic- 
tions about their costs, results, and utilities. Rather 
than examining all possible orderings, a PGPlan- 
ner uses a hill-climbing procedure to cheaply find a 
better (though not always optimal) ordering. From 
the reordered plan-activity-map, a PGPlanner modi- 
fies the local plans to pursue their major plan steps 
in a more coordinated fashion. A PGPlanner also 
builds a solution-construction-graph that represents 
the interactions between nodes. By examining the 
plan-activity-map, a PGPlanner identifies when and 
where partial results should be exchanged in order 
for the nodes to integrate them into a complete so- 
lution, and this information is represented in the 
solution-construction-graph. 

The PGPlanner, as it was used for coordination in 
the distributed vehicle monitoring task, relied on the 
fact that the level of abstraction at which the node 
plans were communicated was a sequential sequence 
of intermediate goals (times and locations in which to 
extend a vehicle track). Each intermediate goal was 
an abstraction of the processing and integration work 
that each node planned for locally. These interme- 
diate goals were ordered by the local node planners 
based on several criteria [Durfee and Lesser, 1988], 
but these relationships are not transmitted in the 
node plans. There was no representation of temporal 
relationships between intermediate goals. The PG- 
Planner reorders node activities by hill-climbing in 
the space of costs of the present ordering of activities. 
The cost of an ordering is computed from relation- 
ships like redundancy, reliability, predictiveness, and 
independence of the activities. 

Why does partial global planning work well in the 
DVMT? It is because: 

• It avoids redundant work among nodes by notic- 
ing interactions among the different local plans. 
Specifically, it notices when two node plans have 
identical intermediate goals, i.e., when they are 
working on the same time region. This occurs in 
the DVMT because in the interests of reliability 
nodes have overlapping sensors. 

• It schedules the generation of partial results so 
that they are transmitted to other nodes and 
assist them at the correct time. To do this it 
uses the estimates of the times that activities 
will take and the inferred relation that if node 
A estimates that it will take less time than node 
B to complete an intermediate goal, and the 
goals are spatially near, that node A can provide 
predictive information to node B. 

• It allocates excess tasks from overloaded nodes to 
idle nodes. Node plans provide the information 
needed to determine if a node is overburdened 
or underutilized. A node is underutilized if it 
is either idle or participates in only low-rated 
PGPs.  A node is overburdened if its estimated 

completion time of a subgoal of goal G is much 
later than the completion time of all the other 
subgoals of G [Durfee and Lesser, 1989]. 

• It assumes that a goal is more likely to be correct 
if it is compatible with goals at other nodes. In 
the DVMT task, a goal represented a processing 
task to ascertain whether a vehicle was moving 
in a region r at time t. This goal could, in fact, be 
wrong — based on noise or errorful sensor data 
that was the basis for the preliminary task anal- 
ysis that generated the goal. Nodes choose local 
plans to work on based on the highly rated PGPs 
they have received. Thus, if the intermediate 
goals of a node become part of a PGP, then they 
are worked on before other intermediate goals in 
other local plans the node may have (even though 
the node may have rated those local plans higher 
in its local view). 

To control how they exchange and reason about 
their possibly different PGPs, nodes rely on a meta- 
level organization that specifies the coordination roles 
of each node. If organized one way, the nodes might 
depend on a single coordinator to form and distribute 
PGPs for the network, while if organized differently, 
the nodes might individually form PGPs using what- 
ever information they have locally. The partial global 
planning framework lets nodes converge on common 
PGPs in a stable environment (where plans do not 
change because of new data, failed actions, or unex- 
pected effects of their actions). When network, data, 
and problem-solving characteristics change and com- 
munication channels have delay and limited capac- 
ity, nodes can locally respond to new situations, still 
cooperating but with potentially less effectiveness be- 
cause they have somewhat inconsistent PGPs [Durfee 
and Lesser, 1987a]. The PGP framework does not, 
however, deal with conflicts in non-computational 
(physical) resources. 

3   Issues in Extending the PGP 
Mechanisms 

3.1   Heterogeneous Agents 

How can the PGP mechanisms be extended to han- 
dle agents that have different local problem solving 
criteria? This can arise in several ways: 

• Some agents in the system are humans with 
local (personal) decision criteria that cannot be 
adequately or fully modeled. 

• Some agents in the system have different exper- 
tise, and hence different local decision criteria 
(cooperative design problems [Lander and Lesser, 
1989], pilot's associate-style problems [Smith and 
Broadwell, 1987]). The PA scenario in Section 1 
is a classic example of heterogeneous agents with 
shared global goals and differing local expertise. 

The PGP mechanism assumes a shared local and 
global decision evaluation function (so that all agents, 
given the same information and enough time, will ar- 
rive at the same decisions). Conflict between agents 
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comes about because some agents lack data or have 
out-of-date data. Agents do not have to exchange or 
negotiate about decision criteria. While this well- 
documented assumption simplified the PGP mecha- 
nism, a homogeneous agent assumption (where the 
local decision criteria are shared) is not always ap- 
propriate. The PGP mechanism also assumes that 
the agents will pursue one goal at a time — the goals 
are ordered, and if an agent has excess capacity it 
can fill it with tasks from lower-rated goals. Planning 
for the simultaneous achievement of multiple goals is 
not supported. 

The modularity of the PGP mechanism (which sep- 
arates the local agent's incremental planner [Durfee 
and Lesser, 1988] from the PGPlanner) comes close to 
permitting heterogeneous local decision criteria. The 
only problem arises when the PGPlanner reorders 
the node plan for another agent. The PGP plan eval- 
uation function that was used to develop a global 
schedule contains terms to avoid upsetting the order 
of another agent's plan (independence measured the 
distance of the current ordering from the original 
node plan ordering, locally-predicted measured the 
distance of the current ordering from regular time 
order). In some domains a portion of this ordering 
may be fixed. We have suggested marking temporal 
goal relationships as hard, negotiable, and soft (see 
Section 5.2). This allows the plan evaluator to rule 
out certain impossible orderings (hard constraints), 
and to avoid those that may cause replanning at the 
target node (negotiable constraints). 

3.2   Dynamic Agents 

How can the mechanisms be extended to handle 
agents that have a great deal of latitude in the meth- 
ods that they use to solve problems? Each method 
may have a different effect on the characteristics of 
the solution, such as completion time or certainty. 
These agents can appear in human systems and sys- 
tems where agents use approximate processing tech- 
niques [Decker et al., 1990b]. In the PA scenario 
in Section 1, the mission planner might solve its 
dilemma by using different algorithms to respond to 
each plan request. A fast but inaccurate algorithm 
may suffice to give the pilot an idea of a corridor of 
escape, while a more complex and precise algorithm 
can be given the bulk of the computational resources 
with which to plan the near-term tactical maneuver. 

Because only one method existed for accomplish- 
ing a goal (and no set of different criteria existed for 
determining what would be considered an acceptable 
solution), the PGP mechanism could equivalently ex- 
change goals and the plans to accomplish those goals, 
at a single level of detail. The node plans that were 
exchanged indicated the goal of an agent to produce 
a track with certain characteristics (classes, sensed 
times, and regions) and a plan consisting of the or- 
dering of the sensed times at which the agent would 
work (called i-goals), expected i-goal durations, and a 
mapping of the i-goal start and end times with respect 
to node problem solving time. 

Two extensions need to be made. First, commu- 
nicating goals at a single level of detail is inap- 
propriate in more complex domains; certainly the 
detection of the interactions of two goals ("partial 
global goals") will not always be simple [Robinson 
and Fickas, 1990]. Secondly, many different meth- 
ods may exist for accomplishing a goal, each with 
its own effects on duration, precision, and other goal 
characteristics. This makes the existing PGP node 
plan structure change rapidly when problem solving 
methods are changing dynamically (as an agent re- 
acts to the problem being solved). The node plan 
structure can be modified to hold ranges as well as a 
best current estimate for a value, but it is also likely 
that agents will have to reason and perhaps negotiate 
about predictability versus reliability issues as well 
[Durfee and Lesser, 1987a]. The node plan structure 
could also be expanded with contingency plans for 
"routine expectation failures" [Dean, 1987] to allow 
for predictability in the face of a changing environ- 
ment. 

3.3   Real-time Agents 

What happens when time becomes an integral part 
of local and shared goals? Dynamic agents will be 
able to modify both task durations (perhaps trading 
them off for other goal characteristics) and the goal 
deadlines themselves. In the PA scenario in Section 1, 
the mission planner's dilemma arises from the fact 
that it is under real-time constraints — if there were 
no impending deadlines for the pilot and tactical 
planner, the mission planner would have little reason 
to prefer one allocation of its computational resources 
over another. 

While the PGP mechanism estimated the times for 
tasks or goals to be completed in order to spot idle 
processing resources, it did not handle deadlines. I- 
goals had expected durations; node-plans anchored 
(mapped) the completion of the various i-goals to a 
plan activity map. Experiments were conducted with 
the local incremental planner that did indicate the 
ability to plan to meet deadlines in a single agent 
[Lesser et al, 1988, Decker et al, 1990b]. 

In extending the architecture to so-called "real- 
time" problem-solving, agents may have goals with 
hard deadlines, which add constraints to the con- 
struction of a plan activity map. Furthermore, the ad- 
dition of hard deadlines or other domain constraints 
changes the nature of the interaction between a node's 
local problem solving mechanism and the PGP mech- 
anism — some of the local ordering will remain local 
preference but some may be due to hard constraints, 
as discussed in Section 3.1 above. From the classi- 
cal perspective, real-time network control also means 
scheduling both periodic and non-periodic tasks to 
deadlines; the original PGP mechanism did not deal 
with periodic tasks. The existing hill-climbing algo- 
rithm for scheduling may no longer be appropriate. 

Often in real time situations planning is reactive, 
where the current situation mostly controls an agent's 
actions (where the "current situation" may include 
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both local and global information), rather than re- 
flective, where a sequence of actions is planned out 
in some detail before execution. This is because the 
agent must respond quickly, but more importantly, 
the agent may be too uncertain of the outcomes of 
its actions and of the changing world state to plan 
too far into the future. However, an intelligent agent 
will make use of periodic tasks, which occur in a 
predictable fashion, and known non-periodic tasks, 
to build a opportunistic planning framework that 
can keep an agent from painting itself into a corner 
with purely reactive planning techniques, or from 
exhaustively planning uncertain future details with 
reflective planning techniques. 

Many new mechanisms are being put into place in 
the DVMT to allow the control of real-time problem 
solving (with hard deadlines); many of these mecha- 
nisms should integrate easily with the ones described 
here. For example, the original PGP mechanism 
had to have its own time estimation routines. We 
envision that the real-time mechanisms being devel- 
oped for a single agent will be able to provide such 
services to the new coordination mechanisms we are 
also developing. 

3.4   Negotiating Agents 

A direct consequence of heterogeneous, dynamic, and 
real-time agents is the need for negotiation to solve 
conflicts. Even with a known global decision evalu- 
ation function, conflicting decisions of equal global 
value may have very different local value to the 
agents. Often the character of an early partial solu- 
tion will have an impact on what style of coordination 
is needed. For example, if early partial results show 
poor data and low beliefs, the coordination mecha- 
nism may want to encourage redundant derivations 
of results in areas shared by more than one agent, or 
the parallel derivation of a result by two agents using 
different algorithms. The PA scenario in Section 1 
probably occurs in too short a time-frame to allow ne- 
gotiation between the agents, but other PA scenarios 
might profitably use negotiation techniques1. 

The PGP mechanism uses a shared global plan 
evaluation function that is parameterized. One ex- 
tension is to allow the parameters (such as redun- 
dancy and reliability) to vary during problem solving. 
A negotiation facility could be developed to allow 
agents to usefully alter the global (or perhaps only 
semi-local — we are interested in agents that may 
develop only a partial view of what other agents are 
working on) decision criteria. Where the PGP mecha- 
nisms exchanged all local information, our extensions 
would allow for a multi-stage process [Kuwabara 
and Lesser, 1989] where agents would communicate 
only the information believed relevant to the issue at 

1For example, a sensor may overheat and be shut down 
by the system status module, even though it is a projected 
resource requirement for some tactical situation. The 
tactical planner and system status may negotiate over the 
amount of time that the damaged sensor can be used if the 
situation arises. 

hand. Agents could ask for more contextual informa- 
tion when it is needed to resolve a conflict between 
agents. Agents would not automatically acquire in- 
formation from other agents performing non-related 
problem solving activities. 

In order to examine all of the above issues more 
closely, a scenario is described below which exhibits 
the issues mentioned above. 

4   Scenario 
The scenario is based on the basic task of the DVMT: 
to track vehicles moving through an area via their 
acoustic signatures. To describe the scenario we will 
describe the tasks involved, the agents who will carry 
out those tasks, the environment within which they 
are acting, and the desired interactions. 

The "vehicles" in the scenario are various aquatic 
creatures and waterfowl. One of the tasks involves 
protecting fish from fish-eating ducks. This includes 
detecting both fish and ducks and notifying the fish of 
potential duck attacks in time for the fish to escape. 
Another task involves simply tracking any pigeons in 
the area and displaying the tracks accurate to within 
certain spatial and temporal guidelines. These tasks 
are specified by "system goals" (see Section 5.1). 

The scenario demonstrates the issues described 
earlier in Section 3. Fish-protectors and pigeon- 
trackers are heterogeneous agents that have differ- 
ent utilities for the same data (see Section 5.1.1). The 
hard time deadlines will allow us to experiment with 
real-time performance and use approximate process- 
ing methods to give each dynamic agent a choice of 
different problem solving methods to choose from. 
The environmental data for the scenario will give 
the agents just cause for altering their plans during 
problem solving. Finally, the distribution and timing 
of the scenario provides several opportunities for the 
agents to negotiate. These issues are revisited in 
Section 4.4 after the scenario itself. 

4.1 The Agents 

There are 4 standard DVMT tracking agents with 
identical domain knowledge. Agents 1 and 3 are fish- 
protectors, and agents 2 and 4 are pigeon-trackers. 
Agent 3 has a faulty sensor, which will produce a large 
amount of noisy data. The four agents are shown 
pictorially in Figure 2. We will omit the definition 
of the agent's sensors and their precise coordinates. 
Also note that we can expand the scenario to more 
agents by tiling pigeon- and fish-agents in a natural 
way. 

4.2 The Environment 

We will describe the environment by describing the 
patterns and vehicle tracks that are given to the 
environment simulator. These tracks can be seen 
visually in Figure 3. 

At times 1-10 a fish Fx travels through the area 
seen only by agent 1. The fish is initially meandering. 

At times 1-10 a pigeon Pi travels through the area 
of agent 2.    It begins in the non-shared area and 
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Figure 2:  Four DVMT Agents:  Two fish-protectors 
and two pigeon-trackers 

crosses into the area shared by agents 2 and 3 at time 
6. The pigeon is in a meandering pattern. 

At times 1-10 a duck D\ travels through the area of 
agent 3. It begins in the non shared area and crosses 
into the area shared by agents 3 and 4 at time 3, and 
into the area shared by agents 1 and 4 at time 9. The 
duck is meandering. 

At times 4-10 a duck Di travels through the areas 
of agents 4 and 1. It begins in agent 4's area only from 
times 4—5, then in the shared area of agent 4 and 1 
at time 6 and 7, and then into agent l's non-shared 
area. Duck £>2 is in an attack pattern with fish F\ as 
the potential victim. 

At times 6—10 a pigeon P% travels through the area 
of agent 1 and 4. It remains in the area covered by 
agent 1. 

\gent 4 

JD2 

n  t Fi 

\    ( T6           \~1 

Agent 1 ?{ 

Di 

Agent 3 s ttsssi Pigeon 
■*****« Duck 
****** Fish AgerU 2 

Figure 3: The CDPS scenario environment 

The actual grammar specifying the characteristics 
of these vehicles has been omitted. Several other 
things have been left deliberately unspecified, most 
notably the mapping from "real-world time" to proces- 
sor time (so that we can experiment with how tightly 
pressed for time the agents are). 

4.3   The Intended Interactions 

There are four major interactions that are brought 
about by this environment.  These interactions also 

show up clearly in the goal relationship example in 
Figure 4, page 10. 

1. Agent 4 can help agent 3 disambiguate the data 
from its faulty sensor by tracking the duck D\. 

2. Agent 4 can notify agent 1 about the impending 
duck Z>2- It might provide other predictive data, 
for example, it might try to track the duck pre- 
cisely even though it is a pigeon tracking agent. 
This can be accomplished through negotiation 
between agents 1, 3, and 4. 

3. Agent 2 can help agent 3 by taking care of the 
pigeon data in the shared area (thus reducing 
the load on agent 3 and its faulty sensor). 

4. Agent 1 can notify agents 4 and 2 about the im- 
pending pigeon, providing predictive information 
(but note that agent 1 will be under severe time 
pressure). 

4.4   Revisiting the important issues 

The scenario above expresses the issues that were 
listed earlier: 

Heterogeneous Agents: Having two different sys- 
tem goals cause the agents' local views of "what 
is important to do next" to change. Given the 
same data, Agent 1 and Agent 4 would treat it 
differently, in isolation, because they have differ- 
ent local decision functions (because Agent 1 is 
a fish-protector and Agent 4 is a pigeon-tracker). 
If it were not for the communication of the goals 
of Agent 1 to track ducks, Agent 4 might pay 
little attention to the duck it detects. The atten- 
tion and effort that Agent 4 puts into the duck 
must come from some pre-specified or dynam- 
ically constructed global decision function that 
describes how Agent 4 should cooperate with 
Agent 1. Hence the scenario forces us to deal 
with the issues of different local views, of ex- 
changing views, and of dynamically constructing 
global views. See also Negotiating Agents below. 

Dynamic Agents: The agents have a set of adapt- 
able methods for reaching their goals, each of 
which have different characteristics. Agent 3 
will be using methods very different from those 
used by agent 1, even though both agents have 
the same system goal. An agent such as agent 
4 might change the processing method on some 
data (say duck D{) when new data (duck D2) 
appears. The overloaded Agent 1 is also likely 
to switch strategies as it becomes overloaded. 
Hence the scenario allows us the opportunity to 
use agents with various problem solving methods 
and agents that change strategies during prob- 
lem solving (with the commensurate difficulties 
in coordination). 

Negotiating Agents: Agents 1 and 3, for example, 
may have different initial ideas of what agent 4 
should be processing (given agent 4 has nothing 
to do on its own), and certainly different from 
that of agent 4 itself. Agent 4 must develop some 
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partially global view in relation to Agents 1 and 
3 and all of their local goals. Agents 2 and 3 
also have data in their overlapping areas. The 
scenario presents the opportunity to dynamically 
modify the global view of coordination, changing 
parameters to fit the situations that develop be- 
tween Agents 4 and 3, then 4, 1 and 3, and finally 
2 and 3. The scenario also presents conflicts be- 
tween local views and the developed global views 
— see Real-time, below. 

Real-time: Both of the system goals require solu- 
tions by a deadline. Agent 1 must forego helping 
agent 4 when pigeon P2 appears — it is too busy. 
If a pigeon pops up in agent 2's sensed region, 
it may not be able to keep its commitments to 
agents 1 and 3. Thus the scenario provides goals 
with deadlines and conflicts between local and 
global views. 

5   Approach 

The approach we will take is a refinement and exten- 
sion of that used in the PGP mechanism. The basic 
mechanism remains the exchange of information that 
allows each agent to independently affirm (in the case 
of anticipated domain relationships or "settled ques- 
tions" tGasser et al., 1989]) or discover (in the case 
of unanticipated "open system" interactions [Hewitt, 
1986]) its relationship to other agents in the system. 

Rather than exchange node plans, we exchange 
agent goals of various types and levels of detail. By 
detecting the relationships between its own goals 
and the goals of other agents it may interact with, 
an agent may locally schedule actions while taking 
into account non-local goals. When domain problem 
solving requires multi-agent interactions, node plans 
may still be exchanged, as well as agent capabilities, 
which describe an agent's potential long-term goals. 
By using hierarchical goal structures and not always 
exchanging plans we can reduce the amount of com- 
munication required and focus what communication 
does take place to reduce the number of global views 
developed under the PGP mechanism — we can pro- 
duce (partially global) schedules rather than partial 
(global schedules). 

5.1   Goals 

In extending the PGP mechanism, a major difficulty 
we encounter is in how goals should be specified for 
the agents. Most AI programs represent goals as 
either satisfiable logical formulae or ad hoc symbols. 
How can agents understand each others' goals, and 
to what extent do they need to? 

We require the ability to recognize goal relation- 
ships, and the ability to recognize to what degree a 
goal has been satisfied. These two abilities are suffi- 
cient for "scheduling" coordination (reordering tasks 
locally), but not for multi-agent domain problem solv- 
ing (where we may exchange or share tasks between 
nodes). For the latter, goals (and plans) must be rec- 
ognizable (able to be acted upon) by the underlying 

agent problem solving structure, or the coordination 
mechanism must be able to translate them as such. 

In the DVMT the agents do have a shared language 
for domain goals, and a language for control goals is 
under development. The new coordination mecha- 
nism, in order to remain aloof from the specifics of 
the DVMT, should not take too much advantage of 
the shared language. Rather, it should rely on the 
detection of goal relationships and degree of satisfia- 
bility directly, where these will be easy to implement 
because of the existence of a shared goal language. 
The highest goal specification for an agent is called a 
system goal. 

5.LI   System Goals 
A system goal is a high-level goal describing the de- 

sired solution characteristics for an agents' problem 
solution. It includes: 

Completeness: What parts of a full solution are the 
most important? To what degree does a partial 
solution fulfill a goal? In the DVMT, complete- 
ness specifies the level at which a hypothesis is 
a solution, its length, and its event classes. 

Precision: How specific must be the data contained 
in the solution? DVMT hypotheses have a well- 
defined precision measure. 

Certainty: How certain must an agent be that the 
hypothesis it is putting forth is a solution? Since 
DVMT belief uses a 4-tuple, this is a bit more 
complex than it sounds. 

Deadline: By what time must the solution be pro- 
duced? 

These desired solution characteristics must be con- 
sidered along with their interactions — to allow 
agents to trade off characteristics in a controllable 
manner. For example, is a solution with twice the 
precision and half the certainty as good as one half as 
precise and twice as certain? A simple way to specify 
this is to use an evaluation function to rate the solu- 
tion, but this may not allow explicit reasoning about 
tradeoffs between solution characteristics. 

5.2   Goal Relationships 

Four classes of goal relationships have been iden- 
tified that will be useful; a small subset of these 
relationships have been used to improve the schedul- 
ing of tasks in a single agent blackboard system 
where tasks can be executed in parallel [Decker et 
al., 1990a]: 

Domain Relations: This set of relations is generic 
in that they apply to multiple domains, and do- 
main dependent in the sense that they can be 
evaluated only with respect to a particular do- 
main — inhibits, cancels, constrains, predicts, 
causes, enables, and supergoal/subgoal (from 
which many useful graph relations can be com- 
puted). These relations provide task ordering 
constraints, represented by temporal relations 
on the goals (see below). 
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Graph Relations: Some generic goal relations can 
be derived from the supergoal/subgoal graphi- 
cal structure of goals and subgoals, for exam- 
ple, overlaps, necessary, sufficient, extends, sub- 
sumes, competes. The competes relation is used 
to produce task invalidation constraints. 

Temporal Relations: These depend on the timing 
of goals — their start and finish times, estimates 
of these, and real and estimated durations. From 
Allen [Allen, 1984], these include before, equal, 
meets, overlaps, during, starts, finishes, and 
their inverses. 

Non-computational Resource Constraints: A fi- 
nal type of relation is the use of physical, non- 
computational resources. This is the major rela- 
tion in some domains, such as factory scheduling 
and office automation [Sadeh and Fox, 1989, 
Martial, 1989]. 

5.2.1   Domain Dependent Relations 
This set of relations are generic, in that they apply 

to multiple domains, but domain dependent in that 
they can be evaluated only with respect to a particular 
domain. 

supergoal/subgoal: Goal B is a subgoal of goal A if 
B is required for some method of achieving A. 

inhibits: Goal A inhibits goal B if when goal A is ac- 
complished goal B cannot be accomplished. This 
definition ignores the time component. A might 
either permanently or temporarily inhibit B. 

cancels: Goal A cancels B if when goal A is achieved, 
goal B is no longer achieved. Notice that this is 
subtly different from A inhibiting B; Inhibition 
implies that B cannot be accomplished, canceling 
implies B is no longer achieved, but not that it 
cannot be achieved. 
If B cancels B then B is a recurring goal, one that 
undoes itself. Of course any set of goals may be 
placed in a recurring relationship if they cancel 
each other in sequence. 

constrains: Goal A constrains goal B if the two goals 
are related somehow at the domain level by the 
need to exchange information from A to B in or- 
der to solve B. This may or may not be a time 
constraint. This is necessary information. If A 
constrains B then A [>,m,o,oi,d,di] B (A is be- 
fore, meets, overlaps, is overlapped by, is during, 
or surrounds B [Allen, 1984]). Note that the 
"constraint relation" does not tell you what the 
constraint is, but that one exists. It means that 
the two subgoals are interacting subproblems. 

predicts: Goal Apredicts goal B if information about 
the solution of A is useful for the solution of B but 
not necessary. This could be information used to 
reduce uncertainty, or to guide search. 

causes: Goal A causes B if the completion of goal 
A physically entails the occurrence/completion of 
B. 

enables: Goal A enables B if the completion of goal A 
must occur before goal B can be satisfied. Obvi- 
ously this implies a strong temporal constraint. 

5.2.2 Graph Relations 
The generic graph relations can be derived simply 

from the subgoal/supergoal structure of the goal hier- 
archy, without using any internal information about 
a goal or any domain-dependent information. We can 
view the goal hierarchy as an acyclic AND/OR graph. 
Two nodes are equivalent if they have equivalent sub- 
goals, or consist of identical primitive actions. We 
may also want to assume algorithmically that equiv- 
alent nodes are only represented once in the goal tree 
(which will then be a goal acyclic graph). 

Just because a goal relation can be derived from a 
graph does not mean that it is trivial; when adding 
a new goal node to the graph a great deal of com- 
putation may need to go on to see how that goal 
really relates to the others. Part of this computation 
comes in recognizing repeated goals (that occur mul- 
tiple times in the graph), so that you cannot blindly 
expand a goal into a set of subgoals. 

overlap: Goal A overlaps B if there exists a goal 
G such that A is a supergoal of G and B is a 
supergoal of G. 

necessary: Goal B is necessary for goal A if goal A 
cannot be accomplished without accomplishing 
goal B (B is an AND subgoal in an AND/OR tree). 

sufficient: Goal B is sufficient for goal A if accom- 
plishing goal B accomplishes goal A (goal B is 
either an OR subgoal or A, or is sufficient for an 
OR subgoal of A). 

extends: Goal A extends B if there exists a supergoal 
G such that A and B are both necessary for G. 

subsume: Goal A subsumes B if B is a subgoal of A 
or if B is obviated by A. B is obviated by A if A is 
sufficient for the parent of B. 

competing: A competes with B if A and B are n- 
competing for some n. Inductively, A and B 
are O-competing if A and B are in different dis- 
juncts for each of their parents. A and B are 
n-competing if every pair of parents of A and B 
are i-competing for 0 < i < n — 1. This captures 
the intuitive idea that two goals compete if there 
is no possible way that both goals must be ful- 
filled. This does not mean that they cannot both 
be fulfilled, or that they interfere with one an- 
other in any way. The concept is graph-theoretic, 
not domain dependent. 

5.2.3 Time Based Relations 
A third set of relations are not strictly domain 

dependent, but do depend on the timing of goals. 
There are several possible features of goals that are 
applicable to timing: actual start and finish times, 
estimated start and finish, deadlines, and (estimated, 
actual) lengths. Any one of these numbers alone will 
allow at least some limitation of the possible temporal 
relations between two goals. Furthermore, temporal 
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relations may be preferences (soft constraints) as 
well as absolute relations. We envision three levels 
of temporal constraints: 

Hard: Hard constraints cannot be violated. Inability 
to satisfy hard constraints means that the prob- 
lem is overconstrained. Overconstrained prob- 
lems may result in negotiation, for example, in 
real-time problems where a node may have an 
alternate solution path that takes less time but 
is also less certain (approximate processing). 

Negotiable: Negotiable constraints are preferences 
that a local node does not want violated need- 
lessly. Inability to satisfy a negotiable constraint 
means that the constraining node must be part 
of the decision to modify the constraint. 

Soft: Soft constraints are preferences that a node 
has but do not require negotiation in order to 
violate. For example, local orderings of interme- 
diate goals in the DVMT are soft constraints. 

Temporal relations have been studied before, and 
very precise definitions have been put forward by 
James Allen [Allen, 1984]. We give the graphical 
suggestion of a definition as presented by Allen in 
lieu of the formal definitions to be found in Allen's 
papers. Remember that each relation has an inverse 
and that in the presence of limited information a set 
of these relations may hold between any two timed 
goals: 
Y\afr\T-a-   x x xx 56789 ueiure.   nUhyyyy 

temporally equal: 123zzxx89 
123yyyy89 

meets: 12xzxi7890 
1234562/ yyy 

overlaps: 123xxxxS90 
12U5yyyyO 

A-i-iw-nff'    123zzzz890 

starts: 

12347/1/7890 

123xzz789 
VZiyyyyyy 

finishes: ff— 

5.2.4   Using Goals 
The new DVMT control architecture [Decker et al., 

1990b] uses the specification of the system goal(s) to 
choose a strategy for satisfying the goal. The strategy 
posts a set of goals whose specification in turn allows 
the choice of an appropriate substrategy, etc. At some 
point a goal can trigger the creation of a focus (the 
lowest leaf in an expanded control plan) which spec- 
ifies a set of low-level control parameters and rating 
heuristics. These focus parameters and heuristics 
are associated with a channel in the low-level domain 
problem solving system, existing concurrently with 
other active foci and their associated channels. 

It is this hierarchical set of control goals, starting 
with the system goal, that are communicated in our 
approach. Goal relationships detected between local 
goals and the goals received from other agents allow 
us to coordinate scheduling. Figure 4 shows all 
four agents in the scenario, and all of their control 

goals. Note that not all of these goals are active 
simultaneously, in particular, the identify goal for 
a hypothetical vehicle always comes strictly before 
the tracking goal for the newly identified vehicle. 
The example in Section 5.4 shows how Figure 4 is 
constructed for Agents 1 and 4. 

5.3   Coordination Rules 

The last item that we need to specify in our approach 
is the PGP algorithm itself. Initially both a PGP-like 
scheduling algorithm and the organizational infor- 
mation needed to use it will be encoded as a special 
set of control knowledge sources that handle when to 
send and receive goals and hypotheses and how to 
modify the local schedule given this information. 

Some of these rules are generic (like "don't do 
redundant work") but as in the original PGP mecha- 
nism, they must be operationalized for the particular 
domain. Each rule should also be considered a "tem- 
porarily settled question," subject to being reopened 
in the domain setting [Gasser et al, 1989]. 

The PGP algorithm orders intermediate goals ac- 
cording to their cost as computed from the cross- 
product of a vector of computable factors (such as 
redundancy, reliability, etc.) and global cooperation 
parameters that give a weight to the corresponding 
term in the calculation. These factors were the fol- 
lowing: 

Redundancy: The number of nodes that can per- 
form this goal. The GPGP scheduler can use the 
equality and subgoal relationships to examine 
redundancy. 

Reliability: The number of nodes that cannot per- 
form this goal. This is the inverse of redundancy. 

Duration: The duration of the goal. This measure 
can be used by the GPGP scheduler as well. 

Predictiveness: Any goal with a duration of x can 
provide predictive information for a goal of dura- 
tion y if x < y. The predictiveness measure was 
then the minimum activity distance (minimum 
number of sensed times) between the two goals. 
GPGP considers the predictiveness relation to be 
a domain-dependent relation. 

Locally-predicted: The minimum activity distance 
between a goal and any goal to be executed be- 
fore it. The effect of this measure was to keep 
a node from jumping around between times in 
constructing a track; extending an existing par- 
tial solution was preferred. The GPGP scheduler 
can use the hierarchical construction of the goal 
hierarchy to avoid reordering the steps in con- 
structing a track. 

Independence: how many goals occur before a given 
goal in the initial local node plan. This measure 
was intended to keep the PGPlanner from stray- 
ing too far from the original local node plan 
ordering. The independence measure for each 
goal is constant, because it depends only on the 
initial local node plan, not on the position of the 
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Figure 4: Goal overlaps relationships (dotted lines) between agents in the CDPS scenario 

goal in the re-ordered plan. Goals later in the 
initial ordering have higher independence mea- 
sures. Because the PGP algorithm used a swap- 
ping procedure to create a new ordering from the 
old, the higher independence measure made later 
goals harder to swap. The GPGP scheduler re- 
ceives local ordering preferences, and so it knows 
what local orderings were necessary, which may 
be negotiated, and which are only preferences. 
Thus this relationship is not directly needed. 

Diversity: The diversity value of a goal is 0 if it 
does not derive redundant information, or if all 
goals following it derive redundant information. 
Otherwise, the diversity of a goal is measured by 
the minimum activity distance between the goal 
and the later non-redundant goals. The effect 
is to plan to do non-redundant work before re- 
dundant work, and a GPGP scheduler can detect 
redundancy through goal relationships. 

General coordination rules: 

1. Broadcast system goals (establish long term re- 
lationships among nodes). 

2. Broadcast capabilities (establish basic node ca- 
pabilities). 

3. Send any goal that overlaps another agent's goal 
to that agent (notify nodes of potential interac- 
tions based on perceived roles). 

4. Send hyps that satisfy (partially satisfy?) an- 
other agent's goals to that agent. 

PGP-like rules: 

1. Avoid useless redundancy with other nodes. 

2. Build reliable solutions. It is OK to be redundant 
in order to increase certainty in a solution. Two 
nodes with the same system goal might both 
analyze the data in an overlapping area, whereas 
agents with different system goals might let one 
or the other handle it. The PGP mechanism 
never really did this. 

3. Minimize durations. In the case where more 
than one agent has an equivalent goal, then let 
the one with the shorter predicted duration do it. 

4. Provide predictive information to other nodes. 

5. Perform regular problem solving (follow the local 
control plan). 

The following PGP relations are handled by the 
local control plan: keep local order if possible (in- 
dependence), extend tracks in time order (locally- 
predicted), avoid intra-node redundancy (diversity). 
These deal with reordering local plans — but we are 
not constructing plans, but merely exchanging goals. 

Finally, there is still the question of how to inte- 
grate the goals of other agents into an agent's local 
problem solving; when to accept goals that will cause 
work at the local node, and when to split goals to 
allow them to be shared between agents. We are 
pursuing these questions using the PGP mechanisms 
as an initial starting point. 
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5.4   Example 1 

These coordination rules will only go part way toward 
our goals, but will serve for an illustrative example. 
This brief example shows Agent 4 providing predic- 
tive information to Agent 1 (a track hypothesis for 
duck D2). 

The four agents have the same domain knowledge 
and the same meta-control knowledge. This meta- 
control knowledge consists of two basic strategies: a 
goal-directed strategy and a clustering strategy. The 
goal-directed strategy consists of substrategies to find 
new vehicles, identify vehicles, track a vehicle, and 
'ignore' a vehicle. The clustering strategy consists 
of substrategies for finding new areas, clustering 
data, tracking, and analyzing the tracks. All of the 
substrategies have one or more foci that implement 
them, and these foci may differ by the amount of time 
they take and the precision or certainty of their result. 
For example, find-new-vehicles can use a threshold 
on signal strength to ignore weakly sensed vehicles, 
identify-vehicle can do more or less work in making 
an identification, and so on. 

First all agents broadcast their system goals and 
capabilities to the other agents. Each agent will 
begin in the default (goal-directed) strategy to satisfy 
its system goal, and will post a find-new-vehicles 
goal. Since find-new-vehicles can potentially output 
any type of vehicle, this goal overlaps the system 
goals of the other agents (indicating the potential 
for coordinated scheduling) and is broadcast to them. 
The agents also recognize that the find-new-vehicles 
goals overlap in the shared sensed areas. If this goal 
were made up of smaller ones, then the smaller ones 
would be exchanged, but in this case this goal is the 
lowest level. Actually reasoning about and splitting 
goals that overlap like this is an area for future work. 

For this example we will just look at the interaction 
of Agents 1 and 4. 

Agent 1 soon detects a vehicle (F\) and starts a new 
goal to identify it. While Agent 1 has not identified 
the vehicle yet, it does have enough information to 
predict that the vehicle is not a pigeon (the fish 
signals do not overlap very much with bird sounds) 
and so it does not transmit the identification goal to 
Agent 4 (it could change its mind about this later). 
The find-new-vehicles goal is not retransmitted and 
it remains active. 

When Agent 1 identifies the fish F\, it begins track- 
ing it. The tracking goal is not transmitted. 

Later (time 4), while Agent 1 is tracking the fish, 
Agent 4 detects a new vehicle (D2). When Agent 4 
starts up a new goal to identify this vehicle, it sends 
the goal to Agent 1, for the goal is potentially a duck, 
which Agent 1 is interested in. At this point Agent 1 
can only believe that Agent 4 has detected something 
that may be a duck, and it knows where it is and how 
strongly Agent 4 believes that it is a duck. 

While Agent 4 is identifying the duck, the duck 
crosses into the shared sensor area of agents 1 and 
4. Agent 1 detects the data as a new vehicle, and 
creates a goal to identify it. This goal is transmitted 

to Agent 4, since it could be a pigeon. Agent 4 realizes 
that Agent l's identification goal overlaps its own as 
it specifies an area coincident with the identification 
track being developed at Agent 4. Thus redundant 
work is occurring. In this case having both agents 
work on the data should increase certainty in their 
conclusions, because neither agent is using a prov- 
ably dominated algorithm (in fact, the algorithms 
are the same, the data arise from independent sen- 
sor readings). Thus the identification goals become 
equivalent, and this recognition is communicated to 
Agent 1. Agent 4 will complete its identification 
before Agent 1, because it started earlier. 

When Agent 4 completes its identification, the re- 
sulting hypothesis (that there is a duck on a track 
extending from times 4 - 7) is transmitted to Agent 
1. This hypothesis satisfies Agent l's identification 
goal. 

6   Future Work 

We are currently building the initial implementation 
of the approach above, including the scenario. When 
this is complete we can provide details of our imple- 
mentation, and we will have a testbed with which 
to experiment with other coordination algorithms, 
with negotiation algorithms, and with the interac- 
tion of our coordination mechanisms and the new 
hard real-time problem solving mechanisms we are 
also building. 
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1    Introduction 

An integrated agent architecture is a theory or 
paradigm by which one may design and program in- 
telligent agents. An intelligent agent is a collection of 
sensors, computers, and effectors, structured in such 
a way that the sensors can measure conditions in the 
world, the computers can process the sensor informa- 
tion, and the effectors can take action in the world. 
Changes in the world realized by the effectors close 
the loop to the agent's sensors, necessitating further 
sensing, computation, and action by the agent. 

In recent years there has been a proliferation of pro- 
posals in the AI literature for integrated-agent archi- 
tectures. Each architecture offers an approach to the 
general problem of constructing an integrated agent. 
Unfortunately, the ways in which one architecture 
might be considered better than another are not al- 
ways clear. 

For instance, Nilsson's (1988) action nets provide 
a means for structuring actions in terms of the indi- 
vidual goals they are to achieve in the environment. 
Rosenschein and Kaelbling's (1986, 1989) situated au- 
tomata theory provides a new view on the role of logic, 
complexity, and information in situated agents, and 
has resulted in a new generation of software tools for 
building complex systems (Kaelbling, 1987a,b, 1988). 
Schoppers (1987) has suggested an approach to plan 
generation and execution based on the idea of uni- 
versal plans. Georgeff and Lansky's (1985) Procedural 
Reasoning System provides a graphical programming 
environment based on the theory of augmented tran- 
sition networks. Plan nets (Drummond, 1989; Drum- 
mond k Bresina, 1990) act as generators of possible 
behaviors and help explain the relationship between 
planned and unplanned action. Recent work on the 
SOAR architecture has studied the problems that arise 
when an integrated learning and problem-solving sys- 
tem interacts with an external environment (Laird & 
Rosenbloom, 1990). 

But so what? What can systems based on these 
architectures really do? What can one do that another 
cannot? 

'This work was supported by the Defense Advanced Re- 
search Projects Agency through NASA-Ames under con- 
tract NAS2-13229. 

There has been a growing realization that many of 
the positive and negative aspects of an architecture 
become apparent only when experimental evaluation 
is performed and that to progress as a discipline, we 
must develop rigorous experimental methods. In addi- 
tion to the intrinsic intellectual interest of experimen- 
tation, rigorous performance evaluation of systems is 
also a crucial practical concern to our research spon- 
sors. DARPA, NASA, and AFOSR (among others) are 
all actively searching for better ways of experimentally 
evaluating alternative approaches to building intelli- 
gent agents. 

One tool for experimental evaluation involves test- 
ing systems on benchmark tasks in order to assess 
their relative performance. As part of a joint DARPA- 
and NASA-funded project, NASA-Ames and Teleos 
Research are carrying out a research effort to estab- 
lish a set of benchmark tasks and evaluation metrics 
by which the performance of agent architectures may 
be determined. This paper is a short report on the 
project's general aims and proposed methods. Possible 
points of debate are addressed by looking back over the 
transcripts of the Benchmarks and Metrics Workshop, 
held at NASA-Ames in June, 1990 (referred to here- 
after as the BMW-I). This paper does not reproduce 
any statements from the BMW-I in verbatim form, 
but instead attempts to communicate the essence of 
the participants' comments. 

2    Roles of Benchmark Tasks in the 
Research Community 

Consider   the  following  representative   definition  of 
"benchmark." 

Benchmark n - surveyor's reference mark 
for determining further heights and dis- 
tances. (Garmonsway, 1965) 

A benchmark is a reference point; a tool for deter- 
mining where one stands. In this sense, a benchmark 
does not uniquely determine how data obtained from 
the study of that benchmark will be used. Data ob- 
tained from the study of benchmarks can be used in 
a variety of ways, and some of these are presented in 
this section. In summary, we feel that in order to cor- 
rectly determine 'Turther heights and distances" in the 
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integrated agent research community, we must have 
a common language for describing agent architecture 
performance. One way to do this is by establishing a 
common set of benchmark tasks and evaluation met- 
rics. 

A suite of carefully-designed benchmark tasks would 
serve two primary roles in the research community. 

From experiments to principles. The first, and 
most important, role would be to provide a common 
frame of reference for researchers. In the literature, 
a wide variety of incommensurable vocabularies are 
used to describe intelligent systems. Someone faced 
with the task of understanding the relative strengths 
and weaknesses of different architectures must, cur- 
rently, be able to grasp the relationship between "pro- 
ductions," "wires," "operator descriptions," "problem 
spaces," and many other such concepts. A set of 
benchmark tasks would allow the performance of sys- 
tems to be directly compared; in addition, it would 
allow the designers of agent architectures to relate the 
internal characteristics of their architectures to exter- 
nally observable properties of instances of those archi- 
tectures. A researcher would be able to say things like 
"System X performs as it does on benchmark A be- 
cause its representation of time is so flexible but its 
algorithm for Y is too slow." 

The understanding gained from such experiments is 
critical. Consistent success or consistent failure on a 
specific set of benchmark problems should lead one 
to consider what features the given set of benchmarks 
share. If some particular problem feature can be im- 
plicated in the necessary success or failure of a given 
architecture then this source of knowledge can be fed 
back into the architecture's design. Without this sort 
of "closed-loop" experimental evaluation, corrections 
to any given architecture can be motivated only by 
abstract mathematical and computational aesthetics. 
The space of possible architectures is huge, and most 
notions of formal aesthetics are ill-defined. It makes 
more sense to explore the space of possible architec- 
tures driven by success and failure on particular rep- 
resentative benchmark problems. 

Enabling technology transfer. The occasional 
practical application of integrated agent technology 
would not hurt the field. A wide variety of practi- 
cal industry and government problems would benefit 
from better technology transfer. Technology transfer 
would be facilitated by benchmark problems that are 
representative of the intrinsic difficulty of practical ap- 
plications. As it stands, a person with a practical ap- 
plication task in mind is given no easy access into the 
relevant set of technologies. For instance, given the 
problem of controlling a particular device in a factory, 
under particular constraints and resources, which ar- 
chitecture would be more appropriate: PRS (Georgeff 
& Lansky, 1985) or O-Plan (Currie k Täte, 1985)? 
Which system is better suited for the application at 
hand? Both PRS and O-Plan have been tested on 
representative tasks: PRS has been applied to the 
Space Shuttle reaction control system and O-Plan has 

been applied to spacecraft mission sequencing. How- 
ever, not all architectures have been applied in this 
way, and even PRS and O-Plan must be further ap- 
plied to other problems to better understand their in- 
dividual strengths and weaknesses. The existence of a 
common set of benchmark tasks will make such com- 
parisons possible across the entire integrated-agent re- 
search community. 

As well as facilitating technology transfer to prob- 
lems of practical interest, a common set of benchmarks 
can make new research ideas available to researchers 
in other fields. For instance, one might expect that re- 
search in the area of real-time operating systems would 
benefit from an understanding of the latest ideas in in- 
tegrated agent architectures. Representative tasks of 
common merit would facilitate communication among 
various fields. 

3    What Benchmarks Are Not 
There are some obvious and some non-obvious worries 
associated with the establishment of a common set of 
benchmark tasks and evaluation metrics. This section 
briefly addresses some worries that were articulated by 
participants of the BMW-I. 

Benchmarks will necessarily force us to worry 
only about numbers. A benchmark simply pro- 
vides system performance indicators, perhaps ex- 
pressed as numbers, perhaps not. These performance 
indicators can be used in a variety of ways. A partic- 
ularly pedestrian use of performance indicators would 
be simple comparison; for instance, a question such as 
"which system got the highest score on task A?" with 
no further scrutiny as to why is deeply uninteresting. 
As mentioned above, the availability of performance 
indicators derived from the application of a particular 
architecture to a particular benchmark is a starting 
point for understanding the principles underlying the 
architecture's performance. 

The benchmarks will not include all theoret- 
ically interesting problems and will also not 
be representative of practical, real-world prob- 
lems. What if the benchmarks are so badly chosen 
that the performance data they engender is totally 
meaningless, both theoretically and practically? This 
is a legitimate worry, and due care must be taken when 
selecting benchmark tasks. Of course, it is inevitable 
that tasks judged inappropriate by some will be in- 
cluded in the common set, but each research group is 
free to choose those benchmark tasks that address is- 
sues of concern to them. If the set of common bench- 
mark tasks does not provide a task of interest, then 
an appropriate task may be added. Community ac- 
ceptance of a proposed task will come in the form of 
other research groups publishing performance results 
on that task. 

An architecture can't be evaluated by a single 
benchmark. We do not propose to directly evaluate 
architectures through performance on an individual 
benchmark problem, but instead propose to evaluate 
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the performance of a specific system that is an instance 
of an architecture. Formal evaluation of the process by 
which an architecture is used to produce a solution to 
a specific benchmark problem is beyond the scope of 
this first effort. An architecture might include, but 
would not be limited to: design principles, program- 
ming languages, programming lore, user's manuals, ex- 
isting code, etc. We cannot directly control for these 
architecture-related features, so the true worth of any 
given architecture cannot be directly evaluated by the 
method of benchmarks and metrics. Instead, an ar- 
chitecture will be evaluated in a "second-order" way: 
consistent success by the users of an architecture in 
applying that architecture to a widely-ranging set of 
benchmark problems will indicate the architecture's 
general utility. 

4    Benchmark Tasks and Evaluation 
Metrics 

4.1     Possible Task Attributes 

Benchmark tasks can seen as varying across a num- 
ber of dimensions. Placement in the space of possible 
task attributes will, in some sense, determine "task 
difficulty". As tasks are added to the evolving set 
of benchmarks, the importance of particular task at- 
tributes will become apparent. 

It would be practically useful to have some fami- 
lies of tasks in which stress on selected task attributes 
could be systematically varied. This would allow re- 
searchers to experiment with a set of problems of 
graded difficulty and perhaps allow insight into how 
agent performance scales with task difficulty. 

The following is an initial subset of possible task 
attributes. 

Resource Management. Does the task have prop- 
erties pertaining to metric time and continuous 
quantities? If so, the problem may take on the 
character of a classical optimization problem. 

Geometric and Temporal Reasoning. Does the 
task involve extensive geometry or reasoning 
about activities over time? These kinds of rea- 
soning may require specialized representations. 

Deadlines. Does the task impose absolute deadlines 
for goal satisfaction, or does the utility of goal 
satisfaction vary continuously with time? 

Opportunity for Learning. Is the task specifica- 
tion complete at the beginning of the agent's exe- 
cution? If not, the agent must be able to acquire 
knowledge about its environment. 

Multiple Agency. Does the task require the defini- 
tion of a community of interacting agents? Such 
tasks might require complex communication pro- 
tocols or reasoning about the internal states of 
other agents. 

Informability. Can the agent be presented with ex- 
plicit goals and facts about the world during the 
course of its execution? 

Dynamic Environment. Does the agent's world 
change over time independent of the actions the 
agent takes? How predictable are the dynamics 
of the world? 

Amount of Knowledge. How much a priori knowl- 
edge is available to be used by the agent? Some 
domains, such as medical diagnosis, require the 
assimilation of a large amount of domain knowl- 
edge. 

Reliability of Sensors and Effectors. 
In some task domains, sensors and effectors are 
completely reliable; in others, the main difficulty 
lies in accurately integrating data from a number 
of highly unreliable sensors and achieving robust 
overall behavior through the use of unreliable ef- 
fectors. 

4.2     Task Specifications 

There are a broad range of possible methods for spec- 
ifying tasks, ranging from informal to physical. Each 
of these methods has associated pros and cons; for 
instance, natural language task descriptions, simula- 
tors, and formal specifications are all easily transmit- 
ted electronically, but physical environments are less 
easily duplicated. 

Natural Language Task Descriptions. 
Natural language descriptions can be too vague 
for use in focused, comparative studies, but they 
are easy to generate, which makes them useful in 
certain situations. An example might be "Pick up 
cups using a simple mobile robot with a manipu- 
lator and an overhead vision system." 

Simulators. Simulators provide a precise computa- 
tional task description, which facilitates direct 
comparison between solutions. In addition, it is 
often possible to instrument a simulation to sim- 
plify debugging and evaluation. 

Formal Specifications. Tasks may specified using a 
logical or mathematical description of the environ- 
ment, its sensor and effector interfaces with the 
agent, and the goals of the agent. Formal speci- 
fications may allow prior analysis and provide in- 
sight into the underlying problem complexity. It 
is very difficult, however, to specify formally the 
majority of complex tasks. 

Physical Environments. Some tasks are most eas- 
ily specified by providing a physically embodied 
environment. Such specifications have the disad- 
vantage of being difficult to replicate, because it 
is hard to control all aspects of the environment, 
such as lighting and RF interference. 

A useful suite of benchmarks might include a variety 
of specification types for a particular general task; the 
resulting specifications would describe slightly differ- 
ent but closely related tasks. A useful example would 
be to have both simulation and physical specifications 
of a robotic control task. This would allow researchers 
to debug their ideas in simulation before trying them 
out in the real world. Although success in a simulation 
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is no guarantee of success in the real world, failure on 
a simulation will often entail real-world failure as well. 

4.3     Modes of Evaluation 

Part of the specification of benchmark tasks is the se- 
lection of particular evaluation metrics. Suitable met- 
rics will become more obvious as the work progresses— 
some metrics will be applicable to all benchmark tasks 
and others will be task-specific. At this early stage 
however, two classes of metrics are of clear importance. 

Agent Performance. How well does the agent per- 
form? Performance will be measured using 
domain-specific performance metrics that are sup- 
plied in conjunction with each benchmark task. 

Agent Construction. An important aspect of an in- 
tegrated agent architecture is the ease with which 
it can be applied to a range of tasks. While it is 
difficult to formally measure the time to build a 
system, it can be informally reported in conjunc- 
tion with agent performance results. 

5     Conclusions 
The development of a set of benchmark tasks and 
performance metrics for integrated agent architec- 
tures will foster both scientific progress and technology 
transfer. Broad coverage of the space of task attributes 
by the benchmark tasks will be required in order to 
ensure scientific and practical relevance of the bench- 
marks. 

It is important to understand that no single research 
group will be able to determine a community-wide set 
of benchmarks by fiat. For a set of benchmarks to be 
accepted by a community, they must be designed by 
that community. The process presented in this paper, 
namely, that of a developing set of benchmarks that 
can be augmented by anyone willing to define a bench- 
mark task, is one way to achieve such acceptance. The 
resulting set of benchmark tasks should be viewed as 
a resource that will foster progress, not as an exam for 
members of the community to pass or fail. 
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Abstract 

We present an overview of CORTES, an integrated 
framework for production planning, scheduling and control 
(PSC). CORTES's approach to PSC problems departs 
from others in the hypotheses it explores: Generality 
Hypothesis: There exists a single approach that can 
optimize decision making across a wide variety of PSC 
problems. Flexibility Hypothesis: The same approach can 
be used for both planning, predictive scheduling and 
reactive control. Uncertainty Hypothesis: In order to 
provide the appropriate level of precision in PSC, reasoning 
about uncertainty must be an integral part of the PSC 
approach. Scale Hypothesis: Large PSC problems, that 
contain thousands of activities, resources and constraints, 
must be solved in a qualitatively different manner than 
small PSC problems. CORTES uses Constrained Heuristic 
Search to make PSC decisions. In this paper, we describe 
CORTES, its architecture, problem solving method, and 
functions including modeling, planning, scheduling, 
distributed scheduling, dispatching, and uncertainty 
management. 

1. Introduction 
Our research explores the role of constraints in solving 

planning, scheduling and control (PSC) problems. It is 
generally believed that to efficiently construct optimizing 
solutions to large PSC problems, a fundamental 
understanding of problem structure and properties is 
required. It is our conjecture that knowledge of domain 
constraints will lead to this understanding. The goal of the 
CORTES project is to operationalize this conjecture. 

CORTES is a distributed system for production 
planning, scheduling and control. CORTES is designed to 
be composed of an integrated set of modules distributed 
across many workstations and connected by a 
communication network. The overall architecture is shown 
in Figure 1-1. 

CORTES    represents    a    departure    from    previous 

Figure 1-1: The CORTES Architecture 

approaches to solving PSC problems in the hypotheses it 
explores: 

1. Generality Hypothesis: There exists a single 
approach that can optimize decision making 
across a wide variety of PSC problems. 
Previously, PSC approaches were tailored to 
the particular production environment, with 
the "common wisdom" being that there does 
not exist a single approach, short of 
enumeration, that applies to all PSC 
problems. We believe that there does exist a 
single approach that may be generally applied 
to PSC problems, that also provides very 
good results and is computationally efficient. 

2. Flexibility Hypothesis: The same approach 
can be used for both planning, predictive 
scheduling and reactive control. 
Traditionally, planning, scheduling and 
control approaches have tended to be separate 
and unrelated in approach. For example, in 
actual production 
environments,Manufacturing Resource 
Planning   (MRP)   tends   to   be   used   for 
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planning, scheduling approaches can range 
from dispatch approaches to knowledge based 
scheduling, and control tends to be ignored. 
In AI, planning algorithms tend to be 
generative, scheduling is constraint directed, 
and control is reactive. 

3. Uncertainty Hypothesis: In order to provide 
the appropriate level of precision in PSC, 
reasoning about uncertainty must be an 
integral part of the PSC approach. 
Production environments contain a plethora 
of stochastic events that increase the 
uncertainty with which a schedule may be 
executed. For example, unexpected events 
such as personnel not showing up for work, 
machine failures, failure of resources, etc, 
may quickly invalidate a schedule. 
Consequently, PSC approachs must take a 
pro-active approach in mitigating the effects 
of uncertainty. 

4. Scale Hypothesis: Large PSC problems, that 
contain thousands of activities, resources and 
constraints, must be solved in a qualitatively 
different manner than small PSC problems. 
The point is that in large PSCs, the aggregate 
behavior of the system be optimized, as 
opposed to any individual entity or job. 
Optimizing each decision is computationally 
expensive. Instead, many decisions must be 
made at the aggregate level using statistical 
summaries of underlying requirements. 

CORTES is evolutionary in its approach in that it can be 
viewed as a continuation of the line of constraint directed 
scheduling systems developed at Carnegie Mellon 
University [Fox & Smith 84, Smith et al. 86, Fox 90]. It 
departs from the approach of these previous systems in its 
use of Constrained Heuristic Search (CHS) as its 
underlying problem solving paradigm [Fox 89]. 

In the reminder of the paper, we first review the 
Constrained Heuristic Search (CHS) problem solving 
paradigm. We then describe the functionality of each of 
the modules in figure 1-1 and how this is provided using 
CHS. 

2. Constrained Heuristic Search 
Our approach to both planning and scheduling is based 

upon a problem solving paradigm we call Constrained 
Heuristic Search (CHS)1 CHS views problem solving as a 
constraint  optimization   activity.     CHS   combines  the 

'This section is a composed of excerpts from [Fox 89]. 

process of constraint satisfaction (CSP) [Mackworth 
87] with heuristic search (HS). CHS retains heuristic 
search's synthetic capabilities and extends it by adding the 
structural characteristics of constraint satisfaction 
techniques. In particular, our model adds to the definition 
of a problem space [Newell & Simon 76], composed of 
states, operators and an evaluation function, by refining a 
state to include: 

1. Problem Topology: Provides a structural 
characterization of a problem. 

2. Problem Textures: Provide measures of a 
problem topology that allows search to be 
focused in a way that reduces backtracking. 

3. Problem Objective: Defines an objective 
function for rating alternative solutions that 
satisfy a goal description. 

This model allows us to (1) view problem solving as 
constraint optimization, thus taking advantage of these 
techniques, (2), incorporate the synthetic capabilities of 
heuristic search, thus allowing the dynamic modification of 
the constraint model, and (3) extend constraint satisfaction 
to the larger class of optimization problems. In the 
following, problem topology and textures are defined. 

2.1. Problem Topology 
We define problem topology as a constraint graph G, 

composed of variables V and constraints C: 

V is a set of variables {vj, v2,..., vm} 
C is a set of constraints {Cj, c2,..., cn} 

Each variable in N may be a vector of variables whose 
domains may be finite/infinite and continuous/discrete. 
Constraints are n-ary predicates over variables vertices. 

We extend the topology to allow constraints to be 
grouped into a modified conjunctive normal form: 

[st AND S2 AND ... AND sj 

where each Sj denotes a set of constraints where either only 
one or at least one constraint must be satisfied. 

We   distinguish   between   two   types   of   problem 
topologies: 

Definition 1: A completely structured problem 
is one in which all non-redundant vertices and 
edges are known a priori. 

This is true of all CSP formulations and in this case CHS 
reduces to either a CSP or a COP (i.e., optimization 
problem). 

Definition 2: A partially structured problem is 
one in which not all non-redundant vertices and 
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edges are known prior to problem solving. 

This definition tends to be true of problems in which 
synthesis is performed resulting in new variables and 
constraints (e.g. the generation of new subgoals during the 
planning process). 

Operators in CHS have many roles: refining the problem 
by adding new variable and constraint vertices, reducing 
the number of solutions by reducing the domains of 
variables (e.g., assigning a value to a variable vertex), or 
reformulating the problem by relaxing constraints or 
omitting constraints and/or variables. 

Our intent is to distinguish topologies that lead to 
significant changes in problem solving quality and 
efficiency. Examples include: 

• The decomposability of constraint graphs into 
unconnected or lossely connected subgraphs, 
allowing the problem solver to focus on one 
set of variables and constraints before 
attending to another. 

• Graph width which combined with arc- 
consistency will guarantee backtrack free 
search [Freuder 82]. 

• Contention graphs which identify the degree of 
contention that exists among variables for the 
same values. 

2.2. Problem Textures 
Focus of attention in search is concerned with the ability 

of the search algorithm to opportunistically decide where 
the next decision is to be made [Erman et al. 80]. In CHS, 
for search to be well focused, that is to decide where in the 
problem topology an operator is to be applied, there must 
be features of the topology that differentiate one subgraph 
from another, and these features must be related to the 
goals of the problem. We have identified and are 
experimenting with seven such features that we call 
problem textures [Sadeh & Fox 88]. Below we define these 
textures for CHSs where all solutions are equally preferred, 
i.e., the Problem Objective rates all solutions to the 
constraints equally acceptable. 

(Variable) Value Goodness: the probability that the 
assignment of that value to the variable 
leads to an overall solution to the CHS 
(i.e. to a fully consistent set of 
assignments). This texture is related to 
the value ordering heuristics [Haralick 
& Elliott 80] which look for the least 
constraining values. Value ordering 
heuristics are meant to reduce the 
chance of backtracking. In the case of 
discrete variables, the goodness of a 

value is the ratio of complete 
assignments that are solutions to the 
CHS and have that value for the 
variable over the total number of 
possible assignments. 

Constraint Tightness: Constraint tightness refers to the 
contention between one constraint or a 
subset of constraints with all the other 
problem constraints. Consider a CHS A 
and a subset C of constraints in A. Let 
B be the CHS obtained by omitting C's 
constraints in A. The constraint 
tightness induced by C on A is defined 
as the probability that a solution to B is 
not a solution to A. In the case of 
discrete variables, this is the ratio of 
solutions to B that are not solutions to 
A over the total number of solutions to 
B. 

Variable Tightness with respect to a set of constraints: 
Again consider a CHS A, a subset C of 
constraints, and the CHS B obtained by 
omitting C in A. A variable V's 
tightness with respect to the set of 
constraints C is defined as the 
probability that the value of V in a 
solution to B does not violate C\ In the 
case of discrete variables, this is simply 
the ratio of solutions to B in which V's 
value violates C (i.e. at least one of the 
constraints in C) over the total number 
of solutions to B. 

Constraint Reliance: This measures the the importance of 
satisfying a particular constraint. 
Consider a constraint Cj. We defined 
CHS B as being CHS A - {Cj}. Given 
that constraints can be disjunctively 
defined, the reliance of CHS A on a 
constraint q is the probability that a 
solution to CHS B is not a solution to 
A. In the case of discrete variables, 
constraint reliance is defined as the 
ratio of the number of solutions to CHS 
B that are not a solution to CHS A to 
the number of solutions to CHS B. The 
larger the value, the greater the reliance 
the problem has on satisfying the 
particular constraint. 

Variable Tightness: Consider a variable v in a CHS A. Let 
C be the set of constraints involving v 
and B be the CHS obtained by omitting 
C* in A. v's tightness with respect to C 
is simply called v's tightness. Hence 
the tightness of a variable is the 
probability that an assignment 
consistent with all the problem 
constraints that do not involve that 
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variable does not result in a solution. 
Alternatively one can define variable 
looseness as the probability that an 
assignment that has been checked for 
consistency   with   all   the   problem 
constraints, except those involving that 
variable, results in a fully consistent 
assignment.  Notice that if one uses a 
variable instantiation order where v is 
the last variable, v's tightness is the 
backtracking  probability.      Variable 
looseness/tightness  can be identified 
with    variable    ordering    heuristics 
[Haralick     &     Elliott     80,Freuder 

82] which instantiate variables in order 
of decreasing tightness. 

These  textures  generalize  the  notion  of constraint 
satisfiability or looseness defined by [Nadel 86] and apply 
to both CHSs (and CSPs) with discrete and continuous 
variables.   Notice that, unless one knows all the CHS's 
solutions, the textures that we have just defined have to be 
approximated.   Textures   may   sometime   be   evaluated 
analytically [Sadeh & Fox 88].   A brute force method to 
evaluate any texture measure consists in the use of Monte 
Carlo techniques. Such techniques may however be very 
costly. In general, for a given CHS, some textures are 
easier to approximate than others, and some are also more 
useful than others.    Usually the texture measures that 
contain the most information are also the ones that are the 
most difficult to evaluate. Hence there is a tradeoff. Each 
domain may have its own approximation for a texture 
measure. 

2.3. Problem Objectives 
Many problems, for example scheduling, are 

optimization problems and not simply satisfaction 
problems. The notion of what is best becomes important. 
Rather then defining what is best in an evaluation function 
or an objective function, our goal is to embed objectives 
directly in the constraint graph so that it can be both 
propagated and used to make local decisions. For example, 

• Disjunctive constraint sets may have 
preferences associated with each disjunct, 

• Start times, commonly found as a variable in 
scheduling constraint graphs, can have 
preferences associated with each alternative 
time. 

In our work we have extended the textures to take into 
account the Problem Objectives, using Bayesian 
probabilities to approximate the likelihood that a variable 
results in an optimal value [Sadeh & Fox 88]. 

2.4. CHS Problem Solver 
The CHS model of problem solving is a combination of 

constraint satisfaction and heuristic search. Search is 
performed in the problem space where each state contains a 
problem topology. The problem solving model we propose 
contains the following elements: 

• An initial state is defined composed of a 
problem topology, i.e., the PSC activity, time 
and capacity constraint graph, 

• Constraint propagation is performed within the 
state, 

• Texture measures and the problem objective 
are evaluated for the state's topology, 

• Operators are matched against the state's 
topology, and 

• A variable node/operator pair is selected and 
the operator is applied, i.e., a resource or start 
time is assigned to an activity. 

The application of an operator results in either adding 
structure to the topology, further restricting the domain of a 
variable, or reformulating the problem (e.g., relaxation). 

It is our belief, which is supported by experimentation, 
that this approach is powerful enough to solve a variety of 
PSC problems. Domains in which it has been applied 
include, job shop scheduling [Sadeh 90], cell scheduling 
and transportation planning [Sathi et al. 90]. Secondly, the 
opportunism inherent in the approach, allows the approach 
to be applied to both predictive planning and scheduling, 
and reactive control. 

2.5. Representation 
The main conceptual primitives in the CORTES 

representation are activities, resources, production units, 
states, and constraints [Sathi et al. 85, Fox 88]. These 
primitives provide an extensible framework that can be 
used to represent the relevant aspects of manufacturing 
environments. In addition, these primitives are represented 
at various levels of conceptual abstraction depending on the 
granularity of knowledge. For example, an operation is a 
specialization of an activity. An important component of 
the representational framework is the relations that connect 
the primitives and their instantiations. The main types of 
relations are temporal and causal. 

In general, there are five types of constraints that a 
scheduler should take into consideration. These five types 
are domain-independent and help structure constraints in 
many kinds of scheduling domains (e.g., factory 
scheduling, transportation scheduling). 

• Physical constraints. Physical constraints 
include, number of machines, fixtures, setup 
and run times for each operation. 
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• Organizational constraints. Examples of 
organizational constraints include meeting due 
dates, reducing Work in Process, increase 
machine utilization, and enhance throughput. 

• Preferential constraints. Examples of 
preferential constraints include preference for 
using a particular machine for an operation 
(perhaps because of its speed or accuracy), or 
using a particular human operator (perhaps 
because of his skill). 

• Enablement constraints. These refer to 
constraints, the fulfillment of which creates a 
state that enables the execution of an activity. 
For example, a process plan embodies 
enablement constraints. 

• Availability constraints. These constraints refer 
to the availability of particular resources at 
scheduling time. For example, a machine may 
become unavailable because of breakdown, the 
assignment of a third shift makes extra 
resources available for scheduling. 

In the model, we treat explicitly two types of constraints, 
required constraints and preferential constraints [Fox 83]. 
The degree of satisfaction of a preferential constraint is 
expressed by a utility function ranging between 0 and 1. A 
value of 0 utility is non-admissible; a value of 1 is optimal. 
Variables can be constrained by more than one constraint. 
The utility value associated with a variable is calculated by 
taking the weighted sum (with constraint importance as the 
weight) of the utilities of all the constraints that affect the 
variable. 

Constraints differ in importance. A particular constraint 
could have different importance depending on the context 
in which it is applied. The importance of a constraint is 
specified by a value between 0 and 1. An importance of 0 
implies that the constraint should not be considered, and 1 
signifies maximum importance. The actual level of 
importance is relative to the importance of the other 
constraints under consideration. The measure of 
importance of a constraint may be viewed as a weight that 
can be combined with a constraint's utility value to form a 
weighted combination of utilities. Constraints also differ in 
relevance. Depending on the context, a constraint may be 
more relevant than others. 

3. Scheduler 
The detailed scheduler is an activity-based scheduler 

[Sadeh 90], where the activities are the operations that 
must be  scheduled  according  to  a process plan  that 
specifies a partial ordering among these operations.  Each 
operation requires one or several resources for each of 

which there may be one or several alternatives. Scheduling 
is viewed as a constrained heuristic search problem whose 
solution is a schedule that satisfies the many technological, 
temporal, organizational, and preference constraints that 
are imposed both by the characteristics of the job shop 
itself and the environment 

The scheduler models a problem as a constraint graph, 
where there are two types of nodes: activities and 
resources. An activity is an 4-tuple defining its start time, 
duration, and resources it is to use. With each activity, we 
associate utility functions that map each possible start time 
and each possible resource alternatives onto a utility value 
(i.e. preference). These utilities [Fox 83, Sadeh & Fox 
88] arise from global organizational goals such as reducing 
order tardiness (i.e. meeting due dates), reducing order 
earliness (i.e. finished good inventory), reducing order 
flowtime (i.e. in-process inventory), using accurate 
machines, performing some activities during some shifts 
rather than others, etc. A resource is a 3-tuple defining its 
total capacity, available capacity over time, and the 
activities that are scheduled to use it. 

We distinguish between two types of constraints: 
activity temporal constraints and capacity constraints. The 
activity temporal constraints together with the order release 
dates and latest acceptable completion dates restrict the set 
of acceptable start times of each activity. The capacity 
constraints restrict the number of activities that a resource 
can be allocated to at any moment in time to the capacity of 
that resource. For the sake of simplicity, we only consider 
resources with unary capacity in this paper. Typically the 
limited capacity of the resources induces interactions 
between orders competing for the possession of the same 
resource at the same time. 

The schedule is built incrementally by iteratively 
selecting an activity and assigning a start time and 
resource(s) to it, propagating temporal and capacity 
constraints and checking for constraint violations. If 
constraint violations are detected the system backtracks. 
Search is focused via a set of variable and value ordering 
heuristics so as to minimize backtracking and optimize 
schedule quality. 

The variable ordering heuristic assigns a criticality 
measure to each unscheduled activity; the activity with the 
highest criticality is scheduled first. The value ordering 
heuristic attempts to leave enough options open to the 
activities that have not yet been scheduled in order to 
reduce the chances of backtracking. This is done by 
assigning a goodness measure to each possible reservation 
of the activity to be scheduled. Both activity criticality and 
value goodness are composed of texture measures.   The 
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next   two  paragraphs  briefly   describe  both   of these 
measures2. 

A critical activity is one whose resource requirements 
are likely to conflict with the resource requirements of 
other activities. [Sadeh & Fox 88, Sadeh 90] describes a 
technique to identify such activities. The technique starts 
by building for each unscheduled activity and for each 
appropriate time interval a probabilistic activity demand 
that denotes the probability that the activity will require a 
resource at that time interval. Clearly activities with many 
possible start times and resource reservations tend to have 
smaller demands at any moment in time, while activities 
with fewer possible reservations tend to have higher ones. 
In a second step, the activity demands for each resource are 
aggregated over time to form a demand profile for a 
resource. The demand profile expresses likely contention 
for the resource over time. The percentage contribution of 
an activity's demand to the aggregate demand for a 
resource over a highly contended-for time interval is the 
activity reliance. 

To choose the next activity to schedule, the scheduler 
focuses on the resource/time interval with the highest 
aggregate demand. The activity with the the highest 
reliance on the resource is picked to be scheduled next, 
since it is the activity that is most likely to be involved in 
contention for the resource. 

The particular start time assigned to the chosen activity 
is picked using either of two strategies: 

LA Least Constraining Value Ordering 
Strategy (LCV): This heuristic attempts to 
select the reservation that is the least likely to 
prevent other activities to be scheduled. 

2. A "Greedy" Value Ordering Strategy 
(GV): At the other extreme, a reservation can 
be chosen that maximizes the preference of 
the activity for the resource/time interval. 

Experimental results have demonstrated the effectiveness 
of this approach for problems where resource contention is 
an issue [Sadeh 90]. 

4. Distributed Scheduling 
As part of the CORTES project, we are investigating 

how to manage scheduling when distributed across multiple 
schedulers [Sycara 90]. In particular, we are investigating 
how   schedulers,   which  possess   their  own   resources, 

coordinate their decisions when they require resources 
possessed by others. Due to the size of the scheduling 
problem, we distinguish between coordination at the 
strategic level versus the tactical level. Our approach 
assumes that each scheduler develops schedules using 
Constrained Heuristic Search. At the strategic level, the 
coordination of large numbers of activities requiring 
resources outside of a particular scheduler is performed by 
communicating statistical summaries of aggregate demand 
textures. These demands are used to bias a scheduler's 
reservations so that it does not require another's 
scheduler's resources during a period of high demand. At 
the strategic level, we expect that coordination problems 
will be reduced but not removed. It is the role of the 
tactical level to negotiate resource allocations that could 
not be handled strategically. 

The textures play four important roles in distributed 
search: (1) they focus the attention of an agent to globally 
critical decision points in its local search space, (2) they 
provide guidance in making a particular decision at a 
decision point, (3) they are good predictive measures of the 
impact of local decisions on system goals, and (4) they are 
used to model beliefs and intentions of other agents. The 
development of the presented texture measures is the result 
of extensive experimentation in the single agent setting. We 
have completed the implementation of a distributed testbed 
and are currently performing experiments involving 
multiple agents. Experimental results from the distributed 
scheduling testbed are presented in [Sycara 90]. 

5. Planning 
We are currently investigating the integration of 

planning with scheduling3. In previous planners, planning 
has been an end unto itself. Any feasible plan is considered 
a success, with only very inflexible criteria for plan quality, 
such as minimizing the total number of actions. In the 
context of the CORTES project, the planner will be 
producing process plans to be used by the scheduler. The 
quality of these plans is defined by the quality of the 
schedules that the scheduler can produce using them. Thus, 
there is a strong need for a constraint language to use in 
communicating with the scheduler to determine what sorts 
of plans would be good. 

Current state-of-the-art planners are constraint-directed, 
domain-independent, hierarchical, nonlinear, and support 
replanning [Wilkins 88]. We intend to include these 
capabilities, and extend them where appropriate. 

2For a more complete description of these measures, the reader is 
referred to [Sadeh & Fox 88, Sadeh 90]. 

3See [Frederking & Chase 90] for more details. 
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Planners already exist that use constraints on planning 
variables to increase the power of their representation and 
to reduce arbitrary decisions that can lead to unnecessary 
backtracking. In addition to making wider use of 
constraints, we will make this planner be truly 
constraint-directed by developing measures of criticality 
for goal ordering and operator selection. This will provide 
a domain-independent representation for the domain- 
dependent heuristics that focus attention in the search for a 
plan. 

The planner will always support planning at different 
levels of abstraction, and the re-use of plans in support of 
reactive planning. 

6. Uncertainty Analyzer 
Uncertainty is a fact of life in most job shop scheduling 

environments. Sources of uncertainty include: Demand 
change (seasonal, forecast error, cancel orders, expedition), 
Inventory Policy (raw material arrival pattern, safety stock 
policy) Machine failure, Change of time duration (transit, 
set-up, processing), Yield, and Quality (Tool wear, 
precision). Uncertainty increases as the planning horizon is 
extended, and its the amount and sources of uncertainty 
change over time. 

The presence of uncertainty means that it is very unlikely 
that a detailed predictive schedule that assigns precise start 
and finishing times on resources for activities is going to be 
adhered to. This characteristic imposes two requirements 
on schedulers: (a) A scheduler should be able to represent 
and reason about degrees of uncertainty, and (b) a 
scheduler should be able to react to unexpected events on 
the factory floor. The inability of a scheduler to reason 
about uncertainty almost always results in a schedule being 
invalid at the time it is released to the production floor. 

CORTES manages uncertainty in three stages. In the 
first stage, the Uncertainty Analysis module monitors and 
records the stochastic events. It develops over time a 
model of the sources and characteristics of uncertainty. 
Once a valid model is constructed, the Uncertainty 
Analysis module passes the information to the Scheduler. 
In the second stage, the scheduler uses the uncertainty 
models to reduce the precision of its schedules. Precision 
can be reduced by increasing the durations of activities, 
overlapping activity temporal intervals, or assigning 
activities to resource aggregates rather than to specific 
resources. In the third stage, the Dispatcher control 
module, is able to react more flexibly to stochastic events 
by taking advantage of the imprecision inserted in the 
schedule by the scheduler; it can start an activity earlier or 
later or assign  an activity to another resource in an 

aggregate (i.e., work center). The Dispatcher's task is to 
dispatch jobs to machines and monitor machine and job 
execution status. The Dispatcher notes deviations from the 
schedule and resource unavailability and communicates 
this information to the Scheduler, Uncertainty Analyzer 
and factory floor. 

Two approaches have typically been utilized to address 
the problem of temporal uncertainty. One approach is based 
on the idea of dividing the time horizon into time zones 
using progressively coarser time units to describe events in 
the future. For example, a time unit of one hour may be 
used to project a schedule over a one week horizon; a time 
unit of a day mey be used to project a schedule from a 
one-week to a one-month horizon and so on. Although this 
approach recognizes the fact that events that are further int 
the future are less accurately predictable, it has been 
criticized [Kerr 89] as suffering from the presence of 
discontinuous boundaries between time zones and the 
difficulty of handling orders whose processing crosses a 
zone boundary. A second approach to handling uncertainty 
is the use of probability distributions to describe schedule 
parameters. This approach has the disadvantage [Kerr 
89] that probability is concerned with the combination and 
manipulation of independent random variables whereas 
many of the probabilistically described scheduling 
parameters are not independent (e.g., processing times of 
different jobs on a particular machine could depend on 
some characteristic of the machine)4. 

The CORTES uncertainty analyzer represents 
uncertainty in terms of fuzzy logic [Zadeh 85, Kaufmann 
85, Prade 79]. The present version [Chiang & Fox 
90] focuses on uncertainty concerning machine failures. 
The mean time between failure and mean duration of the 
failure are assumed known. It is also assumed that once a 
machine is fixed after a failure, processing resumes at the 
point of interruption with no rework necessary. In other 
words, machine failure causes a variation in processing 
time only and not in scheduling order. The time between 
machine failures and the failure duration are used to 
express uncertainty in processing time. Instead of being 
random variables of known distribution, the duration of 
failure and time between failures may be only 
approximately known. This approximate information on the 
procesing time bounds is expressed in terms of fuzzy 
numbers of Type-1, where a real number that is 
approximately known is expressed as a confidence interval 
of upper and lower bounds. Fuzzy bound values may be 
ther result of subjectively known processing characteristics 

Handling variable dependence through the use of conditional or joint 
probability distributions poses severe estimation problems. 
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described by a shop operator, or of known distributions 
described by shop statistics. An extension of type-1 fuzzy 
representation of uncertainty in operation duration is 
Type-2 representation where the lower and upper bounds of 
a confidence interval, instead of being ordinary numbers 
are fuzzy numbers that themselves have intervals of 
confidence. 

Uncertainty bounds work in a similar manner as earliest 
start time/latest start time and earliest finish/latest finish 
time. The bounds can be viewed as slack to protect against 
uncertainty. The mean processing time is reserved for the 
operation and the slack time is reserved for protection 
against uncertainty. Once an operation is ready for 
processing, a dispatcher should follow the schedule within 
the prescribed bounds. We ran experiments [Chiang & Fox 
90] to compare various cost measures, such as tardiness, 
work-in-process, and delayed orders, under various 
processing duration representation schemes (type-2 fuzzy 
representation, fixed processing time given in the process 
plan, mean processing time considering machine failure 
duration and time between failures) and under different 
cost structures and shop loads. The general result is that 
type-2 bounds give sufficient protection against uncertainty 
in processing time with less investment in the planned cost 
(planned cost= planned tardiness+planned work-in- 
process+ planned lateness)5. For a more detailed 
description of the experiments, see [Chiang & Fox 90]. 

7. Conclusion 
In this paper, we have given an overview of the 

CORTES integrated framework for production planning, 
scheduling and control (PSC) system. CORTES's approach 
to PSC problems departs from others in the hypotheses it 
explores: 

1. Generality Hypothesis: There exists a single 
approach that can optimize decision making 
across a wide variety of PSC problems. 

2. Flexibility Hypothesis: The same approach 
can be used for both planning, predictive 
scheduling and reactive control. 

3. Uncertainty Hypothesis: In order to provide 
the appropriate level of precision in PSC, 
reasoning   about  uncertainty   must  be 
integral part of the PSC approach. 

an 

4. Scale Hypothesis: Large PSC problems, that 
contain thousands of activities, resources and 

5To protect against uncertainty the planned operation duration is longer, 
more planned work-in-process exists and orders are planned to arrive late. 
Hence, the more protection we design into the bounds, the higher the 
planned cost. 

constraints, must be solved in a qualitatively 
different manner than small PSC problems. 

The CORTES project is investigating all four 
assumptions in parallel. We have experimental data across 
a variety of PSC problems that support the generality 
assumption. The flexibility assumption is currently being 
tested by our integration of PSC functions. The uncertainty 
assumption is supported by the ease with which we have 
adapted CHS to account for uncertainty. The Scale 
assumption remains to be tested. 
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A bs t r a ct 

Adaptive intelligent systems perform 
multiple concurrent tasks requiring knowledge- 
based reasoning and interaction with dynamic 
entities in real time. Because opportunities to 
perceive, reason, and act typically exceed its 
computational resources, an agent must 
determine which operations to perform and when 
to perform them so as to achieve its most 
important objectives in a timely manner. 
Therefore, we view real-time performance as a 
problem in intelligent control. We propose 
control requirements and present an architecture 
to address them. We are evaluating the 
architecture in several experimental 
applications, one of which-the Guardian system 
for intensive care monitoring~we describe here. 

1. Adaptive Intelligent Systems 

Adaptive intelligent systems ("agents") 
perform multiple concurrent tasks requiring 
both knowledge-based reasoning and interaction 
with dynamic entities in real time. Tasks 
requiring such agents occur in diverse domains, 
such as: power plant monitoring [Touchton, 
1988], process control [d'Ambrosio, et al., 
1987,    Pardee,   et   al.,    1990],   experiment 
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for Sponsoring the work at the Knowledge Systems 
Laboratory.    This paper incorporates information 
from earlier papers [Collinot and Hayes-Roth, 1990, 
Hayes-Roth,  1990, Hayes-Roth, et al.,  1989a]. 

monitoring [O'Neill and Mullarkey, 1989], 
student tutoring [Murray, 1989], aircraft pilot 
advising [Washington and Hayes-Roth, 1989], 
and medical monitoring [Fagan, 1980, Hayes- 
Roth, et al., 1989a]. To perform such tasks, an 
agent must possess capabilities for: perception- 
acquiring and interpreting sensed data to obtain 
knowledge of external entities; cognition-- 
knowledge-based reasoning to assess situations, 
solve problems, and determine actions; and 
acf/on-actuating effectors to execute intended 
actions and influence external entities. Because 
external entities have their own temporal 
dynamics, interacting with them imposes a 
periodic hard and soft real-time constraints on 
the agent's behavior. 

In a complex environment, an agent's 
opportunities for perception, action, and 
cognition often exceed its computational 
resources. While faster hardware or software 
optimization may solve this problem for selected 
applications, they will not solve the general 
problem of limited resources or obviate its 
concomitant resource-allocation task [Smith and 
Broadwell, 1988]. For an agent of any speed, we 
can define tasks whose computational 
requirements exceed its resources. Moreover, we 
seek more from an intelligent agent than 
satisfactory performance of a predetermined task 
for which it has been optimized. Rather, we seek 
satisfactory performance of a range of tasks 
varying in required functionality, available 
knowledge, and real-time constraints. We seek 
adaptation to unanticipated conditions and 
requirements. Other things being equal, the 
broader the range of tasks an agent can handle and 
the wider the range of circumstances to which it 
can adapt, the more intelligent it is. Thus, we 
view real-time performance as a problem in 
intelligent control. An agent must use knowledge 
of its goals, constraints, resources, and 
environment   to   determine   which   potential 
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operations to perform at each opportunity. When 
the operations required to achieve goals exceed 
available resources, the agent may have to modify 
goals as well. Because it is situated in a dynamic 
environment and faces a continuing stream of 
events, an agent must make a continuing series of 
control decisions so as to meet demands and 
exploit opportunities as they occur. In general, an 
agent should use intelligent control to produce the 
best results it can under real-time and other 
resource (e.g., information, knowledge) 
constraints. 

Our conception of real-time performance in 
intelligent agents differs from other views. We do 
not view real-time performance as a provable, 
guaranteed, universal property of the agent. Nor 
do we seek real-time performance through 
engineering of the agent for narrowly specified 
task environments. We feel that these constructs 
are premature and probably unrealistic for the 
versatile and highly adaptive agents we envision. 
Rather, we view real-time performance as one of 
an agent's several objectives, which it will 
achieve to a greater or lesser degree as the result 
of interactions between the environment it 
encounters, the resources available to it, and the 
decisions it makes. In many cases, the agent will 
produce timely results for a task only at the 
expense of quality of result or by compromising 
the quality or timeliness of its performance of 
other tasks. As the agent's competence expands, so 
will its need to make such compromises. 

2. Requirements for Real-Time Control in 
Intelligent Agents 

Following [Rosenschein, 1989], we model an 
intelligent agent as a dynamic embedded system, 
modeled as a time series of states.with instants of 
time mapped to a state space of variable values. A 
change in the value of a variable is an event, e. 
The system's behavior is described with 
measurements defined as functions on state 
values. Because the system is dynamic, we 
describe properties of both individual states and 
time series of states. Descriptive measurements 
represent objective properties, for example the 
importance of an event e1 or the latency of event 
e2 following the occurrence of e1. Utility 
measurements represent valuational properties, 
for example the satisfaction of particular 
constraints on the latency of e2. We partition the 
overall system into components representing the 
intelligent agent, /, and the environment, E. Each 
component has its own dynamic state, which 

varies as a function of information passed among 
its internal components, as well as information 
received from the other component. We further 
partition the agent, /, into components for 
perception, P, cognition, C, and action, A, which 
similarly manifest events generated internally or 
by other components. To describe interactions 
between components, we refer to pairs of trigger 
and response events, where both events occur in 
one component but presumably are mediated by 
interaction with another component. For example, 
a trigger-response pair in E may be mediated by 
events in /. In some cases, we refer simply to a 
mediated event, for example an /-mediated event 
in E. 

In the terms of our framework, intrinsic 
characteristics of an agent's environment may be 
defined as measurements on events in E, while 
characteristics of the relationship between an 
agent and its environment may be defined as 
measurements on events in E and /. For example: 
Data Glut. The agent cannot process all potentially 
interesting events in the environment. The 
average rate of events in E very much exceeds the 
maximum rate of E-mediated events in /. Data 
Distribution. Important environmental conditions 
may correspond to configurations of events on 
different state variables and over variable time 
intervals. This can be described as particular 
kinds of many-to-one mappings of events in E to 
events in /. Diversity of Events. Environmental 
conditions vary in importance. This can be 
expressed as the variability of values on an 
"importance" attribute of events in E. Real-Time 
Constraints. The values of events vary, in part, as 
a function of when they occur. This can be 
expressed in terms of utility measurements that 
incorporate the absolute or relative times of 
occurrence of events in E. Multiplicity of 
Conditions. We cannot enumerate all interesting 
conditions the agent will encounter, the set of E- 
mediated events in /that produce criterial values 
on some measurement. Predictability. The 
environment permits probabilistic prediction of 
some future events. This can be expressed as 
descriptive measurements on particular patterns 
of events in E. Potential Interactions. Globally 
coordinated courses of action are sometimes 
superior to sequences of locally determined 
actions. This can be expressed as utility 
measurements on particular patterns of /- 
mediated events in E. Underlying Model. Some 
knowledge of the environment is available, 
expressed as descriptive measurements on the 
correspondence between patterns of state values 
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or events in E and /. Diverse Demands. Multiple 
interacting demands for interaction with the 
environment include: interpretation, diagnosis, 
prediction, reaction, planning, and explanation. 
These can be expressed as utility measurements 
on particular types of /-mediated events in E. 
Variable Stress. The environment varies in stress 
over time. This can be operationalized as 
descriptive measures involving particular 
environmental variables, for example, the rate of 
important events or the number and types of 
different demands for interaction. 

We define the primary objective of an agent 
very generally: To maintain the utility of its 
behavior within an acceptable range over time. 
For a given agent in a given environment, we 
could formalize this requirement as utility 
measurement on /-mediated events in E and on 
events in / to constrain resource management. 
Although we could use this measurement to 
evaluate the agent's behavior in the given context, 
it would provide little guidance toward the design 
of effective agents. We need a more specific set of 
requirements to constrain the space of possible 
agent architectures. For example: 
Communications. For / to interact with E, there 
must be communications involving /"s 
components, with information passing from E to 
P, from P to C, from C to A, and from A to E. 
Asynchrony. Given data glut and real-time 
constraints, the agent must function 
asynchronously with the environment. Event 
rates in / and E and in in P, C, and A must be 
independent. Selectivity. Given data glut and event 
diversity in £, the agent must determine whether 
and how to perceive, reason about, and act upon 
different events. Other things being equal, the 
conditional probability of an /-mediated response 
in E, given its trigger event, should be an 
increasing function of the trigger event's 
importance. The same holds for events in P, C, 
and A. Recency. An agent's sensory information is 
perishable, the utility of its reasoning degrades 
with time, and the efficacy of its actions depends 
upon synchronization with fleeting external 
events. Therefore, recency is one important 
selectivity criterion. This can be expressed as a 
sharply decreasing conditional probability of an 
/-mediated response event in E, given its trigger 
event, over time. The same holds for events in P, 
C, and A. Coherence. The agent should produce a 
globally coordinated course of action when that is 
preferable to locally determined actions. We 
impose utility measurements on certain patterns 
of /-mediated response events in E, as well as on 

mediated response events in P, C, and A. Other 
things being equal, we require a low conditional 
probability of mediated response events, given 
associated trigger events, when those response 
events would not fit an ongoing pattern. 
Flexibility. Conversely, the agent must react to 
important unexpected events in a dynamic 
environment. Other things being equal, we 
require a high conditional probability for an /- 
mediated response event in E, even if it does not 
fit an ongoing pattern, given a very important 
trigger event. The same holds for anomalous 
response events in P, C, and A. Responsiveness. 
Other things being equal, the more urgent a 
situation is, the more quickly the agent should 
perceive, reason, and act. That is, the latency of 
an /-mediated response event in E, following its 
trigger event, should decrease as the urgency of 
the trigger event increases. Similar constraints 
apply to response events in P, C, and A. 
Timeliness. Given its dynamic environment, the 
agent must meet various hard and soft real-time 
constraints on the utility of its behavior. These 
may be expressed as utility measurements 
involving latencies within /-mediated pairs of 
trigger and response events in E. Similar 
measurements could be applied to events in P, C, 
and A. Robustness. An agent must adapt to 
resource-stressing situations by gracefully 
degrading the utility of its behavior. As 
environmental stress increases (e.g., as event 
rates increase or maximum trigger-response 
latencies decrease), the global utility of the 
agent's behavior (e.g., the rate of /-mediated 
response events in £, weighted by importance) 
should decrease gradually, rather than 
precipitously. The same holds for interactions 
among P, C, and A. Scalability. In the terms of our 
framework, the agent's satisfaction of the 
requirements above (but perhaps not its absolute 
level of performance on any one task) should be 
invariant over increases in problem size. 
Development. An agent must exploit new 
knowledge to improve the utility of its behavior. 
As relevant knowledge in / increases, we should 
observe improvement in the agent's satisfaction 
of some of the above requirements and, therefore, 
in the global utility of its behavior. 

3. Proposed Agent Architecture 

The BB1 "dynamic control architecture" 
(Figure 1) [Hayes-Roth, 1985, Hayes-Roth, 
1989a, Hayes-Roth, 1990] has concurrent 
systems for perception, action, and reasoning. A 
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Figure 1.   Proposed Agent Architecture:  BB1 

communications interface asynchronously relays 
data among their I/O buffers [Hewett and Hayes- 
Roth, 1989]. Perception systems acquire 
information about the environment as a basis for 
reasoning and action [Boureau and Hayes-Roth, 
1989, Washington and Hayes-Roth, 1989]. Each 
sensor acquires signals of a certain type, 
transduces them into an internal representation, 
and holds the results in a limited-capacity buffer. 
The preprocessor retrieves these results and then 
abstracts, annotates, and filters them, according 
to dynamic instructions from the reasoning 
system, and places the results in its output buffer 
for relay to the input buffer of the reasoning 
system or an  action system.  For example,  a 

preprocessor might abstract a sequence of 
numerical values of a variable into the value 
class "high" and the trend "rising," annotate 
these observations as "not relevant to ongoing 
tasks," but "very important" and "very 
urgent," and relay them to the reasoning system 
immediately. BB1 also adapts the global rate at 
which its preprocessor sends new observations, 
given changing reasoning activities. Thus, 
perception systems shield the reasoning system 
from data overload and maximize its vigilance 
within the available resources, providing the 
most useful information available in a compact, 
readily useable form. Action systems control the 
execution of actions to affect the environment 
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based on perception and reasoning. Each driver 
monitors its input buffer, retrieves intended 
actions, translates them into executable programs 
of effector commands, and controls their 
execution by sending commands to its effector at 
appropriate times. Each effector immediately 
executes commands in its input buffer. Thus, 
action systems relieve the reasoning system of 
the burden of managing low-level details of action 
execution. BB1 supports graduated reactions. 
Very fast peripheral reactions occur within a 
perception or action system, producing input- 
driven attentional shifts or feedback control of 
actions. Fast reflex reactions occur across 
perception-action arcs, with perceptual 
information directly driving action execution. 
Slower cognitive reactions involve all three kinds 
of systems, with cognition mediating the 
performance of actions in response to perceived 
information. Absolute response latencies at each 
level depend on the implementation. 

In the reasoning system [Hayes-Roth, 1985, 
Hayes-Roth, 1990], operations occur in the 
context of a global memory, which represents 
perceptual inputs, factual knowledge, reasoning 
knowledge, and reasoning results in a conceptual 
graph formalism. For example, an agent might 
have factual knowledge of the structure and 
function of certain physical systems and 
reasoning knowledge of the operations and 
strategies involved in diagnosis, prediction, 
planning, or other tasks. Reasoning results 
include diagnoses, predictions, plans, etc. These 
are organized in an interval-based time-line 
representation, distinguishing phenomena that 
have occurred, are expected, or are intended. For 
example, an agent might record that "diagnosis: 
kinked tube occurred at 0159" explains 
"observation: rising PIP occurred during 0159- 
0200" and that "action: tube straightening 
occurred at 0201" will cause "observation: 
falling PIP expected by 0202." The global 
memory also contains input buffers for data sent 
by perception systems and output buffers for 
intended actions sent to action systems. Finally, it 
contains information regarding the agent's 
cognitive behavior: cognitive events, agenda, 
control plan, and next operation, discussed below. 

BB1 performs reasoning operations that are 
suggested by and make changes to information in 
the global memory. Its satisficing cycle [Collinot 
and Hayes-Roth, 1990, Hayes-Roth, 1990] 
iterates three steps: (1) The agenda manager uses 
recent important perceptual and cognitive events 
and the current control plan to identify and rate a 

few of the most important reasoning operations, 
recording them on the agenda. (2) The scheduler 
uses the control plan to determine when to 
interrupt agenda management and which operation 
to execute, recording it as the next operation. (3) 
The executor executes the next operation, 
producing cognitive events that represent: new 
perceptual filters or intended actions in output 
buffers; new inferences or conclusions for 
ongoing reasoning tasks; or new control decisions 
that initiate, terminate, or modify strategies for 
reasoning tasks. By controlling resource 
allocation at its fundamental unit of computation, 
the satisficing cycle enables Guardian to 
guarantee real-time responses to selected events. 

Dynamic control planning determines the 
utility-quality and timeliness--of perception, 
reasoning, and action [Collinot and Hayes-Roth, 
1990, Hayes-Roth, 1985, Hayes-Roth, 1990]. A 
control plan is a temporally organized pattern of 
control decisions, each describing a class of 
operations to be performed, under specified 
constraints, during some time period. Control 
operations, which are triggered by events and, 
when executed, generate or modify control 
decisions, construct control plans incrementally. 
They guide the scheduling of reasoning operations. 
Thus, an agent can construct and follow plans, but 
also change its plans, given a changing 
environment. Control plans also modulate the 
speed-quality tradeoff in the satisficing cycle. 
They determine the order in which reasoning 
operations are identified and the associated 
interrupt conditions, so that an agent can execute 
a "good enough" operation as soon as possible or 
the "best available" operation when a deadline 
occurs. Finally, control plans focus the attention 
of perception systems. For example, given a plan 
to diagnose a particular problem, the agent would 
increase its attention to relevant data. Given a 
plan to perform computationally demanding 
reasoning tasks, it would lower its global input 
data rate by adjusting rates for different 
variables according to their relevance, 
importance, and urgency. 

4. Satisfaction of Real-Time Control 
Requirements 

The proposed agent architecture is addresses 
the requirements above: Communications. 
Information passes from the environment to 
perception subsystems, from perception 
subsystems to cognition and action subsystems, 
and from the cognition subsystem to perception 
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and action subsystems. Asynchrony. Parallel 
subsystems, with buffered communications, 
provide asynchronous perception, cognition, 
action. Selectivity. Limited-capacity event 
buffers selectively favor "high priority" inputs- 
-those that are recent, relevant, important, and 
urgent. Perception/action subsystems selectively 
process high priority sensed data and intended 
actions. The agenda manager selectively triggers 
and schedules high priority operations. Dynamic 
control plans selectively favor high priority 
reasoning tasks and establish associated focus of 
attention parameters. Recency. Limited-capacity 
buffers with best-first retrieval and worst-first 
overflow favor recent items, as does the heuristic 
best-first agenda manager. Coherence. Dynamic 
control plans provide a global focus of attention to 
coordinate perception, cognition, and action over 
time. They also strategically organize reasoning 
operations within a task and among concurrent 
reasoning tasks. Flexibility. Exceptional events 
can override global focus of attention in 
perceptual preprocessors or the cognitive 
system. Responsivity. Graduated reactive 
responses-peripheral, reflex, and cognitive 
responses-span a range of latencies. Within 
cognitive responses, additional gradations are 
supported. The agenda manager can control cycle 
time. Dynamic control planning can establish 
deadlines and discriminate among alternative 
reasoning methods strategies. Timeliness. 
Satisfying each of the requirements discussed 
above contributes to an agent's timely response to 
the most important events. In addition, dynamic 
control planning allows an agent to reason 
explicitly about the time requirements of 
alternative operations and the time constraints on 
its behavior. Robustness. Satisfying many of the 
requirements discussed above entails gracefully 
trading amount of computation, and therefore, 
expected quality of response, against latency of 
response. Scalability. Several aspects of the 
architecture are designed to accommodate changes 
in scale. For example, perceptual preprocessing 
and focus of attention will protect the agent 
against increasing perceptual overload. Given a 
discriminating control plan, the satisficing cycle 
will produce stable cycle times regardless of 
increases in problem size. Development. 
Increases or improvements in knowledge should 
improve the agent's ability to meet several of 
these requirements. For example, improvements 
in its control knowledge should enable it to focus 
perceptual attention more effectively,  improve 

the strategic control of its reasoning, and execute 
higher-priority operations more rapidly. 

5. The Guardian Application 

Given our research goal to develop a general 
architecture for intelligent agents, experimental 
development of agents that operate in diverse 
domains is a major part of our research. Each 
new domain tests the sufficiency and generality of 
the current architecture and presents new 
requirements for subsequent versions. We are 
now studying monitoring agents for 
semiconductor fabrication [Murdock and Hayes- 
Roth, 1990], power plant maintenance, and 
medical monitoring [Hayes-Roth, 1989a]. To 
illustrate how agents are implemented within the 
proposed architecture, consider Guardian. 

Guardian monitors simulated intensive-care 
patients who have temporary failure of one or 
more organ systems, which is treated with life- 
support devices that assume the functions of the 
ailing system until it heals. For example, the 
ventilator is an artificial breathing machine that 
augments the patient's own breathing. Life- 
support devices are adjusted based upon frequent 
patient observations. Some observations are made 
continually and automatically, for example, 
measurements of air pressures and air flows in 
the patient-ventilator system. Other observations 
are made intermittently. Blood gases, for 
example, are measured once every hour or so, 
while chest xrays are usually taken once or twice 
a day. Based on patient observations, device 
settings are adjusted to vary the amount of 
assistance the device provides. For example, 
ventilator settings determine the number of 
breaths delivered to the patient per minute, the 
volume of air blown into the patient's lungs on 
each breath, and the amount of oxygen in the air. 
Other therapeutic actions might include adjusting 
a ventilator tube, clearing the patient's air 
passages, administering drugs, etc. The short- 
term goal of SICU monitoring is to keep the 
patient as comfortable and healthy as possible, to 
diagnose and correct unexpected problems, and to 
refine and execute the long-term therapy plan, 
while progressing toward therapeutic objectives. 
The long-term goal is to withdraw life-support 
devices gradually so that the patient eventually 
can function autonomously. 

Guardian's task instantiates the requirements 
for real-time control. Because it has access to 
many automatically sensed patient data variables 
and because it can reason about and act upon these 

427 



observations in many different ways, it must 
selectively perceive important patient data and 
perform key reasoning operations that contribute 
to its most important actions. Because the patient 
embodies a dynamic physical process, Guardian 
must asynchronously perceive patient data, 
reason about the patient's condition, and perform 
therapeutic actions. To insure that its behavior is 
current, it must "forget" unrealized past 
opportunities for perception, reasoning, and 
action in favor of present opportunities. To 
achieve longer-term goals, Guardian must enact a 
coherent pattern of perception, reasoning, and 
action over time. On the other hand, uncertain 
changes in the patient's condition require 
flexibility and adaptation. Guardian must respond 
to patient conditions of varying urgency; other 
things being equal, the more urgent the patient's 
condition is, the more quickly it must perceive 
relevant information, perform necessary 
reasoning, and execute appropriate actions. 
Guardian must satisfy a variety of hard and soft 
real-time constraints on the utility of its 
behavior. Because it encounters situations that 
strain or exceed its capacity-too many signs and 
symptoms, interpretation, diagnosis, prediction, 
and planning tasks, and therapeutic actions-its 
performance must degrade gracefully, not 
precipitously. Guardian must maintain the quality 
of its behavior as we scale up to more realistic 
problems and improve the utility of its behavior 
with more knowledge. 

Guardian currently monitors a simulated 
patient. A single perceptual preprocessor 
manages its perception of twenty automatically 
sensed variables, with an average overall rate of 
one value per second. It also perceives 
irregularly reported lab results and messages 
from human users. Each one, if passed to the 
cognitive system, would trigger several cognitive 
operations, whose execution would produce 
several cognitive events and trigger new 
operations. Although this is not a high data rate in 
absolute terms, it is beyond Guardian's current 
cognitive capacity, one operation every couple of 
seconds. Moreover, we anticipate that Guardian's 
sensory activity will increase from twenty to one 
hundred automatically sensed variables, each 
sensed at least once per second. There will be at 
least twenty irregularly sensed data variables. 
Thus, Guardian faces significant and growing 
perceptual overload. 

To avoid falling behind real time, Guardian's 
perceptual preprocessor applies dynamic 
abstraction, filtering, and annotation parameters 

sent by the cognitive system. It abstracts 
numerical data values into value classes and 
trends. It assigns data values to three levels of 
importance: life-threatening, abnormal, and 
other. It distinguishes data that are relevant to 
ongoing reasoning activities from those that are 
not relevant. It distinguishes three levels of 
urgency: events that permit an effective response 
within four minutes, one hour, or longer. It 
filters data based on criterial value changes 
within deadlines. Thus, the cognitive system can 
bound the variability of unsent intervening 
values. Using these mechanisms, the 
preprocessor typically reduces sensed data rates 
by over 90%, maintaining an average overall 
perception rate of approximately one perceptual 
input every twenty-two seconds, without 
reducing solution quality [Washington and Hayes- 
Roth, 1989]. Additional selectivity is provided by 
the cognitive system itself. 

Guardian has a wide range of medical 
knowledge including: knowledge of meaningful 
classifications and trends of the currently sensed 
patient variables; knowledge of a twenty-node 
hierarchy of respiratory disease conditions, along 
with their likely signs and standard treatments; 
knowledge of the normal structure and function of 
the respiratory, circulatory, pulmonary 
exchange, tissue exchange, and tissue metabolism 
systems and the ventilator; knowledge of the 
normal and abnormal structure and function of 
abstract flow, diffusion, equilibrium, and 
metabolic systems; knowledge of prototypical 
therapeutic protocols for managing a small 
number of evolving disease conditions; knowledge 
of the importance and urgency of particular 
observations and diagnoses; knowledge of the 
precondition, results, and time required to 
perform a number of therapeutic actions. 

Guardian knows how to perform several 
reasoning tasks: interpretation of time-varying 
data, diagnosis of observed signs and symptoms, 
selection of corrective actions for diagnosed 
conditions, prediction of future patient 
conditions, explanation of observations, 
diagnoses, and predictions, and dynamic therapy 
planning. For most of these, it has both 
associative and model-based methods. Associative 
methods use clinical knowledge and permit quick 
responses to familiar situations. Model-based 
methods use more fundamental biological and 
physical knowledge and permit more thorough 
(and time-consuming) responses to both familiar 
and unfamiliar cases. Each method is implemented 
as a set of abstract reasoning operations that are 
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triggered by particular kinds of perceptual or 
cognitive events, along with control operations 
that construct resource-bounded control plans in 
particular contexts. The results of all reasoning 
activities are recorded in temporally organized 
episodes in the global memory. 

Depending on the circumstances, Guardian 
may be logically capable of pursuing many 
different reasoning tasks with both associative 
and model-based methods. Given the real-time 
constraints on its behavior, however, Guardian 
typically must be quite selective about which 
tasks it pursues and how it allocates reasoning 
resources among them. Accordingly, it uses 
strategic knowledge to construct a dynamic global 
control plan that differentially favors the 
triggering and scheduling of executable operations 
involved in competing reasoning tasks. 

For example, in one scenario, Guardian 
observes that a post-operative patient has low 
body temperature. It makes a global control 
decision to perform a sequence of reasoning tasks: 
diagnose the low temperature as a normal result 
of post-operative status; predict a spontaneous 
rise in temperature to normal over a period of 
hours; infer undesirable consequences of low 
temperature, low arterial C02 rising to normal 
with temperature; and plan and execute a 
sequence of changes to breathing rate coordinated 
with body temperature to maintain normal 
arterial C02. For each task, Guardian makes local 
control decisions about whether to apply 
associative or model-based reasoning methods and 
how to organize its reasoning. At the same time, 
its global control plan allows it to incorporate 
new perceptions, but not to reason about most of 
them as they are less important than ongoing 
activities. However, Guardian does respond to a 
request for explanation of the relationship among 
temperature, breathing rate, and arterial C02 in 
terms of the underlying anatomy and physiology. 
And it subsequently interrupts all of these tasks- 
-diagnosis, prediction, planning, and 
explanation-when it observes very high peak 
inspiratory pressure, a life-threatening 
condition with a four-minute deadline. Guardian 
makes a new global control decision to direct all 
of its resources to correcting this condition as 
quickly as possible. As a result, its perceptual 
preprocessor refocuses to favor data relevant to 
the high peak pressure. Its agenda manager adopts 
a shorter deadline to insure quick reasoning. And 
its satisficing cycle favors associate reasoning 
operations that quickly diagnose and correct the 
high peak pressure. Given these adaptations, 

Guardian very quickly performs a sequence of 
operations: diagnose the immediate problem, 
inadequate ventilation; increase the breathing 
rate so the patient will get enough oxygen and the 
deadline will be extended; diagnose the underlying 
problem, pneumothorax (hole in the lung); 
perform the appropriate action, insert a chest 
tube to release accumulated air in the chest 
cavity; reduce the breathing rate now that the 
pressure is relieved; confirm that the pressure 
is normal; and confirm that the blood gases are 
normal. Once the problem is solved, Guardian 
makes a new global control decision to resume its 
interrupted activities, adapting them as 
necessary to results of intervening events. 

Several display drivers manage Guardian's 
dynamic graphical displays of: patient history; 
reasoning and results of diagnosis, prediction, 
planning, and explanation; and control reasoning. 

6. Evaluation of the Proposed Architecture 

Guardian's evolution through four 
demonstration systems shows its expanding 
competence. In Demonstration 1, Guardian had 
factual knowledge for only the respiratory 
system, the ventilator, an abstract flow system, 
and two types of flow system faults, blockage and 
leakage. It had reasoning knowledge for 
associative and model-based diagnosis and model- 
based explanation. It monitored eight patient data 
variables and diagnosed and explained kinked tube 
and one-sided intubation problems. As described 
above, by Demonstration 4, Guardian had 
substantially more factual and reasoning 
knowledge and handled a much more complex 
scenario. In fact, each scenario represents a class 
of scenarios that Guardian can handle, the breadth 
being determined by the extent of Guardian's 
medical knowledge relevant to the capabilities 
being demonstrated. For example, in 
Demonstration 4, one capability is to respond 
under severe time constraints, in the context of 
important ongoing activities, to an unanticipated 
critical problem. We demonstrate that by 
Guardian's response to a pneumothorax when it 
already is performing several important 
prediction, planning, and explanation tasks. 
However, Guardian actually can respond 
effectively to the unanticipated occurrence of any 
critical condition currently in its clinical 
knowledge, in the context of any combination of 
ongoing prediction, planning, and explanation 
activities involving its current knowledge. 
Demonstrating    Guardian    over    successive 
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scenarios gives evidence of the essential 
correctness, extensibility, and scalability of its 
underlying approach. Demonstrations 1, 2, and 3 
entailed significant changes to Guardian's 
architecture and knowledge representation. 
Demonstration 4 required additions only to its 
reasoning skills and factual knowledge. Although 
we expect to make continuing improvements at all 
levels of Guardian, most future improvements 
will be at higher knowledge levels. 

We evaluated the real-time interactions of 
Guardian's perception, action, and reasoning 
systems [Hewett and Hayes-Roth, 1989]. Our 
experiment shows constant communication 
latencies among the systems over a range of 
activity within each system and vice versa. 
Absolute latencies are determined by processor 
speed, network speed, and program optimization. 
Thus, within the ranges tested, Guardian achieves 
true concurrency and asynchrony of perception, 
action, and reasoning. We also evaluated the real- 
time performance of Guardian's perception 
system [Boureau and Hayes-Roth, 1989, 
Washington and Hayes-Roth, 1989]. One 
experiment showed that adaptation of filtering 
thresholds, based on dynamic load and focus of 
attention in the reasoning system, reduced input 
data by 94% on average, with no reduction in the 
quality of the reasoning results. A second 
experiment showed that knowledge-based 
prioritizing of input data allows Guardian to meet 
deadlines for critical observations over a range of 
data rates, compared to a control condition in 
which critical observations are lost under high 
data rates. Thus, Guardian's perception system 
effectively shields Guardian from input 
variability and overload, while maintaining 
responsiveness to critical data. 

We evaluated Guardian's reasoning [Collinot 
and Hayes-Roth, 1990] about four key events in 
Demonstration 4: observed low temperature 
requires prediction of future temperature 
changes and causal implications; inferred low 
PaC02 requires planning of rate changes to keep 
PaC02 in normal range; the user's request 
requires explanation of how low temperature and 
normal breathing rate cause low PaC02; and 
observed high PIP requires diagnosis of the 
underlying pneumothorax and insertion of a chest 
tube. The high PIP event is highly critical 
because it is potentially life-threatening. The 
other events are moderately critical. We made 
component measurements of the correctness, 
specificity, timeliness, and selectivity of 
Guardian's response to each event. We measured 

the global utility of Guardian's performance by 
integrating component measurements according to 
two rules. Under rule 1, global utility is the sum 
of products of event criticality and response 
quality (correctness, specificity, and timeliness) 
for the four events. Rule 2 introduces a condition: 
If Guardian responds correctly, specifically, and 
within deadline to highly critical events, then 
global utility is as defined in rule 1; otherwise 
global utility is 0. The results show that Guardian 
responded correctly, specifically, and within 
deadline to all key events and responded more 
selectively and more quickly to the high PIP than 
to less critical events. As a result, the global 
utility of its performance over the complete 
scenario was quite high by both integration rules. 
By contrast, a comparison system having a "less 
intelligent" architecture, but the same factual 
knowledge and reasoning skills, failed to respond 
correctly, specifically, or within deadline to 
some events-in particular the highly critical 
event, high PIP. As a result, its global utility was 
lower by both integration rules, especially the 
second rule where its failure to respond to the 
high PIP gave a global utility of 0. 

We made the above measurements while 
systematically manipulating input data rates and 
knowledge base size [Collinot and Hayes-Roth, 
1990] . Results show that Guardian maintains 
high values of all component measurements and 
high global utility despite increases in data rates 
or knowledge. By contrast, the comparison system 
frequently failed to respond correctly, 
specifically, or within deadline to key events, 
especially the high PIP, and therefore produced 
lower global utility as data rates or knowledge 
increased. These results indicate Guardian's 
robustness over increasingly complex monitoring 
situations and scalability over increasing 
amounts of knowledge. 

7. Limitations of the Proposed Architecture 

We must acknowledge that the proposed 
architecture makes agents vulnerable to errors 
that do not occur under some other architectures. 
By definition, the architecture's real-time 
control mechanisms-its perceptual filtering, 
limited capacity I/O buffers, dynamic control 
planning, focus of attention, and satisficing 
cycle-allow an agent to ignore many 
opportunities to perceive, reason, and act and to 
perform sub-optimal operations. In general, the 
agent allocates limited computational resources 
among competing activities in proportion to their 
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urgency and importance. In many cases, this will 
not affect the global utility of the agent's 
performance. In others, it will produce 
acceptable degration in particular aspects of 
performance. In extreme cases, however, an agent 
might decide prematurely to perform costly, 
ineffective, or counterproductive operations; or 
it could fail to perform highly desirable 
operations that are well within its capabilities. 
Nonetheless, we hypothesize that, if we wish to 
build agents that function well in complex real- 
time environments, we must forego optimality in 
favor of effective management of complexity 
[Simon, 1969]. Allowing the possibility of 
occasional, more or less consequential error is a 
necessary concession toward that end. 
Formulating control knowledge that allows an 
agent to meet important real-time performance 
requirements while minimizing the impact of 
incompleteness and suboptimality is a primary 
objective of our research. 
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1    Introduction 

Consider the problem of programming computer- 
controlled agents to behave in complex environments. 
These agents might be robot arms that assemble cars, 
household assistants that do the laundry and take out 
the trash, or database agents that schedule appoint- 
ments and keep computer files up to date. Such agents 
must interact with a world that is dynamic and is pre- 
dictable in some respects but highly unpredictable in 
others. 

In recent years, a wide range of formalisms have 
been developed for specifying behaviors for computer 
agents, including the paradigms of the general notions 
of "classical planning" and "reactive behavior." These 
formalisms represent points in a complexity space that 
has as two of its most important dimensions 

• ease of expression of complex action strategies by 
the human programmer 

• efficiency of execution of formal behavioral speci- 
fication by the agent 

There is no single formalism that is most appro- 
priate for all problems of agent behavior specifica- 
tion. By studying the properties of various behavior- 
specification formalisms and of the settings of particu- 
lar problems, we can choose formalisms appropriately. 

This paper will focus on three different methods for 
specifying behaviors for agents: direct programming, 
operator descriptions, and goal reduction rules. These 
will serve as example formalisms that will allow us to 
discuss ease of human programming, ease of automatic 
execution, and the value of compilation. 

2    Framework 

In order to make the following discussion precise, we 
must assume a concrete model of the agent's inter- 
action with its environment.   This discussion will be 
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0055DEF, in part by the National Aeronautics and Space 
Administration under Cooperative Agreement NCC-2-494 
through Stanford University subcontract PR-6359, and by 
the Defense Advanced Research Projects Agency through 
NASA contract NAS2-13229. 

Figure 1: Framework for embedded computation, di- 
vided into perception and action functions. 

based on a model of computation in which an agent is 
seen to perform a finite transduction from a stream of 
input data into a stream of output data (this model 
also forms the foundation of situated-automata the- 
ory [Rosenschein, 1985, Rosenschein and Kaelbling, 
1986]). The agent receives an input from the environ- 
ment, updates its internal state as a function of the 
input and the state value, then outputs that action, 
effecting the world. This cycle happens at regular in- 
tervals that are timed in a way that allows the agent 
to keep pace with the important events in its environ- 
ment (this pace may vary from 100 cycles per second 
in an automatic-pilot system to 1 cycle per day in a 
system that does inventory management in a store). 

The job of an agent designer, then, is to specify 
the state-update and output functions, which make 
up the agent's program. We shall refer to them as the 
perception and action functions, as shown in Figure 1. 
We require the computation time of these functions to 
have a finite upper bound. This bound will guarantee 
that the agent can react with appropriate speed to 
external events by having a bounded delay between 
the arrival of any given input and the generation of 
an output that depends on that input. This paper is 
primarily concerned with the specification of the action 
function. 

Another popular computational model for embed- 
ded agents is one of many concurrent processes. Typ- 
ically, one process runs with a guaranteed fixed cycle 
time, and its outputs can be influenced by the results 
of other processes as they are completed. This is a 
useful model, especially appropriate for machines with 
coarse-grained processor parallelism, but it makes the 
semantic analysis of the computation performed by the 
agent quite difficult. The exact meaning of the result 
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of any computation depends crucially on how much 
time has passed since the inputs to the computation 
were sensed by the agent; this is more difficult to mea- 
sure and keep track of in a concurrent-process model 
than in the simple circuit model of Figure 1. 

One important thing to note is that, in this frame- 
work, "perceptual actions" that are performed to gain 
information are not distinguished from actions in gen- 
eral. One reason for treating all actions uniformly 
is that perceptual actions may be externally indis- 
tinguishable from other actions and use the same re- 
sources: a robot may put its hand on a table to steady 
the table or to find out if it is clear. We must, then, 
consider all actions together in attempting to deter- 
mine which one is most appropriate to execute. 

This paper considers different ways in which pro- 
grammers can specify the mapping from an agent's 
perceptual state (current values of the internal state 
and input vectors) into an action; we shall refer to 
this mapping as the action map. 

3     Specifying Action Maps 

There is a wide variety of formalisms that may be used 
by a human programmer to specify the action map for 
an agent. It is widely held to be easier for humans to 
program in formalisms that allow a modular, declar- 
ative expression of the program, rather than a direct 
procedural account. This point is discussed at length 
by Winograd [Winograd, 1985] in connection with the 
general knowledge-representation problem. This sec- 
tion will address the use of three different types of 
formalisms for specifying actions maps, leaving issues 
of executability for discussion in the following section. 

3.1     Direct programming 

The most traditional method of supplying the action 
map for an agent is to use the standard methods of 
computer programming. Using a functional or pro- 
cedural programming language, the programmer can 
specify the function that should be computed to gen- 
erate each new action. 

In simple domains, especially those to which the 
methods of control theory can be applied, this ap- 
proach is quite adequate. In many domains, for exam- 
ple, there is a simple numerical functional relationship 
between output values and input values, which can be 
easily specified in a traditional programming language. 

Another situation for which this method is appropri- 
ate is when the programmer has complete information 
about the initial state of the world and about the ef- 
fects of the agent's actions on the world. In this case, 
the agent's program can typically be written as a list 
of actions, which the agent executes one-by-one, ignor- 
ing the input values from the world. Domains that are 
this benevolent and understandable are rare, but the 
approach has been used successfully for "sequencing" 
unmanned space missions and for programming highly 
constrained robotic assembly tasks. 

In most other cases, the actions that an agent should 
take are highly conditional on the perceptual state, re- 
quiring a large and complex computer program.   Of 

course, any action map can be specified this way, but 
direct programming can become very tedious and dif- 
ficult for the programmer. 

3.2     Classical Operator Descriptions 

The standard artificial intelligence (AI) technique for 
specifying an action map is to give a description of the 
abilities of the agent, a description of a desired goal 
state of the world, and a description of the initial state 
of the world. From this information and the assump- 
tion that the agent should act in such a way as to cause 
the world to satisfy the goal-state description, it is pos- 
sible to derive the next action that should be taken by 
the agent by finding a string of actions that, if exe- 
cuted starting in any state satisfying the initial state 
description, will cause the world to be in some state 
satisfying the goal state description. The agent's abil- 
ities are typically described using an operator descrip- 
tion language. In this language, each possible action 
of the agent is characterized by a set of preconditions 
and a set of postconditions. If the preconditions are 
true in the world and the agent performs the action, 
then the postconditions will be true in the world. The 
descriptions of the initial and goal states of the world 
do necessarily correspond to completely individuated 
perceptual states. In general, they can be arbitrarily 
general or specific. If the initial state description is 
true, then the agent must act without assuming any- 
thing about the initial state of the world. This process 
is typically referred to as "planning" and has a large 
related literature [Allen el ai, 1990]. 

Using operator descriptions to specify action maps 
is very appealing. It allows the programmer to write 
a declarative specification in terms of facts about the 
world and the abilities of the agent; this makes the 
task less like regular programming and (theoretically) 
easier for non-professionals. Another benefit is that, 
once the agent's abilities have been described in the 
operator description language, generating a new action 
map amounts to specifying new initial state and goal 
state descriptions. Finally, this finite description of the 
operators and the initial and goal states may engender 
behaviors of arbitrary complexity; there is no bound 
on the number of actions that can be strung together 
to achieve the goal. 

This approach has a number of drawbacks, as well. 
First, the semantics of the operator descriptions can 

rarely be satisfied in the real world. The effects of 
low-level operations, such as sending a voltage to a 
wheel in a mobile robot, cannot be modeled reliably 
at a level of abstraction for which planning is appropri- 
ate. Higher level actions that have non-deterministic 
results might be usefully modeled with probabilistic 
operator descriptions. 

In addition, operator-description languages are typ- 
ically oriented toward single goals of achievement, but 
it is often useful to supply a goal of maintenance like 
"don't spill the milk." Goals of maintenance could be 
added to such a framework by adding a third compo- 
nent to operator descriptions describing which condi- 
tions are maintained. Although this extension is theo- 

434 



retically possible, it gives rise to an explicit version of 
the frame problem [Hayes, 1990], in which a possibly 
infinite number of maintained conditions would have 
to be specified for each operation. 

3.3     Goal Reduction Rules 

There are many formalisms that lie between di- 
rect programming and operator descriptions on the 
procedural-declarative spectrum. One is goal reduc- 
tion rules. Gapps [Kaelbling, 1988] is a declarative lan- 
guage in which the programmer writes a set of instan- 
taneous goal-reduction rules. These rules, together 
with a top-level goal description, specify an action map 
for the agent. The goal-reduction rules specify how to 
take the top-level goal and, depending on the current 
state of the world, reduce it to another top-level goal. 
Eventually the reduction process bottoms out in an ac- 
tion that is correct to execute given the current state 
of the world. 

The use of goal-reduction rules moves some of the 
burden of "plan synthesis" from the agent to the pro- 
grammer, but allows easy expression of many kinds of 
action strategies that are difficult to encode using op- 
erator descriptions. Take, as an example, the strategy 
of hammering in a nail until it is flush with a board. It 
might be possible to describe an operator hii-ihe-nail 
that has as its post-condition that the nail is some 
fraction of an inch farther into the board than it was, 
or one called probably-hii-the-nail that 10% of the time 
has as its postcondition that the nail is flush with the 
board. Both of these uses of operator descriptions re- 
quire fairly sophisticated plan synthesis methods. The 
simple goal-reduction rule captures the commonsense 
knowledge that if your goal is to have the nail be flush 
with the board and the nail is not yet flush with the 
board, you should hit the nail. 

(defgoalr  (ach nail-flush-with-board) 
(if   (nail-not-ilush-with-board) 

(do hit-the-nail) 
(do  anything))) 

Rather than saying exactly what the effects of an oper- 
ation are, the user specifies under which environmen- 
tal conditions an action is appropriately performed. 
In the goal-reduction approach, the initial condition 
of the world need not be specified; instead, the world 
is monitored as the agent interacts with it, and each 
action is selected on the basis of the currently per- 
ceived state of the world rather than on its predicted 
state. This makes it easy to specify action mappings 
for domains in which the effects of individual actions 
are quite unreliable. 

One drawback of goal-reduction rules in compari- 
son with operator descriptions is that the programmer 
must provide a reduction rule for any primitive goal 
that might occur. This is in contrast to the operator- 
description approach, in which any formula in the for- 
mal language used to specify the domain could, poten- 
tially be used as a goal. 

4    Executing Action Maps 

Once the programmer has specified an action map, it 
must be executed by the agent. The degree of difficulty 
of this execution depends on the nature of the language 
used to specify the map. It can vary from trivial to 
nearly impossible. This section considers the compu- 
tational aspects of executing specifications written in 
each of the specification languages discussed above. 

4.1 Direct programming 

Languages used for direct programming are designed 
to be compiled and executed directly by the agent's 
computer. In using such languages, it is incumbent 
upon the programmer to guarantee that the compu- 
tation time for the state-update and action functions 
is bounded. This problem can be avoided by using a 
language, such as Rex [Kaelbling, 1987b] or a more 
standard real-time programming language and oper- 
ating system, that guarantees response time. 

4.2 Operator Descriptions 

Operator description languages are not directly exe- 
cutable by an agent. The standard execution model is 
to search for a sequence of actions that will take the 
agent from any state satisfying the initial state descrip- 
tion to some state satisfying the goal state description. 
Having found this sequence, the agent should take the 
first action. In order to avoid repeating this work, 
this process is often divided into two phases: planning 
and execution. In the planning phase, the search is 
done and the chain of actions stored. In the execution 
phase, the actions are simply emitted in sequence with 
no regard to the state of the world. More sophisticated 
systems of this type perform "execution monitoring" 
in which the planning phase records the expected state 
of the world between the actions. The execution phase 
then monitors the execution of the plan, making sure 
that the world satisfies the descriptions of the expected 
intermediate states. If it does not, the system reverts 
to the planning phase with a description of the current 
state of the world as the initial state. 

Chapman has shown that the planning phase in such 
a system is, in the general case, undecidable [Chap- 
man, 1987]; for very restricted operator-description 
languages, it is merely intractable, with the time it 
takes to find a plan increasing exponentially in the 
number of operators. Because the agent must com- 
plete the planning phase before it takes its first action, 
this sort of execution of operator descriptions does not 
satisfy the requirements of having a constant bound on 
the reaction time of the agent. Additionally, an advan- 
tage that we cited of operator-description languages, 
that a small description could generate an arbitrarily 
long program, is a detriment for execution, because ar- 
bitrarily long programs take exponentially more time 
to generate. 

Also, if it takes too long to perform the planning 
phase, the information upon which it was based, espe- 
cially the initial state description, may change, inval- 
idating the entire plan. A good execution monitoring 
system might notice this before any wrong action was 
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taken and cause the planning phase to be re-entered, 
but this kind of behavior makes the reaction time even 
worse. 

Despite the apparent intractability of executing op- 
erator descriptions, there are at least two ways to limit 
the total expressiveness of the language and make the 
execution compatible with a requirement for guaran- 
teed reaction time. 

4.2.1 Using Space 

If we are willing to limit the scope of planning to plans 
of a fixed length, it is possible to do the search to 
that depth in an amount of time that is bounded by 
a constant. This can be thought of as expanding the 
search tree in parallel to a fixed depth all at once; 
hence, "using space." This process can be made even 
more efficient (but no longer strictly correct) if a beam 
search is used, assuming that at each level of the search 
all but a certain number of candidate plans can be 
pruned. 

In this formulation of the planning problem, just the 
first step of the plan is executed. The next time the 
action function is called, the computation is repeated 
and, again, the first step is executed. This planning 
and execution style does no caching of plans and is, 
therefore, not in danger of diverging from the expected 
execution path in the world. The disadvantage is that 
the time-constant required to do this computation may 
be too large for many systems (on current hardware) 
to keep up with their environment. 

4.2.2 Using Time 

An alternative to computing a fixed-length plan on 
every cycle is to express the planning process as an 
incremental computation, which is carried out over 
the course of many calls to the action function. This 
method of "using time" requires that state be used 
in the computation of the action. On each call to the 
action function, the planning process generates an out- 
put, but it may be one that means "I don't have an 
answer yet." After some number of cycles (depending 
on the size of the planning problem) the planner will 
generate a real result. This result might be cached and 
executed as in a traditional system, or the agent might 
simply take the first action and wait for the planner 
to generate a new plan. 

One advantage of organizing the computation this 
way is that it allows the programmer to specify a hi- 
erarchical action map. It may be that the best actions 
for the agent to take are those specified in the opera- 
tor description language (because it is easiest for the 
human programmer to come to grips with the complex- 
ity of the domain in this language), but that certain 
instantaneous reflexive reactions can be specified in a 
more direct way. The agent can then execute the plan- 
ner and the reflex program in parallel, performing the 
action suggested by the planner when there is one, and 
otherwise heeding its reflexes. This need not happen 
on just two levels; the general organization of such 
a system with many levels is described by Kaelbling 
[Kaelbling, 1987a]. 

We must still take care that the plan generated by 
the planner, given that time has passed since it be- 
gan its task, is appropriate for the situation in which 
it is finished. This can be guaranteed if the planner 
monitors the conditions in the world upon which the 
correctness of its plan depends. If any of these condi- 
tions goes false, the planner can begin again. This is 
correct behavior, with the planner continuously emit- 
ting the "I don't know" output and allowing the agent 
to react reflexively to its environment if necessary. 

Such a planner might generate a plan in the form 
of a linear sequence of actions or a set of condition- 
action rules. It is important to be able to evaluate 
the validity of a plan as time passes, so that the plan- 
ner may be reinvoked if the execution of the plan does 
not take place as expected. One useful and robust 
way to provide a validity test is to generate a directly 
executable action map for some small part of the in- 
put space that the agent is likely to find itself in as it 
traverses a path from the current state to a goal state. 
The plan becomes invalid when the world enters a state 
for which the plan provides no action. Triangle tables 
[Nilsson, 1985] were a solution of this type, but they 
assumed that the likely deviations of the world from 
the intended solution path would be, themselves, to 
other states on that path. More general plans could 
be constructed by making their scope (the number of 
situations for which they have a reaction) somewhat 
larger. How large they should be depends on the na- 
ture of the domain and how likely the operators are 
to do what they are expected to do. Given proba- 
bilistic characterizations of the operators' effects, it is 
possible to generate an action map such that if the 
agent were to act according to the map it would, with 
high probability, arrive in a goal state before finding 
itself outside the domain of the map (a planning algo- 
rithm with similar characteristics has been developed 
by Drummond and Bresina [Drummond and Bresina, 
1990]). 

The kind of planner discussed above is a form of 
an anytime algorithm [Dean and Boddy, 1988]. An 
anytime algorithm always has an answer, but the an- 
swer improves over time. In the example given above, 
the answer is useless for a while, then improves in one 
big jump. It might be useful to have planning algo- 
rithms that improve more gradually. Such algorithms 
exist for certain kinds of path planning, for instance, 
in which some path is returned at the beginning, but 
the algorithm works to make the path shorter or more 
efficient. There is still a difficult decision to be made, 
however, about whether to take the first step on a plan 
that is known to be non-optimal or to plan for a while 
longer. 

4.3     Goal Reduction Rules 

Given a set of goal-reduction rules, an action map is 
specified by a top-level goal for the agent. The rules 
can be "executed" by using them, on each call to the 
action function, to reduce the top-level goal to a prim- 
itive action that is suitable for the currently-perceived 
state of the world.   If the reduction rules are not re- 

436 



cursive, execution time has a bound linear in the num- 
ber and size of the reduction rules. If they are recur- 
sive, the goal-reduction process may not terminate, so 
bounded reaction time cannot be guaranteed. 

5     Compilation 

We have seen that the high-level languages in which 
it is convenient for human programmers to specify ac- 
tion maps are often intractable for an agent to exe- 
cute. Conversely, languages that can be efficiently ex- 
ecuted tend to be tedious for human programmers to 
use. It is possible to bridge this gap, to some degree, 
by adding a compilation stage in which the language 
used by the programmer to specify the action map is 
translated into another language for execution by the 
agent. This section discusses the compilation of action 
maps specified as operator descriptions and as goal re- 
duction rules, then considers when it is desirable to 
perform this compilation.1 

5.1 Compiling operator descriptions 

Operator descriptions can be compiled into a directly 
executable language. If the initial state description 
and the goal state description are known at compile 
time and the world is completely deterministic and the 
operator descriptions absolutely correct, then compi- 
lation can simply be planning. The result would be a 
list of actions to be taken by the agent. This is a very 
limited approach, because it assumes that the agent 
has some fixed goal of achievement (unless the plan- 
ner is a very sophisticated one, capable of synthesizing 
plans with loops and conditionals, a goal of mainte- 
nance would require an infinite list of actions). 

When a description of the goal state is known, but 
the initial state is not known or when the operator 
descriptions are not completely reliable, descriptions 
of the goal and the operators can be compiled into an 
action map specified by a set of condition-action rules. 
The rules map every possible situation into an action 
that, according to the operator descriptions, is a useful 
step toward the goal. 

Schoppers' algorithm for synthesizing universal 
plans [Schoppers, 1989] performs compilation of this 
sort, although the reaction time of the compiled code 
may not have a constant bound on execution time. 

A disadvantage of compiling operator descriptions 
into condition-action rules is that very large program 
structures can result, and although they are as robust 
as possible, the majority of the program will never be 
consulted. Additionally, the top-level goal is frozen 
into the compiled structure. 

5.2 Compiling goal-reduction rules 

The Gapps language includes an algorithm for com- 
piling a set of goal-reduction rules and a top-level 
goal into a set of condition-action rules. Whereas the 

In the terms used by Russell to discuss knowledge com- 
pilation [Russell, 1989], the methods described in this sec- 
tion perform heterogeneous compilation, mapping knowl- 
edge of types A, B, and F into knowledge of type D. 

goal-reduction rules could not, in general, be executed 
by the agent in bounded time, the condition action 
rules are efficiently executable. To enable this com- 
pilation, the top-level goal must be fixed at compile 
time. It is still possible for the compiled program to 
respond to externally specified run-time goals, but the 
goal-reduction mechanism cannot be used at run time 
[Kaelbling, 1988]. 

The Gapps compilation procedure described above 
can be used, in conjunction with standard operators 
described in terms of a regression function, to compile 
a set of operator descriptions and a top-level goal into a 
set of condition-action rules. This compilation method 
requires that the operator descriptions be used to de- 
fine a function (regress p alpha), which returns the 
weakest condition in the world such that, if operator 
alpha is executed, p will be true. 

(defgoalr  (ach p) 
(if (regress p alpha) 

(do alpha) 
(ach (regress p alpha)))) 

This goal-reduction rule says that the goal of achieving 
a condition p can be reduced to performing some ac- 
tion alpha if that action will cause p to be true in one 
step (the condition denoted by (regress p alpha)); 
otherwise, it can be reduced to the condition of being 
one step away from p. If the Gapps compiler is modi- 
fied to have a depth bound, so that only plans of finite 
length may be considered, it will generate a partial ac- 
tion map that has an action for every situation from 
which the goal can be achieved in a number of steps 
that is less than the depth bound. 

5.3     Online versus Offline Compilation 

There is a middle ground between compiling all of 
the declarative structure and flexibility away and per- 
forming large search computations on each action step. 
When the agent can encounter a wide range of goals 
or initial states at run time, it may be more effi- 
cient to retain a compact declarative description of 
the agent's abilities in terms of operator descriptions 
or goal-reduction rules and use them to derive actions 
at run time. This approach is an instance of a space 
versus time trade-off. It would always be possible to do 
the complete compilation in advance, but storing the 
result could take a huge amount of space. In addition, 
we have already seen that complete direct execution of 
the declarative specification is intractable. Thus, for 
each world, agent, and task specification there is an 
appropriate degree of compilation. 

An agent's behavior usually stems from the require- 
ments of a number of constraints. They may be ever- 
present constraints, such as not running out of power 
or avoiding running into walls; they may be reflex con- 
straints, such as pulling away from touching a hot ob- 
ject; or they may be dynamic goal constraints, such 
as going to the store to get a sandwich because some- 
one asked you to. An intuitively reasonable place to 
divide compilation from run-time interpretation is ac- 
cording to when the constraints are known. Thus, all 
of the agent's background and reflex constraints might 
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be compiled into a program that is intersected with 
a program obtained by run-time interpretation asso- 
ciated with a particular dynamic goal that has been 
received by the agent. Another intuitive dividing line 
would be to compile those parts of the agent's behav- 
ior that are appropriate for the situations in which it 
is most likely to find itself. If the agent finds itself 
without a compiled response to a particular situation, 
it can fall back on dynamic interpretation of high-level 
structures. 

Blythe and Mitchell have explored incremental com- 
pilation methods in a mobile robot [Blythe and 
Mitchell, 1989]. The robot uses a traditional planner 
to solve problems initially, but it caches the results of 
the planning as situation-action rules. Whenever the 
robot re-encounters a situation, it can act reactively. 
This is a relatively simple but reliable way to ensure 
that the agent can react quickly to common occur- 
rences. 

6     Conclusion 

The selection of a formalism for specifying the action 
map of an embedded agent is much the same as the se- 
lection of a programming language for a conventional 
programming project. Two important considerations 
are the ease of use of the formalism for the agent's de- 
signer and the efficiency of execution of the formalism 
by the agent. These two considerations are often in 
direct conflict, but that conflict can be mediated very 
successfully by a variety of compilation methods. It is 
an important research direction to develop new com- 
pilation methods, exploring the trade-offs between ef- 
ficiency of the compiler and efficiency of the compiled 
code and between online and offline compilation. 
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Introduction 
SRI International (SRI) has a long history of work in 

automated planning and uncertain reasoning. In a re- 

cent effort1, we began to explore the problem of plan- 

ning in uncertain environments. Here we present our 

results on how to evaluate the likelihood that plans will 

accomplish their intended goals given both an uncer- 

tain description of the initial state of the world and the 

use of probabilistically reliable operators. We begin by 

reviewing our approach to developing a new planning 

architecture, for the DARPA/RADC Knowledge-Based 

Planning Initiative, that will incorporate these results2. 

Planning in Uncertain and Dynamic 

Environments 
SRI intends to develop a planning system capable of 

coping with the inherent complexity and requirements 

of many real-world domains. The requirements in- 

clude uncertain information, competing goals, real-time 

response, intelligent application of standard operating 

procedures, integration of multiple plans, dynamic plan 

modification, and interaction with a human planner. 

Our approach includes the development of a hybrid 

methodology that is able to use classical methods such 

as optimization techniques when appropriate, and will 

use AI methods to organize and evaluate the evolving 

plan. 
The basis for the proposed flexible, integrated plan- 

ning system will be several high-performance AI tech- 

1 Contract No. N00039-88-C-0248, Space and Naval War- 
fare Systems Command/Defense Advanced Research Project 
Agency. 

2 Contract No. F30602-90-C-0086, Rome Air Develop- 
ment Center/Defense Advanced Research Project Agency. 

nologies. These include classical, search-based planning; 

structured, procedural reasoning; and evidential reason- 

ing. Various SRI research programs and results have 

contributed to the state-of-the-art in each of these ar- 

eas: SIPE-2 [10] provides a "classical" framework for 

hierarchically elaborating plans and subplans, tracking 

resources, and monitoring plan execution; PRS [4] pro- 

vides a means for bringing expert planning and domain 

knowledge to bear on the planning problem; Gister's im- 

plementation of evidential reasoning [7] provides a nat- 

ural and effective representation for reasoning from lim- 

ited uncertain information to assess the present and fu- 

ture states of the world during plan execution. SIPE-2, 

PRS, and Gister are implemented and tested systems3, 

not theoretical exercises. SIPE-2 has been applied to 
construction tasks and the scheduling of process lines in 

a real manufacturing environment [11], PRS has been 

used for monitoring and controlling the Reaction Con- 

trol System of the NASA Space Shuttle [4] and for battle 

management aboard a Grumman E-2C [5], and Gister 
has been applied to naval-intelligence decision problems 

[7] and helicopter route planning [3], among others. 

To provide the capabilities that are required by real- 

world problems but are not provided by currently avail- 

able systems, we propose to: 

• Introduce evidential-reasoning methods into SIPE-2. 

Evidential reasoning, constructs will be used to rep- 

resent nondeterministic operators and uncertain and 

incomplete situational knowledge. 

• Implement procedural templates as PRS "Knowledge 

Areas" for representation and use of expert planning 

3SIPE-2,    PRS,   and   Gister   are   trademarks   of   SRI 
International. 

439 



knowledge. These templates will be used to out- 
line plans for stereotypical situations (where stan- 
dard operating procedures would be used); they will 
be applied by PRS in real-time; they will be used 
by SIPE-2 to provide methods for improving planner 
operation when resources (including time) are con- 
strained. This capability is a necessity for controlling 
the uncertainty-induced growth of the solution space. 

• Integrate generic and problem-specific optimization 
methods with AI planning techniques. 

• Develop techniques to control planning and plan exe- 
cution that will enable the system to react quickly 
when necessary, and to consider more alternatives 
when time permits. 

• Design mechanisms for combining plans that have 
been produced in a distributed manner. 

• Validate the technical developments through a proof- 
of-concept demonstration based upon selected logis- 
tics problems. 

Existing Technologies 
In the remainder of this paper, we describe preliminary 
work that demonstrates some of the ways that our plan- 
ning technology can be beneficially combined with ev- 
idential reasoning. The ideas described are supported 
by an implementation that incorporates both SIPE-2 
and Gister, and demonstrates that the theory works in 
practice. Brief introductions to these two systems will 
provide the necessary terminology for the remainder of 
this paper. 

SIPE-2 
Faced with the overwhelming complexity of planning, 
SIPE-2 has attempted to balance epistemological and 
heuristic adequacy. It retains enough expressive power 
to be useful, yet makes enough restricting assumptions 
to produce a viable, efficient implementation. Unlike 
most AI planning research, the design of SIPE-2 has 
taken heuristic adequacy as one of its primary goals. 

SIPE-2 provides a domain-independent formalism for 
describing operators (the planner's representation of ac- 
tions), and utilizes the knowledge encoded in these op- 
erators, together with heuristics for handling the combi- 
natorics of the problem, to plan means to achieve given 
goals in diverse problem domains. The plans include 
a plan rationale so that the system can modify these 
plans in response to unanticipated events during plan 

execution. Automatically, or under interactive control, 
the system generates possibly nonlinear plans contain- 
ing conditionals that will achieve the given goals when 
executed in the given initial situation. It can intermin- 
gle planning and execution, and can accept arbitrary 
descriptions, in the language used to describe the do- 
main, of unexpected occurrences during execution and 
modify its plan to take these into account. 

To achieve heuristic adequacy, SIPE-2 incorporates 
special techniques for solving a number of problems; 
these techniques are described elsewhere [10]. The tech- 
nique most important for the current work is the truth 
criterion. A planner's truth criterion is its algorithm 
for determining whether a formula is true in a particu- 
lar world state. As Chapman has shown [1], nonlinear- 
ity makes the truth criterion NP-complete, given a rea- 
sonably powerful representation. SIPE-2 incorporates 
several heuristics for making its truth criterion efficient 
[10]. For present purposes, these are unimportant ex- 
cept to note that each node in a SIPE-2 plan network 
implicitly and economically encodes a world state by 
specifying the changes that have occurred since the pre- 
vious world state. Thus a plan node can be passed back 
to Gister as a representation of a world state. Of course, 
only by using this node in the context of the whole plan 
network and using SIPE-2's truth criterion to process 
this network can the implicit representation be properly 
interpreted. 

Gister 
Gister incorporates a body of techniques for automated 
reasoning from evidence that we call evidential reason- 
ing. The techniques are based upon the mathematics 
of belief functions developed by Dempster and Shafer 
[2, 8, 9] and have been applied to a variety of prob- 
lems including multisensor integration, situation analy- 
sis, route planning, diagnosis, plan execution monitor- 
ing, and process control. 

We have developed both a formal basis and a frame- 
work for implementing automated reasoning systems 
based upon these techniques [6]. Both the formal and 
practical approach can be divided into four parts: (1) 
specifying a set of distinct propositional spaces (i.e., 
frames of discernment), each of which delimits a set of 
possible world situations; (2) specifying the interrela- 
tionships among these propositional spaces (i.e., com- 
patibility relations); (3) representing bodies of evidence 
as belief distributions over these propositional spaces 
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(i.e., mass distributions); and (4) establishing paths (i.e., 
analyses) for the bodies of evidence to move through 
these propositional spaces by means of evidential oper- 
ations, eventually converging on spaces where the target 
questions can be answered. These steps specify a means 
for arguing from multiple bodies of evidence toward a 
particular (probabilistic) conclusion. 

Evaluating Plans in Uncertain Worlds 
The approach we are taking in our preliminary work is 
to combine our existing systems into a test bed suitable 
for exploring different technological solutions. Later in 
this effort, when our solutions have stabilized, we will 
determine the target architecture for the final imple- 
mentation. By combining our existing systems, we are 
attempting to accumulate the benefits of each. This is 
facilitated by the fact that each system can support a 
common representation, namely first-order logic. To fa- 
cilitate this, we posed the problem of evaluation of a 
given plan in an uncertain environment. By uncertain 
environment, we mean a world where the initial state 
is not known with certainty and where the effects of 
actions are not known with certainty. 

Since Gister supports reasoning about uncertainty, 
but SIPE-2 and PRS do not, our approach is to have 
Gister evaluate a given plan in an uncertain environ- 
ment. The plan will not incorporate uncertain informa- 
tion, rather it will be a plan produced by SIPE-2, or a 
standard operating procedure that has been selected by 
PRS, or a plan created by the user. By evaluate a plan, 
we mean that Gister will be able to predict the prob- 
abilistic results of executing a plan given that neither 
the initial state of the world nor the effects of applying 
operators (in known states) are known with certainty. 

Frame Logic 

The first step in applying Gister to a selected domain 
of application is to define the frame logic. Suppose that 
the answer to some question A is contained in a finite set 
0,4. That is, each element a,- of ©A corresponds to a dis- 
tinct possible answer to the question A, no two of which 
can be simultaneously true. For example, A might be a 
question concerning the configuration of a set of blocks. 
In this case, ©A would consist of all the possible con- 
figurations under consideration. 0 A is called a frame of 
discernment. If there are exactly three blocks, labeled 
"A"    "B", and "C", and each can rest on top of one 

other block or on a table, then ©A might be defined as 
follows: 

©A    =    {ABC,ACB,AB-C,AC-B, BAC, 

BCA,BC-A,BA-C,CAB, 

CBA,CA-B,CB-A,A-B-C}   , 

where AB-C corresponds to block A resting on top of 
block B, and blocks B and C resting on the table. 

Propositions Once a frame of discernment has been 
established for a given question, it formalizes a variable 
where each possible value for the variable is an element 
of the frame. A statement pertaining to the value of 
this variable is discerned by the frame, just in case the 
impact of the statement is to focus on some subset of the 
possible values in the frame as containing the true value. 
In other words, a propositional statement A,- about the 
answer to question A corresponds to a subset of ©A. 

For example, if the statement is "block A is on block 
B," then it corresponds to the set of block configuration 
in QA where block A rests on block B. 

A-ON-B = {ABC, AB-C, CAB} C 0A   . 

Other propositions related to this question can be 
similarly represented as subsets of ©A (i.e., as elements 
of the power set of ©A, denoted 2®"); the subset Aj 
might correspond to all those configurations in 0A that 
have no block on top of block C. Once this has been 
accomplished, logical questions involving multiple state- 
ments can be posed and resolved in terms of the frame. 
Given two propositions, A, and Aj, and their corre- 
sponding sets, Ai and Aj, the following logical opera- 
tions and relation can be resolved through the associ- 
ated set operations and relation: 

-A,- <^=> QA - At 

A,- A Aj <=$■ Ai n Aj 

A{   V  Aj <£=> AiUAj 

Ki => Aj •<=> -A-i (_ Aj 

Thus, when two statements pertaining to the same 
question are available, and they are each represented as 
subsets of the same frame, their joint impact is calcu- 
lated by intersecting those two subsets. Given "A is on 
B" (A-ON-B) and "the top of C is clear" (CLEAR-C), 
their joint impact is 
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CLEAR-C    =    {AB-C, BA-C, CAB, CBA, 

CA-B.CB-A, A-B-C} 

A-ON-Bn CLEAR-C    =    {AB-C,CAB} 

All other statements that correspond to supersets of this 
result in ©A, are implicitly true (e.g., "a block is on 
B"); all of those statements whose corresponding sets 
are disjoint from this result are implicitly false (e.g., "A 
is on C"); and all others statements' truthfulness are 
undetermined (e.g., "B is on the table"). As additional 
information becomes available, it can be combined with 
the current result in the same way. Since intersection is 
commutative and associative, the order that information 
enters is of no consequence. 

Translating Propositions Suppose that another 
question of interest B has been separately framed. For 
example, if A corresponds to the state of the blocks at 
time 1, then B might correspond to the state of the 
blocks at time 2. Its frame of discernment, QB, is de- 
fined as the set of possible block configurations at time 
2 (for this example, O^ and QB are equivalent). 

relative to QB- If a statement Ak is true, then the state- 
ment TA^B(A):) is also true: 

0 =    {h,h, 
Bj    C    QB   • 

, bm) 

If something is known about the state of the blocks at 
time 1, we would like to take advantage of this infor- 
mation to narrow the possibilities at time 2. To do 
this, one must first define a compatibility relation be- 
tween the two frames. A compatibility relation simply 
describes which elements from the two frames can be 
true simultaneously i.e., which elements are compatible. 
For this example, if at most one block can be moved in a 
single unit of time, then state AB-C from 0^ is compat- 
ible with AB-C, CAB, and A-B-C from 0^, since these 
are the only states that could immediately follow AB-C. 
Thus, a compatibility relation between frames QA and 
QB is a subset of the cross product of the two frames. A 
pair (di,bj) is included if and only if they are compati- 
ble. Typically, there is at least one pair (a;, fy) included 
for each a,- in QA (the analogue is true for each bj): 

II(A,B) C QA x QB   ■ 

Using the compatibility relation H(A,B) 
we can define 

a compatibility mapping TA>-+B for translating preposi- 
tional statements expressed relative to 0,4 to statements 

TA~B : 20^ 

TA~B(Ak) { bj | (ai,bj) £ IL(A,B), at € Ak } 

In our example, the compatibility relation H(A,B) de- 
limits all possible state changes between time 1 and 2. 
However, when evaluating a plan, additional informa- 
tion is available, namely, the specific action or operation 
that is to be performed. One means of incorporating this 
information is to define a distinct compatibility relation 
corresponding to each operation. For example, the com- 
patibility relation ÜPUT-C-ON-A would have CAB as the 
only state in QB compatible with AB-C in 0^; those 
states in 0^ that already have block C on block A (e.g., 
CAB) or that have some block on C, thus preventing it 
from being moved, are compatible with the same state 
in QB- 

Given the propositions A-ON-B and CLEAR-C at time 
1, we conclude that the initial state is either AB-C or 
CAB; if we do not know which, if any, operator is ap- 
plied in this state, then we conclude that any of three 
states are possible at time 2, AB-C, CAB, or A-B-C; on 
the other hand, if we know that PUT-C-ON-A is ap- 
plied, then we conclude that the state at time 2 must be 
CAB. Presuming that the possible states for any time 
i are the same as those for times 1 and 2, and that 
the possible operations and their effects are the same in 
moving from any time i to i + 1, these frames and com- 
patibility relations can be used to calculate the effects 
of any planned sequence of actions. 

Framing Evidence 

When information is inconclusive, partial beliefs re- 
place certainty; probabilistic distributions over state- 
ments discerned by a frame replace Boolean valued 
propositions. These distributions are called mass distri- 
butions. Each body of evidence is represented as amass 
distribution (e.g., mA) that distributes a unit of belief 
over propositional statements discerned by a frame (e.g., 

©A): 

mA : 2@A    H+    [0,1] 

]P   mA(Ai)     =    1 
AiCeA 

mA(0) 
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For example, if we are told that there is an 80% chance 
that block A is on B and a 20% chance that block A is 
not on B, then this is represented by a mass distribution 
(TJA-ON-B that attributes 0.8 to the set corresponding to 
A-ON-B, 0.2 to the complement of A-ON-B with respect 
to 0^i, and 0.0 to all other subsets of 0^. 

Interpreting Evidence To interpret a body of evi- 
dence relative to the statement Aj, we calculate its sup- 
port and plausibility to derive its evidential interval as 
follows: 

SPt(Aj)    =     Yl  mA(Ai) 
AiCAj 

Pls(Aj)    =    1 - Spt(0A - Aj) 

[Spt(Aj),Pls(Aj)]    C    [0,1]   . 

Given the body of evidence represented by mA-ON-B, the 
evidential interval for A-ON-B is [0.8, 0.8], for CLEAR-C 
is [0.0,1.0], for {ABC} is [0.0,0.8], and for CLEAR-B is 
[0.0,0.2]. 

Propositional statements that are attributed nonzero 
mass are called the focal elements of the distribution. 
When a mass distribution's focal elements are all single 
element sets, the distribution corresponds to a classi- 
cal additive probability distribution and the evidential 
interval, for any proposition discerned by the frame, col- 
lapses to a point i.e., support is equivalent to plausibil- 
ity. For any other choice of focal elements, some propo- 
sitional statement discerned by the frame will have an 
evidential interval with support strictly less than plau- 
sibility. This reflects the fact that mass attributed to a 
set consisting of more than one element represents an 
incomplete assessment; if additional information were 
available, the mass attributed to this set of elements 
would be distributed over its single element subsets. 
Thus, an evidential interval with support strictly less 
than plausibility is indicative of incomplete information 
relative to the frame. 

For example, consider another point of evidence. A 
computer vision system reports that block C is clear. 
Based upon our previous experience with this system, 
we know that it always correctly determines if a block 
is clear or not, but 10% of the time it misidentifies the 
block. In other words, although we do not doubt that 
some block is clear, we are uncertain whether the block 
observed was C. Assuming that there is a 90% chance 
that the observed block was C and a 10% chance that it 

was not, then this evidence is represented by amass dis- 
tribution mcLEAR-c that attributes 0.9 to CLEAR-C and 
0.1 to the set of all possible configurations, since every 
configuration has at least one clear block. Based upon 
this distribution, the evidential interval corresponding 
to the proposition that block C is clear is [0.9,1.0], that 
it is not clear [0.0,0.1], and that it is any particular 
configuration where C is clear is [0.0,1.0]. 

Fusing Evidence When two mass distributions m\ 
and m\ representing independent opinions are ex- 
pressed relative to the same frame of discernment, they 
can be fused (i.e., combined) using Dempster's Rule of 
Combination. Dempster's rule pools mass distributions 
to produce a new mass distribution mA that represents 
the consensus of the original disparate opinions. That is, 
Dempster's rule produces a new mass distribution that 
leans towards points of agreement between the original 
opinions and away from points of disagreement. Demp- 
ster's rule is defined as follows: 

m3
A(Ak)    =    m\®mA(Ak) 

=    YZT^      J2      "»A(^.-)"»A(4J) 
AinAj=:Ak 

K     = J2      mA(Ai)mA(Aj) 

<      1     . 

Combining the two bodies of evidence ITIA-ON-B and 
TICLEAR-C by Dempster's rule results in a mass distri- 
bution that attributes 0.72 to C being clear and A being 
on B (i.e., {CAB, AB-C}), 0.18 to C being clear and A 
not on B (i.e., {A-B-C, CB-A, CA-B, CBA, BA-C}), 0.08 
to A on B (i.e., A-ON-B), and 0.02 to A not on B (i.e., 
the complement of A-ON-B). This induces the following 
evidential intervals: [0.9,1.0] for CLEAR-C, [0.72,1.0] for 
C-ON-A, [0.8,0.8] for A-ON-B, [0.0,0.8] for {CAB} and 
{AB-C}, [0.0,0.2] for {CBA}, and [0.0,1.0] for CLEAR-A. 

Since Dempster's rule is both commutative and asso- 
ciative, multiple (independent) bodies of evidence can 
be combined in any order without affecting the result. If 
the initial bodies of evidence are independent, then the 
derivative bodies of evidence are independent as long as 
they share no common ancestors. 

The conflict (i.e., K) generated during the applica- 
tion of Dempster's rule quantifies the degree to which 
the mass distributions being combined are incompati- 
ble, that is, the degree to which the two distributions 
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are directly contradictory. When K = 1, the distribu- 
tions are in direct and complete contradiction to one 
another and no consensus exists (i.e., Dempster's rule 
is undefined); when K = 0, there is no contradiction 
and the evidential intervals based upon the consensus 
distribution will be contained within the bounds of the 
evidential intervals based upon the component distribu- 
tions i.e., the combination is monotonic; otherwise, the 
component distribution are partially contradictory. In 
this case, Dempster's rule focuses the consensus on the 
compatible portions of the component distributions by 
eliminating the contradictory portions and normalizing 
what remains; some evidential intervals based upon the 
consensus distributions will not fall within the bounds 
of intervals based upon the component distributions i.e., 
the combination is nonmonotonic. 

Translating Evidence If a body of evidence is to be 
interpreted relative to a question expressed over a dif- 
ferent frame from the one over which the evidence is ex- 
pressed, a path of compatibility relations connecting the 
two frames is required. The mass distribution express- 
ing the body of evidence is then repeatedly translated 
from frame to frame, via compatibility mappings, until 
it reaches the ultimate frame of the question. In our 
planning example, interpreting the effects of a body of 
evidence about time 1 on propositions at time 5 requires 
that the evidence be translated from frame to frame, for 
each planned action between time 1 and time 5. 

In translating TUA from frame &A to frame QB via 
compatibility mapping TA^B, the following computa- 
tion is applied to derive the translated mass distribution 
mB: 

mB{Bj)    =    YZT^        XI        mAAi) 

Yl       mA{Ai) K      = 

rA^B(A,)=m 
< 

Intuitively, if we (partially) believe Ai, and A{ implies 
Bj, then we should (partially) believe Bj; if some focal 
element Ai is incompatible with every element in QB, 

then there is conflict (i.e., K) between the evidence and 
the logic of the frames and compatibility relation. This 
is equivalent to the conflict in Dempster's rule. 

In our example, to evaluate the effect of applying the 
PUT-C-ON-A operator, given the two independent bod- 
ies of evidence about the initial state,  mA-ON-B  and 

"ICLEAR-C, we first combine these mass distributions 
using Dempster's rule and then translate the result via 
compatibility mapping TPUT-C-ON-A to frame QB- The 
result is a mass distribution that attributes 0.72 to 
{CAB}, 0.18 to {CA-B, CBA, BA-C}, 0.08 to {CAB, 
ABC}, and 0.02 to the complement of {A-B-C}; this 
induces the following evidential intervals: [0.9,1.0] for 
CLEAR-C, [0.72,1.0] for C-ON-A, [0.8,0.8] for A-ON-B, 
[0.72,0.8] for {CAB}, [0.0,0.2] for {CBA}, [0.0,0.1] for 
CLEAR-A, and [0.0,0.0] for {AB-C}. Given a sequence 
of operators to be applied after executing PUT-C-ON- 
A, we simply perform successive translations until the 
sequence is exhausted. 

When multiple bodies of evidence are available over 
different frames, they must be translated to a common 
frame before they can be combined using Dempster's 
rule. They can all be translated to a single frame and 
combined, or subsets of the available evidence can be 
translated and combined at intermediate frames, and 
these intermediate results then translated and combined 
until the final destination frame is reached. If during 
plan execution, intermediate observations are made, re- 
sulting in additional bodies of evidence about the state 
of world at time i, these bodies of evidence can be com- 
bined with the body of evidence representing the pre- 
sumed state of the world at time i, to refine the pre- 
dicted outcome of the plan. So, in our example, if we 
had additional information about the state of the world 
at time 2, it could be combined with our result for that 
time before additional translations are performed. 

Implementing Evidential Reasoning 

In the preceding discussion, we have defined the frame 
logic in terms of set theoretic concepts. This is the way 
that it is most often presented since the audience is usu- 
ally more familiar with multivariate decision theory and 
statistics than with propositional logic. However, all of 
the evidential reasoning operations can be recast using 
propositional logic. These modified definitions follow. 

Interpretation: 

Spt(Aj)    =      2   mA(A0 
Aj^Aj 

Pls(Aj)    =    l-Spti-nAj) 

[Spt(Aj),PlS(Aj)]    C    [0,1]   . 
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Fusion: 

m3
A (A,- A Aj)    =    ml

k ® m\ (A; A Aj) 

=    Y^   S   mA(A')mA(Ai) 
AiAAy 

K   =        S     mA(A')mA(Ai) 
^A.AA,) 

<    1 

Translation: 

mB(Bj) 
1-K X] mA(A<) 

lA-B (A,)=Bi 

K =       Yl      mA(Ao 
rA„B(A,)=FALSE 

<    1   . 

Implementing evidential-reasoning systems can be di- 

vided into two independent subproblems: How to rep- 

resent mass distributions and perform numeric calcu- 

lations on them? How to represent propositions and 

perform logical inferences? Accordingly, Gister's imple- 

mentation of evidential reasoning consists of two distinct 

components: one that manipulates and interprets mass 

distributions and another that performs logical reason- 

ing. As mass distributions are manipulated by the first 

component, logical questions are posed to the second 

component. The implementation of each of these com- 

ponents is independent of the other. The best suited im- 

plementations depends upon the characteristics of the 

domain of application and upon the characteristics of 

the host computational environment. Most importantly, 

the numeric component places no constraints on the rep- 

resentation of propositions or the implementation of the 

logical operations, just so long as the logical questions 

posed by the numeric component are answered by the 

logical component. 
Since different logical representations are better 

suited to different applications, Gister allows a frame 

logic implementation to essentially be given as a pa- 

rameter. A frame logic implementation is represented 

as a distinct object (using object-oriented programming 

techniques) capable of answering all of the logical ques- 

tions required to support the numeric module's eviden- 

tial operations. One such implementation is based on 

set theory, mirroring the set-theoretic presentation of 

the frame logic in this paper. 

However, it should be clear from the simple blocks 

world example in this paper that this representation is 

not suitable for real-world planning. The representation 

is too cumbersome since each possible world state must 

be enumerated, and the compatibility relations must 

specify all compatible states for every possible world 

state. Furthermore, continually translating from one 

frame to another during evaluation of a plan will be inef- 

ficient, and partially ordered plans will cause problems. 

Instead, we propose to develop a frame logic based upon 

SIPE-2's representation of plans and techniques for rea- 

soning about them. 

A SIPE-2 Logic 
The central idea behind the current combination of 

SIPE-2 and Gister is that the former can provide the 

logic used by the latter when the domain is planning, 

with several advantages. Briefly, these advantages are 

compactness of representation (one does not enumerate 

every possible world state nor elements of compatibil- 

ity relations), SIPE-2's efficiency when determining the 

truth of a proposition in a world state, the use of nonlin- 

ear plans under conditions imposed by SIPE-2's heuris- 

tics, and the ability of the planner to generate plans au- 

tomatically when Gister eventually asks that goals be 

satisfied rather than that operators be applied. 

We have implemented a SIPE-2 frame logic for Gis- 

ter as described below, and have tested it by evaluating 

and interactively constructing plans in a blocks world 

with uncertain states. When Gister evaluates plans, the 

SIPE-2 logic provides the algorithms and representa- 

tions for determining whether a proposition is true in a 

world state, for determining whether two world states 

are equivalent, and for performing translations using a 

compact SIPE-2 operator. 

World States and Propositions 

The different possible initial worlds states are repre- 

sented in Gister as SIPE-2 plan nodes of type planhead. 

Planhead nodes explicitly list all predicates that are true 

at that node. All other worlds states, i.e., those gener- 

ated by planned actions, are represented in Gister by 

SIPE-2 plan nodes of type process. The planner creates 

these plan nodes in response to requests from Gister to 

perform translations (see next section). Process nodes 

implicitly represent the world state since they list only 

predicates that have changed since the previous node. 

Gister represents an incompletely specified world state 

as a set of plan nodes. 
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For example, given the propositions A-ON-B and 

CLEAR-C at time 1, we represent the resulting incom- 

pletely specified world state as {AB-C, CAB}, where 

AB-C and CAB are names for SIPE-2 planhead nodes. 

Suppose an operator is applied in this state. As de- 

scribed in the next section, this will cause SIPE-2 to 

produce plan networks for each element of this set, and 

the uncertain world state at time 2 would be represented 

as {P13, P19}, where P13 and P19 are names for SIPE-2 

process nodes in plan networks. 

Gister needs to query the truth of propositions in spe- 

cific world states. In our implementation, Gister accepts 

propositions specified in SIPE-2 input syntax, which are 

then passed on to the planner together with the plan 

node representing the desired world state. (Checking a 

proposition in an incompletely specified state may re- 

sult in several such calls to the planner). SIPE-2 parses 

the propositions into appropriate data structures and 

simply applies its truth criterion to the proposition at 

the plan node. The plan node is part of a whole plan 

network that the truth criterion uses to compute its re- 

sult. This computation has been shown in practice to 

be efficient, even in fairly realistic domains [11]. 

In the blocks world example, the SIPE-2 predicates, 

plans, and operators are exactly the same as they are 

in published examples [10]. The only limitation of this 

technique is that certain restrictions are placed by SIPE- 

2 on the form of the input propositions [10]. We do 

not expect this to be problematic, and some restrictions 

could be easily relaxed. This implementation provides 

both the compactness of plan nodes as a representation 

and the efficiency of computing on them with the truth 

criterion. 

Translations 

As discussed earlier, Gister could use a set to represent 

a compatibility relation that captures the effects of an 

action. However, this representation is much too cum- 

bersome in practice since an element must be included 

from every possible pair of successive world states. 

The SIPE-2 logic does translations for Gister by us- 

ing its operators to generate plan networks. Gister still 

has a name for each possible compatibility mapping, but 

need not represent these mappings in any more detail. 

Gister will call SIPE-2 to translate from one world state 

to another using the named compatibility mapping. The 

planner translates Gister's name into a goal or process 

node in a plan network. For example, a translation re- 

quest for the compatibility mapping PUT-A-OI\l-B will 

cause the planner to add a process/goal node to a plan 

network. The goal node would specify (ON A B) as 

the goal, while the process node would specify that the 

standard PUTON operator be applied to the arguments 

A and B. The current implementation creates process 

nodes, the use of goal nodes is described in the next 

section. 

The node is added to the plan at the point that rep- 

resents the state from which we are translating. The 

planner then expands this plan in more detail to ob- 

tain the final representation of the new world state. 

This process makes use of the SIPE-2 's causal theory 

for deducing the effects of actions. The plan node re- 

turned to Gister will be the last node in the expansion 

of the added node. Since Gister may make the same re- 

quest several times, SIPE-2 uses its context mechanism 

to keep track of all expansions and returns an already 

constructed plan node whenever appropriate. 

Suppose we apply PUT-A-ON-C in the incompletely 

specified state {AB-C, CAB} at time 1. SIPE-2 will cre- 

ate process nodes for applying PUTON to A and C after 

each of the two planhead nodes AB-C and CAB. The first 

one will be expanded by the planner and a process node, 

say P13, will be returned. As described later, an equiv- 

alence test in the SIPE-2 frame logic will allow Gister to 

merge P13 with AC-B. The second process node cannot 

be expanded because the precondition of the operator is 

not satisfied. Currently, SIPE-2 will return the previous 

world state, CAB in this case, on the assumption that 

the executing agent recognizes the unexecutable action 

and ignores it. Thus the resulting uncertain state at 

time 2 would be {P13, CAB}. Domain-specific knowl- 

edge about the effects of attempting unexecutable ac- 

tions could easily be incorporated. For example, if the 

agent would knock C off A while attempting to put A on 

C in CAB, an operator could be written to encode this 

knowledge and the precondition of this operator would 

allow it to expand the node for putting A on C. 

In this system, the compatibility mappings are rep- 

resented by SIPE-2 operators. Since the Gister names 

may encode a list of arguments, one operator with vari- 

ables can represent any number of Gister compatibility 

mappings. For example, the single standard PUTON op- 

erator is used to represent all 9 blocks world compatibil- 

ity mappings. Thus a significant economy is achieved, 

and the economic representation can be computed with 

efficiently. 
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Another advantage of using plan networks is that 
they might contain nonlinear plans, yet the nonlinearity 
would be invisible to Gister. The process node returned 
to Gister would be after the unordered actions in the 
nonlinear plan, so only SIPE-2's truth criterion needs 
to address the question of nonlinearity. Thus, the re- 
striction to linear sequences can be partially alleviated. 

Generating Plans for Translations One extension 
of this scheme is to allow the translation to be described 
as a goal node to be achieved. The planner could then 
build an arbitrary plan for achieving this goal and use 
it to represent the compatibility mapping. One compli- 
cation is that this means the "compatibility mapping" 
might vary depending on the situation (since different 
plans might be generated). However, achieving a goal 
in an uncertain world state will require that the same 
plan be used for each world state in the mass distribu- 
tion. While this complication does not appear to pose 
theoretical difficulties, it has not yet been implemented. 
This capability of translating via goals would be use- 
ful for letting the planner fill in the details of a more 
abstract plan that has been provided. 

Equivalent States 

It is important to notice when two world states are 
equivalent in Gister, since this can significantly collapse 
the size of the sets that the system must reason about, 
which in turn significantly reduces the combinatorics. 
This is particularly useful in the blocks world because 
the simple states mean that all sorts of plan networks 
might result in the same world state. In more complex, 
realistic domains it may be rare for different sequences 
of actions to result in exactly the same state. However, 
even in these domains it will eventually be necessary to 
recognize states as equivalent in all relevant aspects so 
that the combinatorics can be reduced. 

For this reason, we have not written code to determine 
the equality of two states in SIPE-2 (a possibly expen- 
sive computation). Instead we allow the user to specify 
the relevant aspects for dividing states into equivalence 
classes. While this puts more of a burden on the user, we 
view it as necessary for obtaining heuristic adequacy in 
complex domains. This is accomplished by defining an 
"equivalence" operator that is designated for this check- 
ing. This is a standard SIPE-2 operator with a list of ar- 
guments and a precondition, but nothing else. Matching 
the precondition in a particular world state will return 

a list of instantiations for variables in the operator that 
effectively specify its equivalence class. Thus, when Gis- 
ter asks whether two world states are equivalent, SIPE- 
2 simply calls its truth criterion on the precondition of 
the equivalence operator at each of the two states. If 
the result is failure in both cases, or success with the 
same variable instantiations in both cases, then the two 
states are equivalent. Again, the efficiency of the truth 
criterion is used to significantly improve on an algorithm 
for determining the equality of any two states. 

For example, our equivalence operator in the 
blocks world has a precondition of (ON A 0BJECT1) 
A (ON B 0BJECT2) A (ON C 0BJECT3), where the 
OBJECTn are variables to be instantiated. In a world 
where A, B, and C are the only blocks, this condition 
distinguishes every state, effectively implemented a test 
for equality with the efficiency obtained from using the 
equivalence-operator mechanism. In our previous exam- 
ple, P13 and AC-B were equivalent. This is easily deter- 
mined by matching the equivalence condition at each of 
these two nodes, and getting C, TABLE, and TABLE 
as the instantiations for the OBJECTn in both cases. 

Probabilistic Operators 
The discussion to this point has focused on plan evalu- 
ation when the initial (and therefore subsequent) state 
of the world is uncertain. Another source of uncertainty 
that needs to be taken into account is the nondetermin- 
istic nature of many real-world operators. Within the 
blocks world, one can imagine that if a robot is attempt- 
ing to move the blocks as specified in a plan, that each 
operation will only probabilistically achieve the intended 
goal. For example, if the operation is to put block C on 
block A, the initial grasp for block C might fall short 
leaving block C in its original position or the placement 
of block C on top of block A might fail, causing block 
C to fall to the table. These probabilistically accurate 
operators can be incorporated into an evidential model 
as probabilistic translations. 

As previously discussed, given two frames, &A and 
&B, and a compatibility relation, H.(A,B)> propositional 
statements can be translated between these two frames. 
Alternatively, instead of translating propositional state- 
ments between these two frames via TA~-B and TB^A, 

we might choose to translate these statements to a com- 
mon frame that captures all of the information and then 
on to the target frame. This common frame, Q(A,B), is 
identical to the compatibility relation TI(A,B)-   Frames 
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QA and Qß are trivially related to frame Q(A,B) 
via 

the following compatibility relations and compatibility 

mappings: 

0 (A,B)      = 

n (A,(A,B)) 
U((A,B),B) 

^A>->(A,B)(Ak) 

^(A,B)~B{Xk) 

R(A,B) CeAXÖB 

{(ai,(a,i,bj)) | (Cli,bj) e!l(A,B)} 

{ i(ai,bj), bj) | (ai,bj) G H(A,B) } 

{ (a,, bj) | (ai,bj) G U(A,B), «i G Ak } 

{ bj | (ai,bj) G n(A)B), (a8-, 6j) G A'fc } 

Given these three frames, 6A, Q(A,B), and ©ß, and 

two compatibility mappings, TA^(A,B) and r^^j^ß, 

a mass distribution over ©^ can be translated to Q(A,B) 

and then on to QB; the result will be identical to that 

produced through a single translation from O^ to 0B 

via TA^B- 
Once this intermediate frame has been introduced, 

probabilistic information about the relationship between 

QA and QB can be taken into account. This infor- 

mation, expressed as a mass distribution, m(A,B)i over 

0(yt,B)> provides a means of "weighting" translations to 

favor some elements of Q(A,B) over others. The prob- 

abilistic translation is accomplished by translating the 

mass distribution over 0A to 0(A,B), fusing the result 

with rri(A,B), and translating the fused result to QB- 

In our blocks world example, if 11(^,2?) (and conse- 

quently Q(A,B)) delimits all possible state changes be- 

tween time i and i + 1, then each nonprobabilistic op- 

erator can be represented by a mass distribution that 

assigns all of its mass to a single set, the set consist- 

ing of paired states from 0^ and QB where the state 

from 0.4 is transformed into the state from QB by ap- 

plying that operator. For the operator PUT-C-ON-A 

this set assigned unit mass is designated PUT-C-ON-A. 

Given similarly constructed sets, PUT-C-ON-TABLE 

and DO-NOTHING, corresponding to the operators for 

putting C on the table and doing nothing (i.e., no 

changes in state), we can represent a probabilistically 

accurate operator for putting C on A by a mass dis- 

tribution mpuT-C-ON-A- This mass distribution might 
attribute 0.9 to PUT-C-ON-A and 0.1 to the union of 

PUT-C-ON-TABLE and DO-NOTHING, representing the 

knowledge that 90% of the time this operator acts as 

intended, but 10% of the time it functions as if the in- 

tended action were to put C on the table or to do noth- 

ing. 

Using this probabilistic version of PUT-C-ON-A in 

combination with the evidence about the initial state, 

niA-ON-B and mCLEAR.c, we conclude [0.9,1.0] for 

CLEAR-C, [0.65,1.0] for C-ON-A, [0.8, 0.8] for A-ON-B, 

[0.65, 0.8] for {CAB}, [0.0, 0.2] for {CBA}, [0.0,0.19] for 

CLEAR-A, and [0.0,0.8] for {AB-C}. Comparing these 

results with previous ones obtained using a nonproba- 

bilistic version of PUT-C-ON-A, we find that the sup- 

port for C-ON-A and {CAB} has decreased, the plau- 

sibility for CLEAR-A and {AB-C} has increased, while 

the evidential intervals for the others have remained un- 

changed. This reflects the fact that C is less likely to be 

on top of A and more likely to be elsewhere. 

Importantly, this approach to probabilistic operators 

requires no changes to the SIPE-2 frame logic previously 

described. 

Conclusion 
We have implemented a SIPE-2 logic within Gister, and 

have tested it by evaluating and interactively construct- 

ing plans in a blocks world with uncertain world states. 

This work demonstrates some of the ways that our plan- 

ning technology can be beneficially combined with ev- 

idential reasoning. Several advantages are obtained by 

this combination: compactness of representation, the ef- 

ficiency of SIPE-2 operators to determine the effects of 

actions, SIPE-2's efficiency when determining the truth 

of a proposition in a world state, the use of nonlinear 

plans, and the ability of the planner to generate plans 

automatically while Gister manages the uncertain as- 

pects of the situation. 
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Abstract 

Recently AI planning theory has concerned it- 
self with the behavior of realistic agents, which 
involves sensing and reacting. The plans that 
control this behavior have to be more compli- 
cated than traditional action sequences, which 
makes generating and modifying them much 
more difficult. I describe a novel planning ar- 
chitecture that is intended to surmount these 
problems, by providing transformational plan- 
ning capabilities on top of a reactive plan in- 
terpreter for a robot delivery truck. Planning 
is implemented by way of a set of critics and 
schedulers that anticipate problems with the 
plan by projecting it ahead of time, and seek 
to transform the plan to alleviate these prob- 
lems. For the plans to be transformable, they 
must be simple and modular. We make sim- 
plicity more likely by providing high-level con- 
trol structures, and we encourage modularity 
by providing a uniform way of referring to the 
tasks generated by executing the plan. 

1    Introduction 

The focus of our research project is on planning for 
agents in a dynamic, not fully controllable world. It 
has been suggested that in such an environment agents 
cannot and should not have plans. [2, 1, 5] Having a 
plan seems to imply planning ahead, and the benefits 
of planning ahead are often limited. We agree with this 
view up to a point, but it can be overstated. Planning 
ahead is indeed of little value — except when it is of great 
value. An.agent with several trips to undertake can gain 
a lot by coordinating them, rather than by doing them 
in no particular order or all at once. For the agent to 
be able to take advantage of such planning opportuni- 
ties, it must have the ability to think about the future, 
in particular about what it intends to do and what else 
will happen. We take the agent's plan simply to be that 
part of its future intentions that it is in a position to 
reason about.   Being able to plan means being able to 

'The work reported herein was supported by the De- 
fense Advanced Research Projects Agency, contract number 
DAAA15-87-K-0001, administered by the" Ballistic Research 
Laboratory. 

model and improve some piece of one's program before 
it is executed. 

Classical planners focused entirely on program ma- 
nipulation. Consequently they could be based on the 
assumption that the programs were quite simple, typi- 
cally sequences of actions involving the manipulation of 
objects with standard names. Now that we are taking 
agenthood more seriously, we realize that plans have to 
contain explicit steps for sensing the world and reacting 
to it. Such plans are better able to guide agent behavior 
over long stretches of time. But they are harder to rea- 
son about. One response to this difficulty is to give up 
and just tune all plans by hand. But a less pessimistic 
response is to try to make reactive plans transparent 
enough that a planner has a chance of reasoning about 
them and improving them. The payoffs of even a small 
planning capacity seem large enough that it is worth try- 
ing to develop one. 

Several people are working on ways of combining plan- 
ning with reaction. [20, 33, 26, 14] It is too early to tell 
which approaches are best. Hence the views I outline 
here are basically in the form of a manifesto rather than 
an argument. 

We assume that an agent always has a plan. New as- 
signments are given to it in the form of abstract plans, 
with steps like "Make such-and-such a state true." But 
even abstract plans have default methods for carrying 
them out, so that the agent's plan is always in some 
sense executable, even if the default methods have little 
chance of succeeding. Actually, we expect that the de- 
fault method will under normal circumstances be quite 
capable. We do not insist that the planner be able to do 
something useful within a bounded period of time. [4, 
18, 19] In any case, the present paper is concerned with 
general architectural issues, not the adequacy of partic- 
ular plans. 

Under this view, planning is the operation of improv- 
ing the agent's existing plan. It goes on in the back- 
ground, at whatever time scale its natural evolution re- 
quires. Whenever the planner thinks it has an improved 
plan, it swaps it for the current plan. The interpreter 
must be built so this can happen smoothly. If things are 
happening too fast, then the planner may never catch 
up with the interpreter, in which case the interpreter's 
existing plan had better be good enough. 

One of the most elegant ideas in planning theory is 
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Figure 1: A Simple Delivery Problem 

that a planner can operate by refining abstract plans. 
[28, 23] Unfortunately, our architecture makes that idea 
inapplicable. We have to find ways of editing an already 
fleshed-out plan. [13, 29, 30] We can distinguish be- 
tween two sorts of editors: schedulers and debuggers.1 

A scheduler is a transformation that reorders tasks in 
order to optimize time or other resource usage. [9, 25, 
3]. A debugger is a transformation that attempts to elim- 
inate a bug. [32] A bug is simply a detectable problem, 
discovered by a process of projecting the plan — simulat- 
ing its operation — to see how well it will work. [35, 15, 
16] A scheduler cannot run in response to bug detection, 
because such a transformation is worth doing whenever 
it would substantially improve the plan, and usually the 
only way to verify that it will is to try it. Hence sched- 
ulers should run whenever they can. One advantage of 
doing things this way is that schedulers tend to increase 
the amount of order in a plan, and an ordered plan is 
easier to reason about. [24J 

Figure 1 shows a simple example of the kind of prob- 
lem we want to solve. The system is given three jobs, 
to take object A from location 1 to location 3, and take 
objects B and C from location 2 to location 4. Its orders 
arrive as a plan to do these three things in no particular 
order — interleaving steps if necessary. This specifica- 
tion is already executable, but the interpreter by default 
would do the errands in some random order, unlikely 
to be optimal. As the interpreter starts to work (we 
assume these trips take a substantial amount of time, 
on the order of minutes or hours), the planner starts to 
think. The first thing it does is call a heuristic sched- 
uler. In this domain, a good way to proceed is to extract 
a traveling-salesman algorithm from the plan, solve it ap- 
proximately (in polynomial time [27]), and impose the 
constraints derived on the plan. The result, as shown 
in the figure, is a reasonable schedule, in which all the 
loads happen before any of the unloads. 

To make the problem interesting, let us suppose that 
the scheduler, black box that it is, is incapable of taking 
any constraints into account except for those depending 
on the space-time location of tasks. In particular, it has 
no idea that the robot has only two hands and cannot 
carry three objects at once. Detecting and solving this 
bug is the job of another module, the overload bug detec- 
tor. In the present case, its only remedy for the bug is 
to remove all constraints imposed by the scheduler, add 

Transformational 
Planner 

PLAN 

T 
Reactive 
Interpreter 

'I used the term "debug" differently in [23]. 

Figure 2: Block Diagram of XFRM Planner/Interpreter 

the constraint that an unloading (say, of A) occur before 
the overload, and call the scheduler again. This time it 
decides to deliver A before loading B or C. 

Our goal is to devise and implement a planner that 
can carry this plan out, with or without optimizing it. 
The simultaneous requirements that the plan must 

• be complex enough to be able to survive interfer- 
ence; 

• but be transparent enough to be manipulated by a 
planner 

impose strong constraints on the design of the inter- 
preter, the planner, and the plan itself. In the rest of 
this paper, I will explain the design decisions that are 
the result of these constraints. 

2    Agent Architecture 

Figure 2 shows a top-level view of the agent architecture. 
There is a central plan that is manipulated by a trans- 
formational planner and a reactive executor. We call the 
planner XFRM. 

One of the major issues in deciding which transforma- 
tion to do next is deciding how to coordinate debuggers 
and schedulers. The debuggers ought to take precedence, 
because a buggy plan is probably too awful to try to op- 
timize. But we can't arrange to run the schedulers after 
the debuggers, simply because the schedulers may them- 
selves introduce bugs. Hence when a debugger runs, it 
may have to undo some work done by a scheduler. 

That means that (a) the orderings imposed by the 
scheduler must be clearly marked as undoable; (b) sched- 
ulers must be rerun when their work might have been 
undone. Achieving (a) is just a matter of bookkeeping. 
Achieving (b) is trickier. We don't want to run every 
scheduler periodically, and we don't want to try to guess 
which need to run.  It seems best to have any program 
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that undoes a schedule to be responsible for rerunning 
the appropriate schedulers. That will have the additional 
advantage that after every plan revision that plan will 
be as scheduled as possible. The more ordered a plan is, 
the easier it is to work with. 

We use the classic phrase plan critic [32] to refer to a 
module that looks for a particular class of problem and 
proposes corrections. A critic is a procedure that takes 
a plan and a set of timelines resulting from projecting 
it, and returns a list of bugs. A bug is a data structure 
with the following slots: 

1. Penalty: How much it costs a plan to have this bug. 

2. Signature: A symbolic description of the bug. 

3. Comparer: A procedure for comparing the signature 
with that of another bug. Two bugs can be the same 
except for severity. (E.g., the same deadline can be 
missed by a minute or by an hour.) 

4. Transformation: A procedure that will try to fix 
the bug by making a change in the plan. It will 
return zero or more new plans that purport to be 
improvements. 

XFRM operates as follows. It keeps a queue of buggy 
plans. Each plan has several bugs, but the worst bug 
is special in that it is the one whose transformation will 
be run if the plan is selected for future search. In the 
steady state, the planner repeatedly executes this loop: 

1. Select the most promising plan on the queue, and 
run its transformation, thus generating some new 
plans. 

2. For each new plan, run the projector to generate 
timelines; run the critics on the plan and timelines 
to find bugs; score the resulting plan. 

3. Sort and merge the new plans into the queue. 

Formally this system is a best-first seacher. However, 
in practice it had better focus on a very narrow "beam" 
in the search space, or else the whole idea will collapse. 
Here we are inspired by past transformational systems 
([13, 29, 30]) that avoided keeping track of more than 
one plan at all. (Hammond's planner picked one trans- 
formation and tried it. Simmons's system tried several 
transformations, but picked one of the resulting plans 
based on a heuristic score, and discarded all the others.) 

The reason for comparing bug signatures is to address 
a hard question, how to measure progress in eradicat- 
ing bugs. It could easily happen that a transformation 
could fail to eliminate a bug, or even reintroduce one 
previously eliminated. By encouraging critics to provide 
simple-symbolic descriptions of a bug, we make it likely 
that a persistent bug will be recognized. The plan eval- 
uation function adds heavy penalties for a bug that has 
reappeared. 

Our plans are general robot plans, which raises spe- 
cial problems for the projection and transformation al- 
gorithms. The projector basically mimics the plan in- 
terpreter and the world's response, but it must do more 
than that. Suppose the plan contains a monitor [8], a 
command to wait for a condition and then do something. 
Assuming the condition is not under the planner's con- 
trol, there are essentially an infinite number of points 

when it can become true. The best we can do is investi- 
gate a random sample. 

Once a bug is found, it must be accompanied by a 
transformation that claims to know how to fix it. The 
transformation must be able to rearrange portions of a 
plan, where the plan is a complex program. For example, 
suppose that the agent is supposed to plan a set of deliv- 
eries, and a critic detects that the cargo capacity will be 
overloaded given the current schedule. The repair trans- 
formation could rerun the scheduler after constraining 
the next possible unloading step to come before the step 
that caused the overload. (This tactic may not eliminate 
the problem, but the planner will presumably be able to 
detect that it is getting better.) To allow such edits, our 
plan notation must be as transparent as possible. 

3    The Interpreter 
We call our notation RPL, for Reactive Plan Language. 
It can be considered to be the next generation of Firby's 
RAPS system [8], but it is also related to MACNET [ö], 
PRS [12], COAL [6], and robot programming languages 
like OWL [7]. There are two major differences between 
RPL and RAPS: 

1. The syntax is more "recursive," more in the style of 
Lisp 

2. More   high-level   concepts   (interrupts,   monitors) 
have been made into explicit constructs. 

The language is still evolving. 
A RPL plan looks like a program. Indeed, I will use 

the terms "plan" and "program" interchangeably. RPL 
looks so much like Lisp that many Lisp programs are 
valid RPL plans. However, that is not the intended use 
for the language. Mechanisms are provided to allow and 
encourage the plan writer to let sensory input guide the 
behavior of the system, rather than complex data and 
control structures. 

One of these mechanisms is the fluent, or time-varying 
quantity. Of course, all program variables are time- 
varying quantities, but in plans we want behavior to be 
governed by the temporal changes. For example, in RPL 
we can say (FILTER c e) to mean, "Execute e while the 
fluent c remains true." If c becomes false, the execution 
of e is "evaporated" [22], that is, rendered unnecessary. 
Fluents can be denned in terms of other fluents. For 
example, 

(FILTER (AND Cl (> I S)) (CARRY-OUT A)) 

does (CARRY-OUT A) only while Cl remains true and I 
remains greater than 5. Here Cl is a Boolean-valued 
fluent, and I is a numerical-valued one. 

Fluents can be set by sensors, thus allowing immediate 
sensory control of actions. The combination of Boolean 
combination and program control by fluents puts much 
of the functionality of MACNET [5] into RPL (while 
dispensing with the idea of combinational-logic compila- 
tion). 

RPL contains a LET* construct for binding local vari- 
ables, which behaves a lot like Lisp's. One use for this 
facility is in perceiving objects in the world. E.g., the 
plan 
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(LET*  ((X   (Find a block))) 
(PICKUP X)) 

picks up a block. I will say more about this sort of thing 
in Section 3.3. A more mundane use of local variables is 
for counting or keeping track of lists, just as in regular 
programming. 

As a RPL plan is executed, a task network is con- 
structed. The task network corresponds to the stack in 
a standard programming language. However, an impor- 
tant difference is that the "stack frames" can come into 
being before the interpreter reaches them, and the plan- 
ner and interpreter can refer to them in advance. A task 
is an occurrence of an action that the planner has carried 
out or might try to carry out. A task has two kinds of 
subtask [22]: syntactic subtasks and reducing subtasks. 
A syntactic subtask of a task T is one that is generated 
from a piece of the text of the action of T. For exam- 
ple, if the action of T is (LOOP (A) (B)), then one of 
its syntactic subtasks might be "the second step in the 
third iteration of T," i.e., the third execution of (B). We 
denote this task with the expression (SUB STEP 2 (SUB 
ITER 3 T)). This example shows that in principle a 
task can have an infinite number of syntactic subtasks, 
but that only a finite number can actually be executed 
(or even be committed to). 

Tasks are accessible using plan variables. The top task 
is the value of global variable TOP-TASK*, and one can 
use SUB expressions to work one's way down to a par- 
ticular subtask. However, it is often more convenient to 
TAG a subtask. In this plan: 

(SEQ   (A)   (TAG  STEP2   (B))   (C)) 

the second step can be referred to using the variable 
STEP2. This is most useful in the PLAN construct, which 
expects explicit constraints among steps: 

(PLAN  ((TAG  STEPi   (A)) 
(TAG  STEP2   (B)) 
(TAG STEP3 (C))) 

(ORDER STEPI STEP3) 
(ORDER STEP2  STEP3)) 

TAG actually binds local variables to tasks. 
A new task is created for every "step" of a plan. To 

avoid generating a huge pile of tasks, we distinguish be- 
tween steps and expressions. The latter are pieces of the 
plan that are evaluated rather than being executed. For 
example, in (IF e a b), the expression e is evaluated, 
resulting in the usual choice of a or 6. A task with an IF 
action has two subtasks, one for the true arm and one 
for the false arm. There is no subtask for the test, e. 

IalsoTnentioned reducing subtasks above. The plan- 
ner can step in and declare that a certain set of tasks is to 
be carried out using a specified RPL plan. This hangs a 
reduction off the tasks in question, pointing to a new re- 
ducing subtask. When the interpreter is to execute these 
tasks, it executes the reducing subtask instead. This fa- 
cility is not yet well developed. 

A policy is an action defined as a constraint on other 
actions. [2l] An example is the action "Avoid making 
any noise." For the RPL interpreter, a policy is an action 
that can fail but whose successful termination is not an 
end in itself.   The RPL construct  (WITH-POLICY p a) 

carries out action a after starting action p. If a or p 
fails, the whole thing fails, but a must succeed for the 
WITH-POLICY to succeed. That is, p is behaving as a 
policy during the execution of a. When a finishes, the 
task for p evaporates. One useful construct to serve as 
such a p is (WHENEVER c i), which executes i whenever 
fluent c becomes true. This action can never succeed, 
although it can fail. 

An important policy class are protections. [32] A pro- 
tection of state P is the policy of keeping P true. As 
Firby [8] observes, there are many different policies that 
might fall under this description. We distinguish three: 
A "soft" protection is one that is routinely expected to 
lapse and be restored. A "hard" protection is one that 
should not lapse, although the plan has resources for 
restoring it when it does. A "rigid" protection is one 
that must not lapse; if the planner foresees the violation 
of a rigid protection, it must take steps to correct it or 
expect its plan to fail. Historically, most planners have 
assumed protections to be rigid, and have worked hard 
to make protection violations impossible. 

RPL provides the following construct: 

(PROTECTION  [:RIGID I:HARD I:SOFT] 
state 
fluent 
repair) 

The state is a predicate-calculus pattern summarizing 
what is protected. This is of use to the projector and 
planner. The fluent is the actual run-time entity whose 
truth the interpreter cares about. If it should become 
false, the repair is run. If the repair fails to make flu- 
ent true, then the PROTECTION fails (and so, presumably, 
does the plan it occurs in). 

3.1 Example 

Space does not permit inclusion of a RPL manual, so 
I will give an annotated example to convey the flavor 
of the language. The plan library consists of subrou- 
tines, defined using DEF-INTERP-PROC. The plan in Fig- 
ure 3 achieves the goal of transporting OBJ from location 
X1.Y1 to location X2.Y2: 

3.2 Implementation 

The interpreter is run by a "cpu" that keeps track of 
threads of control. It looks something like a real-time 
operating system [3l], except that we focus on issues of 
flexibility rather than speed of response. The interpreter 
takes plan constructions and turns them into control 
threads. Unlike a traditional operating system, schedul- 
ing is done "depth-first" instead of "round-robin." That 
is, the interpreter stays focused on a particular thread 
and its successors until interrupted, rather than trying 
to run all enabled threads in some fair way. It would not 
be hard to make the scheduling policy be more flexible. 

A cpu thread consists of three things: a priority, an 
aliveness checker, and a continuation. Calling the contin- 
uation is supposed to return zero or more threads. The 
aliveness checker is a function that returns NIL when the 
thread has died for some reason. One use of this is in 
(TRY-ALL a.\ .. . ajv), where each action is alive only if 
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(DEF-INTERP-PROC TRANSPORT (OBJ XI Yl X2 Y2) 
(LET* ((HAND (FREE-HAND)) 

(DROPPED-IT »#F) 
(DROP-X 0) (DROP-Y 0)) 

;; First, pick the object up.  FREE-HAND finds a hand that is 
;; not in use if it can, or picks one randomly. 
(AT-LOCATION XI Yl 

(ACHIEVE-IN-HAND OBJ)) 
;; Note that the hand is in use, 
(CONCLUDE (IN-USE HAND)) 

Request the "resource" WHEELS, using variable 
I-HAVE-THE WHEELS to keep track of whether it has been 
seized by some other plan: 

(USING-RESOURCE WHEELS -1 
I-HAVE-THE-WHEELS 

;; Go to the new location, 
(PLAN ((TAG DOIT (AT-LOCATION X2 Y2 

;; and release the object. 
(TAG LET-GO (UNHAND HAND)) 
(CONCLUDE (NOT (IN-USE HAND)))))) 

;; However, keep track of whether something disturbs 
;; the hand en route. 
(POLICY (TASK-BEGIN DOIT) 

(TASK-BEGIN (TAGGED LET-GO DOIT)) 
(WHENEVER (NOT DROPPED-IT) 

(SEQ (WAIT-FOR (EMPTY HAND)) 
(CONCLUDE DROPPED-IT) 
(!= < DROP-X DROP-Y > 

(COORDS-HERE))))) 
;; If something does, pick the object up again. 
(PROTECTION :HARD 

(TASK-BEGIN DOIT) 
(TASK-BEGIN (TAGGED LET-GO DOIT)) 
'(TAKING ,0BJ) 

;; Don't worry about the protection violation 
;; until this plan has the wheels under its control. 
(NOT (AND I-HAVE-THE-WHEELS 

DROPPED-IT)) 
(SEq (!= HAND (FREE-HAND)) 

;;   (A different hand may be used this time.) 
(AT-LOCATION DROP-X DROP-Y 

(ACHIEVE-IN-HAND OBJ)) 
(CONCLUDE  (IN-USE HAND)) 
(CONCLUDE  (NOT DROPPED-IT)))))))) 

Figure 3: A RPL Procedure 
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the (TRY-ALL ...) hasn't succeeded yet. Another is in 
FILTER, where the value of the filtering fluent is checked. 

The priority of a thread may be controlled by the con- 
struct (PRIORITY n -body-), which executes body with 
priority n. Lower numbers represent more urgent prior- 
ities. 

3.3     Perception 

Classical planning often seemed to assume that, to en- 
able an object to be manipulated, it needed only to 
be bound to a predicate-calculus constant. A bet- 
ter way of putting it is that classical planning took 
no position at all on the question how A was to be 
found in order to perform (GRASP A). As we move 
toward more realistic domains, this gap has become 
more glaring. Revisionists like Agre and Chapman [l, 
5] have argued that the classical model is bankrupt, and 
have diagnosed the underlying illness as reliance on "ob- 
jective" instead of "deictic" semantics. 

Actually, a careful analysis shows there is nothing re- 
ally wrong with the classical account of the way names 
work in AI programs. There is no problem executing 
(GRASP A) if the plan for carrying out a GRASP can 
look up the coordinate of its argument; for instance, if 
there's an assertion (COORDS A <X,Y,Z>) stored in the 
database. 

If there isn't, then the agent has to do some work, of 
the following sort: It scans the place where it expects 
A to be. Anything in that vicinity that resembles A it 
takes to be A (assuming there is just one such object). In 
other words, the vision system must be given a descrip- 
tion of A, and must return the scene parsed into "things 
that look like that" and, at a lower resolution, the back- 
ground. Each such thing has a new name (what Firby 
[8] calls a sensor name), complete with all the informa- 
tion the vision system can extract about it, including, 
let us suppose, its coordinates. So now the agent has 
an assertion (COORDS 0B991 <X,Y,Z>) in its database. 
The crucial step is to assume A=0B99i, so that now it 
knows (or thinks it knows) the coordinates of A. It can 
proceed to grasp A, and so forth. (While it is grasping 
A, the equation "A=object-grasped" can be assumed, and 
so forth.) 

There is a further layer of indirection to be dealt with, 
however. Consider the following robot plan: 

Repeat 
Look for a widget coming down the chute 
Pick it up 
Put it in the bin 

Now, the question is, how do we analyze "it" in the 
"pick it up" step? Classical planning has had remark- 
ably little to say about this question, and has tended 
to focus on the case where all the objects are "known" 
beforehand. 

If you inquire of roboticists how they handle this situ- 
ation, you find that they write programs in which there 
is no reference to widgets at all. Instead, the "look for" 
step becomes code to scan images for things that look 
like projections of widgets. The image fragments found 
are translated into 3-d coordinates or the like, and this 

information is what gets passed to the "pick it up" step. 
It's hard to argue with this approach, 

The way to modulate this to the classical- 
representation view is to assume that "it" is a variable. 
That is, what we have is 

X := widget-like thing in chute 
pickup X 

where X is bound to a thing with properties such as 3-d 
coordinates, etc. This way of thinking of the situation 
allows us to tie the plan to robotics while still notat- 
ing it in the usual compact way. The question is what 
sort of a "thing" this is. Presumably there is no magic 
way to guarantee that every time the same object is seen 
it will be assigned an EQ entity in memory. Firby's re- 
search dealt with how to drop that assumption. But once 
we have dropped it, we're left with the classical theory, 
pretty much intact. We see that there was no harm after 
all in saying (GRASP A), just so long as we realized that 
A might have been freshly consed a millisecond ago by 
the sensory system.2 

In our simulated world, we model perception by hav- 
ing a list of objects at each location. There is a primitive 
operation to scan that list for objects having certain per- 
ceptual properties. The objects found are returned, not 
as pointers, but as descriptions, called desigs, including 
"coordinates," which are simply given as the position of 
the object in the list. (This is contrived, but picture the 
world as inhabiting a separate address space, so that it 
would be impossible to return a pointer.) If new objects 
arrive at this location, or if the robot moves, the desig 
can become wrong, but there is no way for the robot 
to test for that, without comparing the actual object at 
the coordinate with the properties it expects, which are 
stored in the desig. Hence if an object is to be manipu- 
lated over some stretch of time, then its desig must be 
"reacquired" when necessary, by the process, described 
at the beginning of this section, of searching for an ob- 
ject like it and equating the old desig to the new desig 
for the found object. 

4    Transformational Planning 

We now return to the topic of planning — how plans get 
improved by XFRM before being executed. To refresh 
your memory, the process consists of projecting the plan 
to allow critics to foresee problems with it, where the 
critics propose transformations to fix those problems. 
Many transformations call a scheduler to optimize the 
order of tasks. 

4.1     The Projector 

The output of the projector is a set of timelines (or 
"time maps"), each a story about how execution might 
go. Coupled with each timeline is an elaborated task 
network that explains which tasks succeeded and which 
failed. The hope is that in case of projected failure the 

Close analysis of the often confusing literature on "deic- 
tic" alternatives to the classical view show that they do not 
differ much in practice from what I am proposing; only they 
prefer the word "register" to the word "variable." 
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data gathered during projection can suggest patches to 
the plan. 

Our most elegant and powerful projector was built by 
Steve Hanks. [15] It generates a scenario tree that de- 
scribes all but the most unlikely ways that a plan could 
work. A planner can inspect the tree to find hidden 
disasters as well as most probable outcomes. We are 
currently working on a simpler cousin of Hanks's pro- 
jector as a module for the XFRM planner. The orig- 
inal version tends to generate big trees for big plans, 
because of its commitment to finding every way a plan 
could be executed, even when the ways don't differ much. 
An alternative idea is to have the projector generate a 
random sample of projections. That is, we project the 
plan, making random choices, then project it again a few 
times from the beginning, until we have a collection of 
timelines. The main advantage of this approach is that 
the planner can quickly predict whether a plan is basi- 
cally good or bad, because the the first few samples are 
probably among the most probable. The danger is that 
improbable catastrophes will be overlooked until their 
probability has risen. 

Plan projection is a good place to apply probability 
theory. Typically all we need to estimate is the probabil- 
ity that a given state will result from a certain event. It 
might be thought that keeping track of the interdepen- 
dences among these assessments might be impossible, 
but we can arrange to avoid that work. Whenever the 
projector estimates the probability of a state at a point 
in time, it flips a coin based on that probability and ac- 
tually adds an assumption that the state is true or false 
from that point on (for some lifetime). Future assess- 
ments that are dependent on this state will be affected 
by the recorded assumption. Hanks's original projector 
would keep track of both outcomes, splitting the projec- 
tion into two different scenarios. In our "Monte Carlo" 
version, we retain just one of them; the other might be 
generated next time. 

For example, if the success of a plan step depends on 
whether it is raining, and the chance of rain is 20%, 
then 20% of the time we install the assumption that it is 
raining; 80%, that it is dry. The subsequent assessment 
of any other probability that depends upon the chance 
of rain must then take this assumption into account. 

Projection is relatively easy for straight-line sequences 
of plan steps. But in Section 3 we expanded the scope of 
plan notations considerably, and the projector must be 
able to cope with all of these. Our basic approach is to 
treat the projector as just another interpreter, indeed, 
just- another incarnation of the interpreter, running in 
projection mode. In this mode, instead of dealing with 
the real world, the planner acts by adding events to the 
timeline, and senses by querying the timeline. Real time 
is replaced by "projection time," as recorded in the last 
event stored in the time map. As new events are added to 
the growing timeline, projection time marches on. In the 
dullest case, an event is simply added with a new date, 
thus simulating the passage of time by the correspond- 
ing amount. However, if the world contains autonomous 
processes and agents, then they might cause events to oc- 
cur during that time period.  In the current system, we 

simply provide a hook, a procedure WORLD-PROJECTOR* 
that is called whenever an interval passes. It can roll 
some dice to decide if it rains, notice that sunset has oc- 
curred, or do whatever else is necessary to simulate the 
world. It adds the resulting new events to the timeline 
before allowing time to proceed. 

Because the projector is just the interpreter, it must 
be able to handle all the variable-binding and setting 
constructs. The tricky case is a Lisp global variable, e.g., 
a fluent tickled by a sensor. It would be inappropriate 
for the projector either to read, set, or destructively alter 
the current value of such a variable midway through a 
projection. Instead, when the interpreter discovers that 
a variable has a global binding, it must copy its value 
and use the copy from then on. Any data type that 
the projector might encounter must respond to a COPY 
operation,3 or an error will be generated. Fluents are 
an example of an easily copied data type. The copy can 
be named "Copy of fluent so-and-so" so the two can be 
related when necessary. 

4.2     Critics and Transformations 

After projecting the current plan revision, critics are run 
on the resulting scenarios in order to recognize bugs and 
suggest fixes. The fix suggestions, or transformations, 
are responsible for keeping the plan scheduled. 

Let's look at a detailed example, that arises in the 
course of solving the problem in Figure 1, using (among 
other plans) the TRANSPORT plan of Section 3.1. After 
the first version of the plan has been scheduled, projec- 
tion shows that an overload will occur after object C 
is loaded. In particular, when FREE-HAND fails to find 
a hand that is not in use, it returns a hand that is in 
use, which gets emptied, triggering a protection viola- 
tion. (Let me remind you that none of this is really 
happening, but is just being predicted during projec- 
tion.) The projection continues, and the plan completes 
successfully, but the protection was marked :HARD, so 
XFRM notes the violation, and the "overload critic" will 
try to get rid of it, in order to avoid wasting time going 
back to get object A after C is unloaded. This critic 
is called whenever the following constellation of events 
occurs: 

• A protection violation occurs in a protection set up 
by TRANSPORT during the transport of object Bx to 
destination Dx 

• The violation occurred due to a call to FREE-HAND 
in during the transportation of object B2 to desti- 
nation £>2 

• The violation occurred at location V 

If the distance from V to D2 is longer than the distance 
from V to D\, then the critic recommends that a new or- 
dering be introduced: from the UNHAND step for B\ to the 
step that picks up Bi. This criterion is fairly arbitrary, 
but will be supplanted by a more refined estimate when 
the transformed plan is rescheduled and reprojected. In 

3This would be a good place to use CLOS, the Common 
Lisp Object System, but in fact the current implementation 
does not. 
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the present case, the resulting plan is a significant im- 
provement. 

For such transformations to be expressible, the plan- 
ner needs a flexible way of talking about plan steps, and 
the syntactic subtask idea from Section 3 provides one. 
Every step has a name that reflects its place in the plan, 
and these names can be used to add order constraints to 
the top-level PLAN. 

Another transformation we are working on can be ex- 
pressed informally as, "If you have lots of deliveries to 
make in the same area, then consider getting a box to 
put all the things in." It might be thought that applying 
this transformation would require editing every pickup 
action, transforming it to an action to put an object in 
the box. However, we can avoid that work by rewrit- 
ing the TRANSPORT procedure so that it will use a box if 
one is at hand. Then transforming the plan will require 
simply adding steps to acquire a box. 

It is not at all clear as yet how many transformations 
our planner will need. In our contrived delivery domain, 
we won't need many, but as domains get more compli- 
cated the problem of coordinating transformations could 
become severe. 

5     Status and Prospects 

The system described here is partially implemented. The 
interpreter is running, as are several versions of the pro- 
jector, scheduler, and world simulator. We hope to get a 
working prototype that includes everything in the next 
few weeks. 

The RPL interpreter has been ported to GE's Corpo- 
rate Research and Development Laboratory for use in 
an emergency-advice application. RPL is used to write 
scripts for advising personnel how to react to an emer- 
gency. The transparency of the notation makes it pos- 
sible to display an informative checklist of actions to be 
taken. 

There are lots of problems left to be solved in the de- 
velopment of XFRM. One is the provision of a formal 
semantics for RPL. Another is the exploration of ways 
of projecting and transforming loops. A plan with loops 
can go on for a long time, generating a long boring time- 
line. To circumvent this problem, the projector needs 
to engage in a little aggregation, in the phrase of Weld 
([34], cf. [lO, ll]). That is, having run the loop a couple 
of times, it should try to summarize what's happening in 
such a way that it can estimate the number of iterations, 
and predict in general terms what the world will be like 
when the loop is done. 

One question that needs to be addressed are the cri- 
teria for judging this work. Our focus is on notation 
and architecture rather than on particular schedulers or 
transformations. The payoff we expect is in the ability 
to write reactive plans that are easy to understand and 
modify, that make realistic assumptions about execution 
platforms, and that support the development of a bat- 
tery of plan transformations. Hence the work will be 
successful to the extent that it supports the evolution of 
a new generation of planners. 
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Abstract 

We describe a robot control architecture which 
combines a stimulus-response subsystem for rapid 
reaction, with a search-based planner for handling 
unanticipated situations. The robot agent continually 
chooses which action it is to perform, using the stimulus- 
response subsystem when possible, and falling back on the 
planning subsystem when necessary. Whenever it is 
forced to plan, it applies an explanation-based learning 
mechanism to formulate a new stimulus-response rule to 
cover this new situation and others similar to it. With 
experience, the agent becomes increasingly reactive as its 
learning component acquires new stimulus-response rules 
that eliminate the need for planning in similar subsequent 
situations. This Theo-Agent architecture is described, and 
results are presented demonstrating its ability to reduce 
routine reaction time for a simple mobile robot from 
minutes to under a second. 

1. Introduction and Motivation 
Much attention has focused recently on reactive 

architectures for robotic agents that continually sense their 
environment and compute appropriate reactions to then- 
sense stimuli within bounded time (e.g., [Brooks 86, Agre 
and Chapman 87, Rosenschein 85]). Such architectures 
offer advantages over more traditional open-loop search- 
based planning systems because they can react more 
quickly to changes to their environment, and because they 
can operate more robustly in worlds that are difficult to 
model in advance. Search-based planning architectures, 
on the other hand, offer the advantage of more general- 
purpose (if slower) problem solving mechanisms which 
provide the flexibility to deal with a more diverse set of 
unanticipated goals and situations. 

This paper considers the question of how to combine the 
benefits of reactive and search-based architectures for 
controlling autonomous agents. We describe the Theo- 
Agent architecture, which incorporates both a reactive 
component and a search-based planning component. The 
fundamental design principle of the Theo-Agent is that it 
reacts when it can, plans when it must, and learns by 

augmenting its reactive component whenever it is forced to 
plan. When used to control a laboratory mobile robot, the 
Theo-Agent in simple cases learns to reduce its reaction 
time for new tasks from several minutes to less than a 
second. 

The research reported here is part of our larger effort 
toward developing a general-purpose learning robot 
architecture, and builds on earlier work described in 
[Blythe and Mitchell 89]. We believe that in order to 

become increasingly successful, a learning robot will have 
to incorporate several types of learning: 

• It must become increasingly correct at predicting 
the effects of its actions in the world. 

• It must become increasingly reactive, by reducing 
the time required for it to make rational choices; 
that is, the time required to choose actions 
consistent with the above predictions and its goals. 

• It must become increasingly perceptive at 
distinguishing those features of its world that 
impact its success. 

This paper focuses on the second of these types of 
learning. We describe how the Theo-Agent increases the 
scope of situations for which it can quickly make rational 
decisions, by adding new stimulus-response rules 
whenever it is forced to plan for a situation outside the 
current scope of its reactive component. Its explanation- 
based learning mechanism produces rules that recommend 
precisely the same action as recommended by the slower 
planner, in exactly those situations in which the same plan 
rationale would apply. However, the learned rules infer 
the desired action immediately from the input sense data in 
a single inference step-without considering explicitly the 
robot's goals, available actions, or their predicted 
consequences. 

1.1. Related Work 
There has been a great deal of recent work on 

architectures for robot control which continually sense the 
environment and operate in bounded time (e.g., [Brooks 
86, Schoppers 87, Agre and Chapman 87]), though this 

'This is a reprint of a paper which appeared in the Proceedings of the 1990 AAAJ Conference, August 1990, Boston. 
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type of work has not directly addressed issues of learning. 
Segre's ARMS system [Segre 88] applies explanation- 
based learning to acquire planning tactics for a simulated 
hand-eye system, and Laird's RoboSoar [Laird and 
Rosenbloom 90] has been applied to simple problems in a 
real hand-eye robot system. While these researchers share 
our goal of developing systems that are increasingly 
reactive, the underlying architectures vary significantly in 
the form of the knowledge being learned, underlying 
representations, and real response time. Sutton has 
proposed an inductive approach to acquiring robot control 
strategies, in his DYNA system [Sutton 90], and 
Pommerleau has developed a connectionist system which 
learns   to   control   an   outdoor  road-following   vehicle 
[Pommerleau 89]. In addition to work on learning such 

robot control strategies, there has been much recent 
interest in robot learning more generally, including work 
on   learning   increasingly   correct   models   of   actions 
[Christiansen, et al. 90, Zrimic and Mowforth 88], and 

work on becoming increasingly perceptive [Tan 90]. 
The work reported here is also somewhat related to 

recent ideas for compiling low-level reactive systems from 
high-level specifications (e.g., [Rosenschein 85]). In 
particular, such compilation transforms input descriptions 
of actions and goals into effective control strategies, using 
transformations similar to those achieved by explanation- 
based learning in the Theo-Agent. The main difference 
between such design-time compilation and the 
explanation-based learning used in the Theo-Agent, is that 
for the Theo-Agent learning occurs incrementally and 
spread across the lifetime of the agent, so that the 
compilation transformation is incrementally focused by the 
worlds actually encountered by the agent, and may be 
interleaved with other learning mechanisms which 
improve the agent's models of its actions. 

The next section of this paper describes the Theo-Agent 
architecture in greater detail. The subsequent section 
presents an example of its use in controlling a simple 
mobile robot, the learning mechanism for acquiring new 
stimulus-response rules, and timing data showing the 
effect of caching and rule learning on system reaction 
time. The final section summarizes some of the lessons of 
this work, including features and bugs in the current design 
of the architecture. 

2. The Theo-Agent Architecture 
The design of the Theo-Agent architecture is primarily 

driven by the goal of combining the complementary 
advantages of reactive and search-based systems. Reactive 
systems offer the advantage of quick response. Search- 
based planners offer the advantage of broad scope for 
handling a more diverse range of unanticipated worlds. 
The Theo-Agent architecture employs both, and uses 
explanation-based learning to incrementally augment its 

reactive component whenever forced to plan. In addition, 
the architecture makes widespread use of caching and 
dependency maintenance in order to avoid needless 
recomputation of repeatedly accessed beliefs. The primary 
characteristics of the Theo-Agent are: 

• It continually reassesses what action it should 
perform. The agent runs in a tight loop in which it 
repeatedly updates its sensor inputs, chooses a 
control action, begins executing it, then repeats this 
loop. 

• It reacts when it can, and plans when it must. 
Whenever it must choose an action, the system 
consults a set of stimulus-response rules which 
constitute its reactive component. If one of these 
rules applies to the current sensed inputs, then the 
corresponding action is taken. If no rules apply, 
then the planner is invoked to determine an 
appropriate action. 

• Whenever forced to plan, it acquires a new 
stimulus-response rule. The new rule recommends 
the action which the planner has recommended, in 
the same situations (i.e., those world states for 
which the same plan justification would apply), but 
can be invoked much more efficiently. Learning is 
accomplished by an explanation-based learning 
algorithm (EBG [Mitchell, et al 86]), and provides 
a demand-driven incremental compilation of the 
planner's knowledge into an equivalent reactive 
strategy, guided by the agent's experiences. 

• Every belief that depends on sensory input is 
maintained as long as its explanation remains valid. 
Many beliefs in the Theo-Agent, including its 
belief of which action to perform next, depend 
directly or indirectly on observed sense data. The 
architecture maintains a network of explanations 
for every belief of the agent, and deletes beliefs 
only when their support ceases. This caching of 
beliefs significantly improves the response time of 
the agent by eliminating recomputation of beliefs in 
the face of unchanging or irrelevant sensor inputs. 

• It determines which goal to attend to, based on the 
perceived world state, a predefined set of goal 
activation and satisfaction conditions, and given 
priorities among goals. 

Internal structure of agent: A Theo-Agent is defined 
by a frame structure whose slots, subslots, subsubslots, etc. 
define the agent's beliefs, or internal state2. The two most 
significant slots of the agent are Chosen.Action, which 
describes the action the agent presently chooses to 
perform; and Observed.World, which describes the agent's 
current perception of its world. As indicated in Figure 2-1 

^he Theo-Agent is implemented on top of a generic frame-based 
problem solving and learning system called Theo [Mitchell, et al. 90], 
which provides the inference, representation, dependency maintenance, 
and learning mechanisms. 
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ATTENDED.TO.GOAL 

SENSORS EFFECTORS 

Figure 2-1: Data Flow in a Theo-Agent 

the agent may infer its Chosen.Action either directly from 
its Observed.World, or alternatively from its current Plan. 
Its Plan is in turn derived from its Observed.World and 
Attended.To.Goal. The Attended.To.Goal defines the goal 
the agent is currently attempting to achieve, and is 
computed as the highest priority of its Active.Goals, which 
are themselves inferred from the Observed.World. 

Agent goals: Goals are specified to the agent by 
defining conditions under which they are active, satisfied, 
and attended to. For example, an agent may be given a 
goal Recharge.Battery which is defined to become active 
when it perceives its battery level to be less than 75%, 
becomes satisfied when the battery charge is 100%, and 
which is attended to whenever it is active and the (higher 
priority) goal Avoid.Oncoming.Obstacle is inactive. 

Caching policy: The basic operation of the Theo-Agent 
is to repeatedly infer a value for its Chosen.Action slot. 
Each slot of the agent typically has one or more attached 
procedures for obtaining a value upon demand. These 
procedures typically access other slots, backchaining 
eventually to queries to slots of the Observed.World. 
Whenever some slot value is successfully inferred, this 
value is cached (stored) in the corresponding slot, along 
with an explanation justifying its value in terms of other 
slot values, which are in turn justified in terms of others, 
leading eventually to values of individual features in the 
Observed.World, which are themselves inferred by directly 
accessing the robot sensors. Values remain cached for as 
long as their explanations remain valid. Thus, the agent's 
Active.Goals and Chosen.Action may remain cached for 
many cycles, despite irrelevant changes in sensor inputs. 
This policy of always caching values, deleting them 
immediately when explanations become invalid, and lazily 
recomputing upon demand, assures that the agent's beliefs 
adapt quickly to changes in its input senses, without 
needless recomputation. 

Control policy: The Theo-Agent is controlled by 
executing the following loop: 

Do Forever: 
1. Sense and update readings for all eagerly sensed 

features of Observed.World, and delete any cached 
values for lazily sensed features. 

2. Decide upon the current Chosen.Action 
3. Execute the Chosen.Action 
When the Chosen.Action slot is accessed (during the 

decision portion of the above cycle), the following steps 
are attempted in sequence until one succeeds: 

1. Retrieve the cached value of this slot (if available) 
2. Infer a value based on the available stimulus- 

response rules 
3. Select the first step of the agent's Plan (inferring a 

plan if necessary) 
4. Select the default action (e.g., WAIT) 

Sensing policy: Each primitive sensed input (e.g., an 
array of input sonar data) is stored in some slot of the 
agent's Observed.World. Higher level features such as 
edges in the sonar array, regions, region width, etc., are 
represented by values of other slots of the 
Observed.World, and are inferred upon demand from the 
lower-level features. The decision-making portions of the 
agent draw upon the entire range of low to high level 
sensory features as needed. In order to deal with a variety 
of sensing procedures of varying cost, the Theo-Agent 
distinguishes between two types of primitive sensed 
features: those which it eagerly senses, and those which it 
lazily senses. Eagerly sensed features are refreshed 
automatically during each cycle through the agent's main 
loop, so that dependent cached beliefs of the agent are 
retained when possible. In contrast, lazily sensed features 
are simply deleted during each cycle. They are 
recomputed only if the agent queries the corresponding 
slot during some subsequent cycle. This division between 
eagerly and lazily refreshed features provides a simple 
focus of attention which allows keeping the overhead of 
collecting new sense data during each cycle to a minimum. 

Learning policy: Whenever the agent is forced to plan 
in order to obtain a value for its Chosen.Action, it invokes 
its explanation-based generalization routine to acquire a 
new stimulus-response rule to cover this situation. The 
details of this routine are described in greater detail in the 
next section. The effect of this learning policy is to 
incrementally extend the scope of the set of stimulus- 
response rules to fit the types of problem instances 
encountered by the system in its world. 

3. Example and Results 
This section describes the use of the Theo-Agent 

architecture to develop a simple program to control a Hero 
2000 mobile robot to search the laboratory to locate 
garbage cans3. In particular, we illustrate how goals and 
actions are provided to the robot with no initial stimulus- 

3A detailed description of the modified Hero 2000 robot used here is 
available in [Lin, et al. 89]. 
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response rules, how it initially selects actions by 
constructing plans, and how it incrementally accumulates 
stimulus-response rules that cover its routine actions. 

The robot sensors used in this example include an 
ultrasonic sonar mounted on its hand, a rotating sonar on 
its head, and a battery voltage sensor. By rotating its hand 
and head sonars it is able to obtain arrays of sonar readings 
that measure echo distance versus rotation angle. These 
raw sonar readings are interpreted (on demand) to locate 
edges in the sonar array, as well as regions, and properties 
of regions such as region width, distance, direction, and 
identity. The primitive sensing operations used in the 
present example include Battery, which indicates the 
battery voltage level, Sonarw, which measures sonar range 
with the wrist sonar pointed directly forward, and 
Sweep.Wrist.Roll, which obtains an array of sonar 
readings by rotating the wrist from left to right. Of these 
sensed features, Sonarw is eagerly sensed, and the others 
are lazily sensed. 

The robot actions here include Forward. 10 (move 
forward 10 inches), Backward. 10 (move backward 10 
inches), Face.The.Object (turn toward the closest sonar 
region in front of the robot), and Measure.The.Object 
(obtain several additional sonar sweeps to determine 
whether the closest sonar region in front of the robot is a 
garbage can). The.Object refers to the closest sonar region 
in front of the robot, as detected by the sense procedure 
Sweep.Wrist.Roll. 

This Theo-Agent has been tested by giving it different 
sets of initial goals, leading it to compile out different sets 
of stimulus-response rules exhibiting different behaviors. 
In the simple example presented here, the agent is given 
three goals: 

• Goal.Closer: approach distant objects. This goal is 
activated when the Sonarw sense reading is 
between 25 and 100 inches, indicating an object at 
that distance. It is satisfied when Sonarw is less 
that 25 inches, and attended to whenever it is 
active. 

• Goal.Further: back off from close objects. This is 
activated when Sonarw is between 3 and 15 inches, 
satisfied when Sonarw is greater than 15 inches, 
and attended to whenever it is active. 

• Goal.Identify.The.Object: determine whether the 
nearest sonar region corresponds to a garbage can. 
This is activated when there is an object in front of 
the robot whose identity is unknown, satisfied 
when the object identity is known, and attended to 
whenever it is active and Goal.Closer and 
Goal.Further are inactive. 

In order to illustrate the operation of the Theo-Agent, 
consider the sequence of events that results from setting 
the robot loose in the lab with the above goals, actions, and 
sensing routines: During the first iteration through its 
sense-decide-execute loop, it (eagerly) senses a reading of 
41.5 from Sonarw, reflecting an object at 41.5 inches. In 
the   decide  phase  of  this   cycle   it  then  queries  its 

Chosen.Action slot, which has no cached value, and no 
associated stimulus-response rules. Thus, it is forced to 
plan in order to determine a value for Chosen.Action. 
When queried, the planner determines which goal the 
agent is attending to, then searches for a sequence of 
actions which it projects will satisfy this goal. Thus, the 
planner queries the Attending.To.Goal slot, which queries 
the Active.Goals slots, which query the Observed.World, 
leading eventually to determining that the 
Attending.To.Goal is Goal.Closer. The planner, after 
some search, then derives a two-step plan to execute 
Forward. 10 two times in a row (this plan leads to a 
projected sonar reading of 21.5 inches, which would 
satisfy Goal.Closer). The inferred value for the 
ChosenAction slot is thus Forward. 10 (the first step of the 
inferred plan). 

The agent caches the result of each of the above slot 
queries, along with an explanation that justifies each slot 
value in terms of the values from which it was derived. 
This network of explanations relates each belief (slot 
value) of the agent eventually to sensed features of its 
Observed. World. 

In the above scenario the agent had to construct a plan in 
order to infer its Chosen.Action. Therefore, it formulates a 
new stimulus-response rule which will recommend this 
chosen action in future situations, without planning. The 
agent then executes the action and begins a new cycle by 
eagerly refreshing the Sonarw feature and deleting any 
other sensed features (in this case the observed Battery 
level, which was queried by the planner as it checked the 
preconditions for various actions). During this second 
cycle, the stimulus-response rule learned during the first 
cycle applies, and the agent quickly decides that the 
appropriate Chosen.Action in the new situation is to 
execute Forward. 10. As it gains experience, the agent 
acquires additional rules and an increasing proportion of 
its decisions are made by invoking these stimulus-response 
rules rather than planning. 

3.1. Rule Learning 
The rule acquisition procedure used by the Theo-Agent 

is an explanation-based learning algorithm called EBG 
[Mitchell, et al 86]. This procedure explains why the 

Chosen.Action of the Theo-Agent is justified, finds the 
weakest conditions under which this explanation holds, 
and then produces a rule that recommends the 
Chosen.Action under just these conditions. More 
precisely, given some Chosen.Action, ?Action, the Theo- 
Agent explains why ?Action satisfies the following 
property: 

Justified.Action(?Agent, ?Action) <— 
(1) The Attending.To.Goal of the ?Agent is ?G 
(2) ?G is Satisfied by result of ?Agent's plan 
(3) The tail of ?Agent's plan will not succeed without 

first executing ?Action 
(4) ?Action is the first step of the ? Agent's plan 
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(hero justified.action) = face.the.object 
<—prolog— 
(hero attending.to.goals) = goal.identify.object 
<—prolog— 
(hero monitored.goals) = goal.identify.object 
(hero goal.identify.object attending.to?) = t 
<—prolog— 
(hero goal.identify.object active?) = t 
<—prolog— 
(hero observed.world) = wO 
(wO the.object identity known?) = nil 

(hero goal.closer active?) = nil 
<—prolog— 
(hero observed.world) = wO 
(wO sonarw) =22.5 

(hero goal.further active?) = nil 
<--prolog— 
(hero observed.world) = wO 
(wO sonarw) =22.5 

(world376 goal.identify.object wsatisfied?) = t 
<—prolog-- 
(world376 the.object identity known?) = t 
<—expected.value— 
(world376 previous.state) = worldl59 
(worldl59 measure.the.object prec.sat?) = t 
<--prolog— 
(worldl59 battery) = 100 
<—expected.value— 
(worldl59 previous.state) = wO 
(wO battery) = 100 
<--observed.value— 
(wO battery observed.value) = 100 

(worldl59 the.object distance) = 22 
<—expected.value— 
(worldl59 previous.state) = wO 
(wO face.the.object prec.sat?) = t 
<--prolog— 
(wO battery) = 100 
<--observed.value— 
(wO battery observed.value) = 100 

(wO the.object direction known?) = t 
(wO the.object distance) = 22 
<—observed.value— 
(wO the.object distance 

observed.value) = 22 
(worldl59 the.object direction) = 0 
<—expected.value— 
(worldl59 previous.state) = wO 
(wO face.the.object prec.sat?) = t 
<—prolog— 
(wO battery) = 100 
<—observed.value— 
(wO battery observed.value) = 100 

(wO the.object direction known?) = t 
(wO measure.the.object prec.sat?) = nil 
<--prolog— 
(wO the.object direction) = 10 
<—observed.value— 
(wO the.object direction observed.value) = 10 

Figure 3-1: Explanation for 
(Hero Justified.Action) = Face.The.Object 

EBG constructs an explanation of why the 
Chosen.Action is a JustifiecLAction as defined above, then 
determines the weakest conditions on the Observed.World 
under which this explanation will hold4. Consider, for 
example, a scenario in which the Hero agent is attending to 
the goal Goal.Identify.The.Object, and has constructed a 
two-step    plan: Face.The.Object,     followed    by 
Measure.The.Object. Figure 3-1 shows the explanation 
generated by the system for why Face.The.Object is its 
Justified.Action. In this figure, each line corresponds to 
some belief of the agent, and level of indentation reflects 
dependency. Each belief is written in the form (frame slot 
subslot subsubslot ...)=value, and arrows such as "<-- 
observed.value--" indicate how the belief above and left of 
the arrow was inferred from the beliefs below and to its 
right. For example, the leftmost belief that the Hero's 
Justified.Action is Face.The.Object, is supported by the 
three next leftmost beliefs that (1) the (Hero 
Attending.To.Goals)=Goal.Identify.Object, (2) the 
(World376 Goal.Identify.Object Satisfied?)=t, and (3) (WO 
Measure.The.Object Prec.Sat?)=nil. W0 is the current 
Observed.World, World376 is the world state which is 
predicted to result from the agent's plan, and Prec.Sat? is 
the predicate indicating whether the preconditions of an 
action are satisfied in a given world state. These three 
supporting beliefs correspond to the first three clauses in 
the above definition of Justified.Action5. Notice the third 
clause indicates that in this case the tail of the agent's plan 
cannot succeed since the preconditions of the second step 
of the plan are not satisfied in the initial observed world. 

IF 
(1) Identity of The.Object in Observed.World 

is not Known 
(1) Sonarw in Observed.World = ?s 
(1) Not [3 < ?s < 15] 
(1) Not [25 < ?s < 100] 
(2) Battery in Observed.World > 70 
(2) Distance to The.Object in Observed.World 

= ?dlst 
(2) 15 <= ?dist <= 25 
(2,3) Direction to The.Object in Observed.World 

= ?dir 
(3) Not [-5 <= ?dir <= 5] 

THEN 
Chosen.Action of Hero = Face.The.Object 

Figure 3-2: Rule for Explanation from Figure 3-1 

4Notice that the third clause in the definition of Justified.Action requires 
that the first step of the plan be essential to the plan's success. Without 
this requirement, the definition is too weak, and can produce rules that 
recommend non-essential actions such as WAIT, provided they can be 
followed by other actions that eventually achieve the goal. 

5The fourth clause is not even made explicit, since this is satisfied by 
defining the rule postcondition to recommend the current action. 
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Figure 3-2 shows the english description of the rule 
produced by the Theo-Agent from the explanation of 
Figure 3-1. The number to the left of each rule 
precondition indicates the corresponding clause of 
Justified.Action which is supported by this precondition. 
For example, the first four lines in the rule assure that the 
robot is in a world state for which it should attend to the 
goal Goal.Identify.Object (i.e., they assure that this goal 
will be active, and that all higher priority goals will be 
inactive). Of course this rule need not explicitly mention 
this goal or any other, since it instead mentions the 
observed sense features which imply the activation of the 
relevant goals. Similarly, the rule need not mention the 
plan, since it instead mentions those conditions, labeled (2) 
and (3), which assure that the first step of the plan will lead 
eventually to achieving the desired goal. 

In all, the agent typically learns from five to fifteen 
stimulus-response rules for this set of goals and actions, 
depending on its specific experiences and the sequence in 
which they are encountered. By adding and removing 
other goals and actions, other agents can be specified that 
will "compile out" into sets of stimulus-response rules that 
produce different behaviors. 

3.2. Impact of Experience on Agent Reaction Time 
With experience, the typical reaction time of the Theo- 

Agent in the above scenario drops from a few minutes to 
under a second, due to its acquisition of stimulus-response 
rules and its caching of beliefs. Let us define reaction time 
as the time required for a single iteration of the sense- 
decide-execute loop of the agent. Similarly, define sensing 
time, decision time, and execution time as the time required 
for the corresponding portions of this cycle. Decision time 
is reduced by two factors: 

• Acquisition of stimulus-response rules. Matching a 
stimulus-response rule requires on the order of ten 
milliseconds, whereas planning typically requires 
several minutes. 

• Caching of beliefs about future world states. The 
time required by planning is reduced as a result of 
caching all agent beliefs. In particular, the 
descriptions of future world states considered by 
the planner (e.g., "the wrist sonar reading in the 
world that will result from applying the action 
Forward. 10 to the current Observed.World") are 
cached, and remain as beliefs of the agent even 
after its sensed world is updated. Some cached 
features of this imagined future world may become 
uncached each cycle as old sensed values are 
replaced by newer ones, but others tend to remain. 

The improvement in agent reaction time is summarized 
in the timing data from a typical scenario, shown in table 
3-1. The first line shows decision time and total reaction 
time for a sense-decide-execute cycle in which a plan must 
be created. Notice that here decision time constitutes the 
bulk of reaction time. The second line of this table shows 

Decision  Reaction 
Time      Time 

1. Construct simple plan:  34.3 sec   36.8 sec 

2. Construct similar plan:  5.5 sec    6.4 sec 

3. Apply learned rules:     0.2 sec    0.9 sec 

Table 3-1: Effect of Learning on Agent Response Time 

(Timings are in CommonLisp on a Sun3 workstation) 

the cost of producing a very similar plan on the next cycle. 
The speedup over the first line is due to the use of slot 
values which were cached during the first planning 
episode, and whose explanations remain valid through the 
second cycle. The third line shows the timing for a third 
cycle in which the agent applied a set of learned stimulus- 
response rules to determine the same action. Here, 
decision time (200 msec.) is comparable to sensing time 
(500 msec) and the time to initiate execution of the robot 
action (200 msec), so that decision time no longer 
constitutes the bulk of overall reaction time. The decision 
time is found empirically to require 80 + 14r msec, to test a 
set of r stimulus-response rules". 

Of course the specific timing figures above are 
dependent on the particular agent goals, sensors, training 
experience, actions, etc. Scaling to more complex agents 
that require hundreds or thousands of stimulus-response 
rules, rather than ten, is likely to require more 
sophisticated methods for encoding and indexing the 
learned stimulus-response pairings. Approaches such as 
Rete matching, or encoding stimulus-response pairings in 
some type of network [Rosenschein 85, Brooks 86] may be 
important for scaling to larger systems. At present, the 
significant result reported here is simply the existence 
proof that the learning mechanisms employed in the Theo- 
Agent are sufficient to reduce decision time by two orders 
of magnitude for a real robot with fairly simple goals, so 
that decision time ceases to dominate overall reaction time 
of the agent. 

4. Summary, Limitations and Future Work 
The key design features of the Theo-Agent are: 
• A stimulus-response system combined with a 

planning component of broader scope but slower 
response time. This combination allows quick 
response for routine situations, plus flexibility to 
plan when novel situations are encountered. 

• Explanation-based     learning     mechanism     for 

Rules are simply tested in sequence with no sophisticated indexing or 
parallel match algorithms. 
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incrementally augmenting the stimulus-response 
component of the system. When forced to plan, the 
agent formulates new stimulus-response rules that 
produce precisely the same decision as the current 
plan, in precisely the same situations. 

• The agent chooses its own goals based on the 
sensed world state, goal activation conditions and 
relative goal priorities. Goals are explicitly 
considered by the agent only when it must 
construct plans. As the number of learned 
stimulus-response rules grows, the frequency with 
which the agent explicitly considers its goals 
decreases. 

• Caching and dependency maintenance for all 
beliefs of the agent. Every belief of the agent is 
cached along with an explanation that indicates 
those beliefs on which it depends. Whenever the 
agent sense inputs change, dependent beliefs which 
are affected are deleted, to be recomputed if and 
when they are subsequently queried. 

• Distinction between eagerly and lazily refreshed 
sense features. In order to minimize the lower 
bound on reaction time, selected sense features are 
eagerly updated during each agent cycle. Other 
features are lazily updated by deleting them and 
recomputing them if and when they are required. 
This provides a simple focus of attention 
mechanism that helps minimize response time. In 
the future, we hope to allow the agent to 
dynamically control the assignment of eagerly and 
lazily sensed features. 

There are several reasonable criticisms of the current 
TheoAgent architecture, which indicate its current 
limitations. Among these are: 

• The kind of planning the TheoAgent performs may 
be unrealistically difficult in many situations, due 
to lack of knowledge about the world, the likely 
effects of the agent's actions, or other changes in 
the world. One possible response to this limitation 
is to add new decision-making mechanisms beyond 
the current planner and stimulus-response system. 
For example, one could imagine a decision-maker 
with an evaluation function over world states, 
which evaluates actions based on one-step 
lookahead (similar to that proposed in Sutton's 
DYNA [Sutton 90].). As suggested in [Kaelbling 
86], a spectrum of multiple-decision makers could 
trade off response speed for correctness. However, 
learning mechanisms such as those used here might 
still compile stimulus-response rules from the 
decisions produced by this spectrum of decision- 
makers. 

• Although the TheoAgent learns to become 
increasingly reactive, its decisions do not become 
increasingly correct. The acquired stimulus- 
response rules are only as good as the planner and 
action models from which they are compiled. We 

are interested in extending the system to allow it to 
inductively learn better models of the effects of its 
actions, as a result of its experience. Preliminary 
results with this kind of learning using a hand-eye 
robot are described in [Christiansen, et al. 
90, Zrimic and Mowforth 88]. 

• The current planner considers the correctness of its 
plans, but not the cost of sensing or effector 
commands. Therefore, the plans and the stimulus- 
response rules derived from them may refer to 
sense features which are quite expensive to obtain, 
and which contribute in only minor ways to 
successful behavior. For instance, in order to 
guarantee correctness of a plan to pick up a cup, it 
might be necessary to verify that the cup is not 
glued to the floor. The current system would 
include such a test in the stimulus-response rule 
that recommends the grasp operation, provided this 
feature was considered by the planner. We must 
find a way to allow the agent to choose which tests 
are necessary and which can be ignored in order to 
construct plausible plans that it can then attempt, 
and recover from as needed. 

• Scaling issues. As noted in the previous section, 
the current robot system requires only a small set of 
stimulus-response rules to govern its behavior. We 
must consider how the approach can be scaled to 
more complex situations. Some avenues are to (1) 
explore other strategies for indexing learned 
knowledge (e.g., index rules by goal, so that many 
subsets of rules are stored rather than a single set), 
(2) develop a more selective strategy for invoking 
learning only when the benefits outweigh the costs, 
and (3) consider representations of the control 
function that sacrifice expressive precision for 
fixed computational cost (e.g., fixed topology 
neural networks with constant response time). 

We believe the notion of incrementally compiling 
reactive systems from more general but slower search- 
based systems is an important approach toward extending 
the flexibility of robotic systems while still achieving 
respectable (asymptotic) response times. The specific 
design of the Theo-Agent illustrates one way to organize 
such a system. Our intent is to extend the current 
architecture by adding new learning mechanisms that will 
allow it to improve the correctness of its action models and 
its abilities to usefully perceive its world. These additional 
learning capabilities are intended to complement the type 
of learning presented here. 
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Abstract 

In this article we take a step towards providing an 
analysis of the Soar architecture as a basis for gen- 
eral intelligence. Included are discussions of the 
basic assumptions underlying the development of 
Soar, a description of Soar cast in terms of the 
theoretical idea of multiple levels of description, 
an example of Soar performing multi-column sub- 
traction, and three analyses of Soar: its natural 
tasks, the sources of its power, and its scope and 
limits. 
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The central scientific problem of artificial intelli- 
gence (AI) is to understand what constitutes intelligent 
action and what processing organizations are capable 
of such action. Human intelligence — which stands 
before us like a holy grail — shows to first observa- 
tion what can only be termed general intelligence. A 
single human exhibits a bewildering diversity of intelli- 
gent behavior. The types of goals that humans can set 
for themselves or accept from the environment seem 
boundless. Further observation, of course, shows lim- 
its to this capacity in any individual — problems range 
from easy to hard, and problems can always be found 
that are too hard to be solved. But the general point 
is still compelling. 

Work in AI has already contributed substantially to 
our knowledge of what functions are required to pro- 
duce general intelligence. There is substantial, though 
certainly not unanimous, agreement about some func- 
tions that need to be supported: symbols and goal 
structures, for example. Less agreement exists about 
what mechanisms are appropriate to support these 
functions, in large part because such matters depend 
strongly on the rest of the system and on cost-benefit 
tradeoffs. Much of this work has been done under the 
rubric of AI tools and languages, rather than AI sys- 
tems themselves. However, it takes only a slight shift 
of viewpoint to change from what is an aid for the pro- 
grammer to what is structure for the intelligent system 
itself. Not all features survive this transformation, but 
enough do to make the development of AI languages as 
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much substantive research as tool building. These pro- 
posals provide substantial ground on which to build. 

The Soar project has been building on this foun- 
dation in an attempt to understand the functionality 
required to support general intelligence. Our current 
understanding is embodied in the Soar architecture 
[Laird, 1986; Laird et al, 1987]. This article represents 
an attempt at describing and analyzing the structure 
of the Soar system. We will take a particular point of 
view — the description of Soar as a hierarchy of levels 
— in an attempt to bring coherence to this discussion. 

The idea of analyzing systems in terms of multiple 
levels of description is a familiar one in computer sci- 
ence. In one version, computer systems are described 
as a sequence of levels that starts at the bottom with 
the device level and works up through the circuit level, 
the logic level, and then one or more program lev- 
els. Each level provides a description of the system 
at some level of abstraction. The sequence is built up 
by defining each higher level in terms of the structure 
provided at the lower levels. This idea has also re- 
cently been used to analyze human cognition in terms 
of levels of description [Newell, 1990]. Each level cor- 
responds to a particular time scale, such as ~100 msec, 
and "1 sec, with a new level occurring for each new 
order of magnitude. The four levels between "10 msec, 
and "10 sec. comprise the cognitive band (Figure 1). 
The lowest cognitive level — at ~10 msec. — is the 
symbol-accessing level, where the knowledge referred 
to by symbols is retrievable. The second cognitive level 
— at "100 msec. — is the level at which elementary 
deliberate operations occur; that is, the level at which 
encoded knowledge is brought to bear, and the most 
elementary choices are made. The third and fourth 
cognitive levels — at "1 sec. and ~10 sec. — are the 
simple-operator-composition and goal-attainment lev- 
els. At these levels, sequences of deliberations can be 
composed to achieve goals. Above the cognitive band 
is the rational band, at which the system can be de- 
scribed as being goal oriented, knowledge-based, and 
strongly adaptive. Below the cognitive band is the neu- 
ral band. 

In the architecture section we describe Soar as a se- 
quence of three cognitive levels: the memory level, at 
which symbol accessing occurs; the decision level, at 
which elementary deliberate operations occur; and the 
goal level, at which goals are set and achieved via se- 
quences of decisions. The goal level is an amalgama- 
tion of the top two cognitive levels from the analysis 
of human cognition. 

In this description we will often have call to describe 
mechanisms that are built into the architecture of Soar. 
The architecture consists of all of the fixed structure 
of the Soar system. According to the levels analysis, 
the correct view to be taken of this fixed structure is 
that it comprises the set of mechanisms provided by 
the levels underneath the cognitive band. For human 
cognition this is the neural band.   For artificial cog- 

nition, this may be a connectionist band, though it 
need not be. This view notwithstanding, it should be 
remembered that it is the Soar architecture which is 
primary in our research. The use of the levels view- 
point is simply an attempt at imposing a particular, 
hopefully illuminating, theoretical structure on top of 
the existing architecture. 

In the remainder of this paper we describe the 
methodological assumptions underlying Soar, the 
structure of Soar, an illustrative example of Soar's per- 
formance on the task of multi-column subtraction, a 
set of preliminary analyses of Soar as an architecture 
for general intelligence. 

Methodological Assumptions 
The development of Soar is driven by four method- 
ological assumptions. It is not expected that these 
assumptions will be shared by all researchers in the 
field. However, the assumptions do help explain why 
the Soar system and project have the shapes that they 
do. 

The first assumption is the utility of focusing on 
the cognitive band, as opposed to the neural or ratio- 
nal bands. This is a view that has traditionally been 
shared by a large segment of the cognitive science com- 
munity; it is not, however, shared by the connectionist 
community, which focuses on the neural band (plus the 
lower levels of the cognitive band), or by the logicist 
and expert-systems communities, which focus on the 
rational band. This assumption is not meant to be ex- 
clusionary, as a complete understanding of general in- 
telligence requires the understanding of all of these de- 
scriptive bands.1 Instead the assumption is that there 
is important work to be done by focusing on the cog- 
nitive band. One reason is that, as just mentioned, 
a complete model of general intelligence will require a 
model of the cognitive band. A second reason is that 
an understanding of the cognitive band can constrain 
models of the neural and rational bands. A third, more 
applied reason, is that a model of the cognitive band 
is required in order to be able to build practical intel- 
ligent systems. Neural-band models need the higher 
levels of organization that are provided by the cogni- 
tive band in order to reach complex task performance. 
Rational-band models need the heuristic adequacy pro- 
vided by the cognitive band in order to be computa- 
tionally feasible. A fourth reason is that there is a 
wealth of both psychological and AI data about the 
cognitive band that can be used as the basis for eluci- 
dating the structure of its levels. This data can help 
us understand what type of symbolic architecture is 
required to support general intelligence. 

The second assumption is that general intelligence 
can most usefully be studied by not making a dis- 

1 Investigations of the relationship of Soar to the neu- 
ral and rational bands can be found in [Newell, 1990; 
Rosenbloom, 1989; Rosenbloom et al., 1990]. 
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Rational Band 

"10 sec. Goal attainment 
"1 sec. Simple operator composition 
"100 msec. Elementary deliberate operations 
"10 msec. Symbol accessing 

Cognitive Band 

Neural Band 

Figure 1: Partial hierarchy of time scales in human cognition. 

tinction between human and artificial intelligence. 
The advantage of this assumption is that it allows 
wider ranges of research methodologies and data to be 
brought to bear to mutually constrain the structure of 
the system. Our research methodology includes a mix- 
ture of experimental data, theoretical justifications, 
and comparative studies in both artificial intelligence 
and cognitive psychology. Human experiments pro- 
vide data about performance universals and limitations 
that may reflect the structure of the architecture. For 
example, the ubiquitous power law of practice — the 
time to perform a task is a power-law function of the 
number of times the task has been performed — was 
used to generate a model of human practice [Newell 
& Rosenbloom, 1981; Rosenbloom & Newell, 1986], 
which was later converted into a proposal for a gen- 
eral artificial learning mechanism [Laird et al., 1984; 
Laird et al., 1986a; Steier et al., 1987]. Artificial 
experiments — the application of implemented sys- 
tems to a variety of tasks requiring intelligence — pro- 
vide sufficiency feedback about the mechanisms em- 
bodied in the architecture and their interactions [Hsu 
et al., 1988; Rosenbloom et al., 1985; Steier, 1987; 
Steier & Newell, 1988; Washington & Rosenbloom, 
1988]. Theoretical justifications attempt to provide an 
abstract analysis of the requirements of intelligence, 
and of how various architectural mechanisms fulfill 
those requirements [Newell, 1990; Newell et al., 1989; 
Rosenbloom, 1989; Rosenbloom et al, 1988b; Rosen- 
bloom et al., 1990]. Comparative studies, pitting one 
system against another, provide an evaluation of how 
well the respective systems perform, as well as insight 
about how the capabilities of one of the systems can 
be incorporated in the other [Etzioni & Mitchell, 1989; 
Rosenbloom & Laird, 1986]. 

The third assumption is that the architecture should 
consist of a small set of orthogonal mechanisms. All 
intelligent behaviors should involve all, or nearly all, 
of these basic mechanisms. This assumption biases 
the development of Soar strongly in the direction of 
uniformity and simplicity, and away from modularity 
[Fodor, 1983] and toolkit approaches. When attempt- 
ing to achieve a new functionality in Soar, the first step 

is to determine in what ways the existing mechanisms 
can already provide the functionality. This can force 
the development of new solutions to old problems, and 
reveal new connections — through the common under- 
lying mechanisms — among previously distinct capa- 
bilities [Rosenbloom et al., 1988a]. Only if there is no 
appropriate way to achieve the new functionality are 
new mechanisms considered. 

The fourth assumption is that architectures should 
be pushed to the extreme to evaluate how much of 
general intelligence they can cover. A serious attempt 
at evaluating the coverage of an architecture involves a 
long-term commitment by an extensive research group. 
Much of the research involves the apparently mundane 
activity of replicating classical results within the ar- 
chitecture. Sometimes these demonstrations will by 
necessity be strict replications, but often the architec- 
ture will reveal novel approaches, provide a deeper un- 
derstanding of the result and its relationship to other 
results, or provide the means of going beyond what 
was done in the classical work. As these results accu- 
mulate over time, along with other more novel results, 
the system gradually approaches the ultimate goal of 
general intelligence. 

Structure of Soar 
In this section we build up much of Soar's structure in 
levels, starting at the bottom with memory and pro- 
ceeding up to decisions and goals. We then describe 
how learning and perceptual-motor behavior fit into 
this picture, and wrap up with a discussion of the de- 
fault knowledge that has been incorporated into the 
system. 

Level 1: Memory 
A general intelligence requires a memory with a large 
capacity for the storage of knowledge. A variety of 
types of knowledge must be stored, including declar- 
ative knowledge (facts about the world, including 
facts about actions that can be performed), procedu- 
ral knowledge (facts about how to perform actions, 
and control knowledge about which actions to perform 
when),  and episodic knowledge (which actions were 
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done when). Any particular task will require some sub- 
set of the knowledge stored in the memory. Memory 
access is the process by which this subset is retrieved 
for use in task performance. 

The lowest level of the Soar architecture is the level 
at which these memory phenomena occur. All of Soar's 
long-term knowledge is stored in a single production 
memory. Whether a piece of knowledge represents 
procedural, declarative, or episodic knowledge, it is 
stored in one or more productions. Each production is 
a condition-action structure that performs its actions 
when its conditions are met. Memory access consists 
of the execution of these productions. During the exe- 
cution of a production, variables in its actions are in- 
stantiated with values. Action variables that existed in 
the conditions are instantiated with the values bound 
in the conditions. Action variables that did not exist 
in the conditions act as generators of new symbols. 

The result of memory access is the retrieval of in- 
formation into a global working memory. The work- 
ing memory is a temporary memory that contains 
all of Soar's short-term processing context. Work- 
ing memory consists of an interrelated set of objects 
with attribute-value pairs. For example, an object 
representing a green cat named Fred might look like 
(object o025 "name fred "type cat "color green). 
The symbol o025 is the identifier of the object, a short- 
term symbol for the object that exists only as long as 
the object is in working memory. Objects are related 
by using the identifiers of some objects as attributes 
and values of other objects. 

There is one special type of working memory struc- 
ture, the preference. Preferences encode control knowl- 
edge about the acceptability and desirability of actions, 
according to a fixed semantics of preference types. Ac- 
ceptability preferences determine which actions should 
be considered as candidates. Desirability preferences 
define a partial ordering on the candidate actions. For 
example, a better (or alternatively, worse) preference 
can be used to represent the knowledge that one action 
is more (or less) desirable than another action, and a 
best (or worst) preference can be used to represent the 
knowledge that an action is at least as good (or as bad) 
as every other action. 

In a traditional production-system architecture, 
each production is a problem-solving operator (see, for 
example, [Nilsson, 1980]). The right-hand side of the 
production represents some action to be performed, 
and the left-hand side represents the preconditions for 
correct application of the action (plus possibly some 
desirability conditions). One consequence of this view 
of productions is that the productions must also be 
the locus of behavioral control. If productions are go- 
ing to act, it must be possible to control which one 
executes at each moment; a process known as conflict 
resolution. In a logic architecture, each production is 
a logical implication. The meaning of such a produc- 
tion is that if the left-hand side (the antecedent) is 

true, then so is the right-hand side (the consequent).2 

Soar's productions are neither operators nor implica- 
tions. Instead, Soar's productions perform (parallel) 
memory retrieval. Each production is a retrieval struc- 
ture for an item in long-term memory. The right-hand 
side of the rule represents a long-term datum, and the 
left-hand side represents the situations in which it is 
appropriate to retrieve that datum into working mem- 
ory. The traditional production-system and logic no- 
tions of action, control, and truth are not directly ap- 
plicable to Soar's productions. All control in Soar is 
performed at the decision level. Thus, there is no con- 
flict resolution process in the Soar production system, 
and all productions execute in parallel. This all flows 
directly from the production system being a long-term 
memory. Soar separates the retrieval of long-term in- 
formation from the control of which act to perform 
next. 

Of course it is possible to encode knowledge of oper- 
ators and logical implications in the production mem- 
ory. For example, the knowledge about how to imple- 
ment a typical operator can be stored procedurally as 
a set of productions which retrieve the state resulting 
from the operator's application. The productions' con- 
ditions determine when the state is to be retrieved — 
for example, when the operator is being applied and 
its preconditions are met. An alternative way to store 
operator implementation knowledge is declaratively as 
a set of structures that are completely contained in the 
actions of one or more productions. The structures de- 
scribe not only the results of the operator, but also its 
preconditions. The productions' conditions determine 
when to retrieve this declarative operator description 
into working memory. A retrieved operator description 
must be interpreted by other productions to actually 
have an affect. 

In general, there are these two distinct ways to en- 
code knowledge in the production memory: procedu- 
rally and declaratively. If the knowledge is procedu- 
rally encoded, then the execution of the production 
reflects the knowledge, but does not actually retrieve 
it into working memory — it only retrieves the struc- 
tures encoded in the actions. On the other hand, if 
a piece of knowledge is encoded declaratively in the 
actions of a production, then it is retrievable in its en- 
tirety. This distinction between procedural and declar- 
ative encodings of knowledge is distinct from whether 
the knowledge is declarative (represents facts about 
the world) or procedural (represents facts about pro- 
cedures). Moreover, each production can be viewed 
in either way, either as a procedure which implicitly 
represents conditional information, or as the indexed 
storage of declarative structures. 

2The directionality of the implication is reversed in logic 
programming languages such as Prolog, but the point still 
holds. 
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Level 2: Decisions 
In addition to a memory, a general intelligence requires 
the ability to generate and/or select a course of action 
that is responsive to the current situation. The sec- 
ond level of the Soar architecture, the decision level, 
is the level at which this processing is performed. The 
decision level is based on the memory level plus an ar- 
chitecturally provided, fixed, decision procedure. The 
decision level proceeds in a two phase elaborate-decide 
cycle. During elaboration, the memory is accessed re- 
peatedly, in parallel, until quiescence is reached; that 
is, until no more productions can execute. This results 
in the retrieval into working memory of all of the acces- 
sible knowledge that is relevant to the current decision. 
This may include a variety of types of information, 
but of most direct relevance here is knowledge about 
actions that can be performed and preference knowl- 
edge about what actions are acceptable and desirable. 
After quiescence has occurred, the decision procedure 
selects one of the retrieved actions based on the pref- 
erences that were retrieved into working memory and 
their fixed semantics. 

The decision level is open both with respect to the 
consideration of arbitrary actions, and with respect to 
the utilization of arbitrary knowledge in making a se- 
lection. This openness allows Soar to behave in both 
plan-following and reactive fashions. Soar is following 
a plan when a decision is primarily based on previously 
generated knowledge about what to do. Soar is being 
reactive when a decision is based primarily on knowl- 
edge about the current situation (as reflected in the 
working memory). 

Level 3: Goals 
In addition to being able to make decisions, a general 
intelligence must also be able to direct this behavior to- 
wards some end; that is, it must be able to set and work 
towards goals. The third level of the Soar architecture, 
the goal level, is the level at which goals are processed. 
This level is based on the decision level. Goals are set 
whenever a decision cannot be made; that is, when the 
decision procedure reaches an impasse. Impasses oc- 
cur when there are no alternatives that can be selected 
(no-change and rejection impasses) or when there are 
multiple alternatives that can be selected, but insuffi- 
cient discriminating preferences exist to allow a choice 
to be made among them (tie and conflict impasses). 
Whenever an impasse occurs, the architecture gener- 
ates the goal of resolving the impasse. Along with this 
goal, a new performance context is created. The cre- 
ation of a new context allows decisions to continue to 
be made in the service of achieving the goal of resolv- 
ing the impasse — nothing can be done in the original 
context because it is at an impasse. If an impasse now 
occurs in this subgoal, another new subgoal and per- 
formance context are created. This leads to a goal (and 
context) stack in which the top-level goal is to perform 
some task, and lower-level goals are to resolve impasses 

in problem solving. A subgoal is terminated when ei- 
ther its impasse is resolved, or some higher impasse in 
the stack is resolved (making the subgoal superfluous). 

In Soar, all symbolic goal-oriented tasks are formu- 
lated in problem spaces. A problem space consists 
of a set of states and a set of operators. The states 
represent situations, and the operators represent ac- 
tions which when applied to states yield other states. 
Each performance context consists of a goal, plus roles 
for a problem space, a state, and an operator. Prob- 
lem solving is driven by decisions that result in the 
selection of problem spaces, states, and operators for 
their respective context roles. Given a goal, a problem 
space should be selected in which goal achievement can 
be pursued. Then an initial state should be selected 
that represents the initial situation. Then an operator 
should be selected for application to the initial state. 
Then another state should be selected (most likely the 
result of applying the operator to the previous state). 
This process continues until a sequence of operators 
has been discovered that transforms the initial state 
into a state in which the goal has been achieved. One 
subtle consequence of the use of problem spaces is that 
each one implicitly defines a set of constraints on how 
the task is to be performed. For example, if the Eight 
Puzzle is attempted in a problem space containing only 
a slide-tile operator, all solution paths maintain the 
constraint that the tiles are never picked up off of the 
board. Thus, such conditions need not be tested for 
explicitly in desired states. 

Each problem solving decision — the selection of 
a problem space, a state, or an operator — is based 
on the knowledge accessible in the production mem- 
ory. If the knowledge is both correct and sufficient, 
Soar exhibits highly controlled behavior; at each de- 
cision point the right alternative is selected. Such 
behavior is accurately described as being algorithmic 
or knowledge-intensive. However, for a general intelli- 
gence faced with a broad array of unpredictable tasks, 
situations will arise — inevitably and indeed frequently 
— in which the accessible knowledge is either incorrect 
or insufficient. It is possible that correct decisions will 
fortuitously be made, but it is more likely that either 
incorrect decisions will be made or that impasses will 
occur. Under such circumstances search is the likely 
outcome. If an incorrect decision is made, the sys- 
tem must eventually recover and get itself back on a 
path to the goal, for example, by backtracking. If in- 
stead an impasse occurs, the system must execute a 
sequence of problem space operators in the resulting 
subgoal to find (or generate) the information that will 
allow a decision to be made. This processing may itself 
be highly algorithmic, if enough control knowledge is 
available to uniquely determine what to do, or it may 
involve a large amount of further search. 

As described earlier, operator implementation 
knowledge can be represented procedurally in the pro- 
duction memory, enabling operator implementation to 
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be performed directly by memory retrieval. When the 
operator is selected, a set of productions execute that 
collectively build up the representation of the result 
state by combining data from long-term memory and 
the previous state. This type of implementation is 
comparable to the conventional implementation of an 
operator as a fixed piece of code. However, if opera- 
tor implementation knowledge is stored declaratively, 
or if no operator implementation knowledge is stored, 
then a subgoal occurs, and the operator must be im- 
plemented by the execution of a sequence of problem 
space operators in the subgoal. If a declarative de- 
scription of the to-be-implemented operator is avail- 
able, then these lower operators may implement the 
operator by interpreting its declarative description (as 
was demonstrated in work on task acquisition in Soar 
[Steier et al, 1987]). Otherwise the operator can be 
implemented by decomposing it into a set of simpler 
operators for which operator implementation knowl- 
edge is available, or which can in turn be decomposed 
further. 

When an operator is implemented in a subgoal, 
the combination of the operator and the subgoal cor- 
respond to the type of deliberately created subgoal 
common in AI problem solvers. The operator spec- 
ifies a task to be performed, while the subgoal indi- 
cates that accomplishing the task should be treated 
as a goal for further problem solving. In complex 
problems, like computer configuration, it is common 
for there to be complex high-level operators, such as 
Conf igure-computer which are implemented by se- 
lecting problems spaces in which they can be decom- 
posed into simpler tasks. Many of the traditional goal 
management issues — such as conjunction, conflict, 
and selection — show up as operator management is- 
sues in Soar. For example, a set of conjunctive subgoals 
can be ordered by ordering operators that later lead to 
impasses (and subgoals). 

As described in [Rosenbloom et al, 1988b], a subgoal 
not only represents a subtask to be performed, but it 
also represents an introspective act that allows unlim- 
ited amounts of meta-level problem-space processing to 
be performed. The entire working memory — the goal 
stack and all information linked to it — is available for 
examination and augmentation in a subgoal. At any 
time a production can examine and augment any part 
of the goal stack. Likewise, a decision can be made at 
any time for any of the goals in the hierarchy. This al- 
lows subgoal problem solving to analyze the situation 
that led to the impasse, and even to change the subgoal 
should it be appropriate. One not uncommon occur- 
rence is for information to be generated within a sub- 
goal that, instead of satisfying the subgoal, causes the 
subgoal to become irrelevant and consequently to dis- 
appear. Processing tends to focus on the bottom-most 
goal because all of the others have reached impasses. 
However, the processing is completely opportunistic, 
so that when appropriate information becomes avail- 

able at a higher level, processing at that level continues 
immediately and all lower subgoals are terminated. 

Learning 

All learning occurs by the acquisition of chunks — pro- 
ductions that summarize the problem solving that oc- 
curs in subgoals [Laird et al, 1986a]. The actions of 
a chunk represent the knowledge generated during the 
subgoal; that is, the results of the subgoal. The con- 
ditions of the chunk represent an access path to this 
knowledge, consisting of those elements of the parent 
goals upon which the results depended. The results 
of the subgoal are determined by finding the elements 
generated in the subgoal that are available for use in 
supergoals — an element is a result of a subgoal pre- 
cisely because it is available to processes outside of the 
subgoal. The access path is computed by analyzing the 
traces of the productions that fired in the subgoal — 
each production trace effectively states that its actions 
depended on its conditions. This dependency analysis 
yields a set of conditions that have been implicitly gen- 
eralized to ignore irrelevant aspects of the situation. 
The resulting generality allows chunks to transfer to 
situations other than the one in which it was learned. 
The primary system-wide effect of chunking is to move 
Soar along the space-time trade-off by allowing rele- 
vantly similar future decisions to be based on direct 
retrieval of information from memory rather than on 
problem solving within a subgoal. If the chunk is used, 
an impasse will not occur, because the required infor- 
mation is already available. 

Care must be taken to not confuse the power of 
chunking as a learning mechanism with the power 
of Soar as a learning system. Chunking is a sim- 
ple goal-based, dependency-tracing, caching scheme, 
analogous to explanation-based learning [DeJong k. 
Mooney, 1986; Mitchell et al, 1986; Rosenbloom fe 
Laird, 1986] and a variety of other schemes [Rosen- 
bloom & Newell, 1986]. What allows Soar to exhibit 
a wide variety of learning behaviors are the variations 
in the types of subgoals that are chunked; the types 
of problem solving, in conjunction with the types and 
sources of knowledge, used in the subgoals; and the 
ways the chunks are used in later problem solving. The 
role that a chunk will play is determined by the type 
of subgoal for which it was learned. State-no-change, 
operator-tie, and operator-no-change subgoals lead re- 
spectively to state augmentation, operator selection, 
and operator implementation productions. The con- 
tent of a chunk is determined by the types of problem 
solving and knowledge used in the subgoal. A chunk 
can lead to skill acquisition if it is used as a more ef- 
ficient means of generating an already generatable re- 
sult. A chunk can lead to knowledge acquisition (or 
knowledge level learning [Dietterich, 1986]) if it is used 
to make old/new judgments; that is, to distinguish 
what has been learned from what has not been learned 
[Rosenbloom et al, 1987; Rosenbloom et al, 1988a; 
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Rosenbloom et al, 1990]. 

Perception and Motor Control 
One of the most recent functional additions to the Soar 
architecture is a perceptual-motor interface [Wies- 
meyer, 1988b; Wiesmeyer, 1989]. All perceptual and 
motor behavior is mediated through working memory; 
specifically, through the state in the top problem solv- 
ing context. Each distinct perceptual field has a des- 
ignated attribute of this state to which it adds its in- 
formation. Likewise, each distinct motor field has a 
designated attribute of the state from which it takes it 
commands. The perceptual and motor systems are au- 
tonomous with respect to each other and the cognitive 
system. 

Encoding and decoding productions can be used to 
convert between the high-level structures used by the 
cognitive system, and the low-level structures used by 
the perceptual and motor systems. These productions 
are like ordinary productions, except that they exam- 
ine only the perceptual and motor fields, and not any of 
the rest of the context stack. This autonomy from the 
context stack is critical, because it allows the decision 
procedure to proceed without waiting for quiescence 
among the encoding and decoding productions, which 
may never happen in a rapidly changing environment. 

Default Knowledge 
Soar has a set of productions (55 in all) that pro- 
vide default responses to each of the possible impasses 
that can arise, and thus prevent the system from drop- 
ping into a bottomless pit in which it generates an un- 
bounded number of content-free performance contexts. 
Figure 2 shows the default production that allows the 
system to continue if it has no idea how to resolve a 
conflict impasse among a set of operators. When the 
production executes, it rejects all of the conflicting op- 
erators. This allows another candidate operator to be 
selected, if there is one, or for a different impasse to 
arise if there are no additional candidates. This de- 
fault response, as with all of them, can be overridden 
by additional knowledge if it is available. 

II there is an impasse because of an operator 
conflict and there are no candidate 
problem spaces available 

then reject the conflicting operators. 

Figure 2: A default production. 

One large part of the default knowledge (10 produc- 
tions) is responsible for setting up operator subgoaling 
as the default response to no-change impasses on oper- 
ators. That is, it attempts to find some other state in 
the problem space to which the selected operator can 
be applied. This is accomplished by generating accept- 
able and worst preferences in the subgoal for the parent 

problem space. If another problem space is suggested, 
possibly for implementing the operator, it will be se- 
lected. Otherwise, the selection of the parent problem 
space in the subgoal enables operator subgoaling. A se- 
quence of operators is then applied in the subgoal until 
a state is generated that satisfies the preconditions of 
an operator higher in the goal stack. 

Another large part of the default knowledge (33 pro- 
ductions) is responsible for setting up lookahead search 
as the default response to tie impasses. This is accom- 
plished by generating acceptable and worst preferences 
for the selection problem space. The selection prob- 
lem space consists of operators that evaluate the tied 
alternatives. Based on the evaluations produced by 
these operators, default productions create preferences 
that break the tie and resolve the impasse. In order 
to apply the evaluation operators, domain knowledge 
must exist that can create an evaluation. If no such 
knowledge is available, a second impasse arises — a 
no-change on the evaluation operator. As mentioned 
earlier, the default response to an operator no-change 
impasse is to perform operator subgoaling. However, 
for a no-change impasse on an evaluation operator this 
is overridden and a lookahead search is performed in- 
stead. The results of the lookahead search are used to 
evaluate the tied alternatives. 

As Soar is developed, it is expected that more and 
more knowledge will be included as part of the basic 
system about how to deal with a variety of situations. 
For example, one area on which we are currently work- 
ing is the provision of Soar with a basic arithmetical 
capability, including problem spaces for addition, mul- 
tiplication, subtraction, division, and comparison. One 
way of looking at the existing default knowledge is as 
the tip of this large iceberg of background knowledge. 
However, another way to look at the default knowl- 
edge is as part of the architecture itself. Some of the 
default knowledge — how much is still unclear — must 
be innate rather than learned. The rest of the system's 
knowledge, such as the arithmetic spaces, should then 
be learnable from there. 

Example: Multi-column Subtraction 
Multi-column subtraction is the task we will use to 
demonstrate Soar. This task has three advantages. 
First, it is a familiar and simple task. This allows 
the details of Soar not to be lost in the complexities 
of understanding the task. Second, previous work has 
been done on modeling human learning of subtraction 
in the Sierra architecture [VanLehn, 1983]. Our imple- 
mentation is inspired by the Sierra framework. Third, 
this task appears to be quite different from many stan- 
dard search-intensive tasks common in AI. On the sur- 
face, it appears difficult to cast subtraction within the 
problem-space framework of Soar — it is, after all, a 
procedure. One might also think that chunking could 
not learn such a procedure. However, in this example, 
we will demonstrate that multi-column subtraction can 
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Subtraction 

Borrowl 

Regroup 

Figure 3: A goal hierarchy for multi-column subtraction. 

be performed by Soar and that important parts of the 
procedure can be learned through chunking. 

There exist many different procedures for perform- 
ing multi-column subtraction. Different procedures re- 
sult in different behaviors, both in the order in which 
scratch marks — such as borrowing notations — are 
made and in the type of mistakes that might be gener- 
ated while learning [VanLehn & Ball, 1987]. For sim- 
plicity, we will demonstrate the implementation of just 
one of the many possible procedures. This procedure 
uses a borrowing technique that recursively borrows 
from a higher-order column into a lower-order column 
when the top number in the lower-order column is less 
than the bottom number. 

A Hierarchical Subtraction Procedure 
One way to implement this procedure is via the pro- 
cessing of a goal hierarchy that encodes what must be 
done. Figure 3 shows a subtraction goal hierarchy that 
is similar to the one learned by Sierra.3 Under each 
goal are shown the subgoals that may be generated 
while trying to achieve it. This Sierra goal hierarchy 
is mapped onto a hierarchy of operators and problem 
spaces in Soar (as described in the architecture sec- 
tion). The boxed goals map onto operators and the un- 
boxed goals map onto problem spaces. Each problem 
space consists of the operators linked to it from below 
in the figure. Operators that have problem spaces be- 
low them are implemented by problem solving in those 
problem spaces. The other operators are implemented 

3Sierra learned a slightly more elaborate, but computa- 
tionally equivalent, procedure. 

directly at the memory level by productions (except 
for multiple-column and regroup, which are recursive). 
These are the primitive acts of subtraction, such as 
writing numbers or subtracting digits. 

The states in these problem spaces contain sym- 
bolic representations of the subtraction problem and 
the scratch marks made on the page during problem 
solving. The representation is very simple and direct, 
being based on the spatial relationships among the dig- 
its as they would appear on a page. The state consists 
of a set of columns. Each column has pointers to its top 
and bottom digits. Additional pointers are generated 
when an answer for a column is produced, or when a 
scratch mark is made as the result of borrowing. The 
physical orientation of the columns on the page is rep- 
resented by having "left" and "right" pointers from 
columns to their left and right neighbors. There is 
no inherent notion of multi-digit numbers except for 
these left and right relations between columns. This 
representation is consistent with the operators, which 
treat the problem symbolically and never manipulate 
multi-digit numbers as a whole. 

Using this implementation of the subtraction proce- 
dure, Soar is able to solve all multi-column subtrac- 
tion problems that result in positive answers. Unfor- 
tunately, there is little role for learning. Most of the 
control knowledge is already embedded in the produc- 
tions that select problem spaces and operators. Within 
each problem space there are only a few operators from 
which to select. The preconditions of the few operators 
in each problem space are sufficient for perfect behav- 
ior.   Therefore, goals arise only to implement opera- 
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Operators: 

Write-difference: If the difference between the top digit and the bottom digit of the current column is known, then 
write the difference as an answer to the current column. 

Write-top: If the lower digit of the current column is blank, then write the top digit as the answer to the current column. 
Borrow-into: If the result of adding 10 to the top digit of the current column is known, and the digit to the left of it 

has a scratch mark on it, then replace the top digit with the result. 
Borrow-from:  If the result of subtracting 1 from the top digit in the current column is known, then replace that top 

digit with the result, augment it with a scratch mark and shift the current column to the right. 
Move-left: If the current column has an answer in it, shift the current column left. 
Move-borrow-left: If the current column does not have a scratch mark in it, shift the current column left. 
Subtract-two-digits: If the top digit is greater than or equal to the lower digit, then produce a result that is the 

difference. 
Subtract-1: If the top digit is not zero, then produce a result that is the top digit minus one. 
Add-10:  Produce a result that is the top digit plus ten. 

Goal Test: If each column has an answer, then succeed. 

Figure 4: Primitive subtraction problem space. 

tors. Chunking these goals produces productions that 
are able to compute answers without the intermediate 
subgoals.4 

A Single Space Approach 

One way to loosen up the strict control provided by 
the detailed problem-space/operator hierarchy in Fig- 
ure 3, and thus to enable the learning of the con- 
trol knowledge underlying the subtraction procedure, 
is to have only a single subtraction problem space 
that contains all of the primitive acts (writing results, 
changing columns, and so on). Figure 4 contains a 
description of the problem space operators and the 
goal test used in this second implementation. The 
operators can be grouped into four classes: the ba- 
sic acts of writing answers to a single column prob- 
lem (write-difference, write-top); borrow actions on the 
upper digits (borrow-into, borrow-from); moving from 
one column to the next (move-left, move-borrow-left); 
and performing very simple arithmetic computations 
(subtract-two-digits, subtract-1, add-10). With this 
simple problem space, Soar must learn the subtrac- 
tion procedure by acquiring control knowledge that 
correctly selects operators. 

Every operator in the subtraction problem space is 
considered for every state in the space. This is accom- 
plished by having a production for each operator that 
generates an acceptable preference for it. The condi- 
tions of the production only test that the appropriate 

4 This work on subtraction was done in an earlier ver- 
sion of Soar that did not have the perceptual-motor inter- 
face described in the architecture section. In that version, 
these chunks caused Soar to write out all of the column 
results and scratch marks in parallel — not very realistic 
motor behavior. To work around this problem chunking 
was disabled for goals in this task during which environ- 
mental interactions occurred. 

problem space (subtraction) is selected. Similar pro- 
ductions existed in the original implementation, except 
that those productions also contained additional tests 
which ensured that the operators would only be con- 
sidered when they were the appropriate ones to apply. 

In addition to productions which generate accept- 
able preferences, each operator has one or more pro- 
ductions which implement it. Although every operator 
is made acceptable for every state, an operator will ac- 
tually be applied only if all of the conditions in the 
productions that implement it are satisfied. For ex- 
ample, write-difference will only apply if the difference 
between the top and bottom numbers is known. If an 
operator is selected, but the conditions of the produc- 
tions that implement it are not satisfied, an impasse 
arises. As described in the architecture section, the 
default response to this type of impasse is to perform 
operator subgoaling. 

Figure 5 shows a trace of Soar's problem solving as 
it performs a simple two-column subtraction problem, 
after the learning of control knowledge has been com- 
pleted. Because Soar's performance prior to learning 
on this problem is considerably more complicated, it is 
described after this simpler case. The top goal in this 
figure is to have the result of subtracting 3 from 22. 
Problem solving in the top goal proceeds from left to 
right, diving to a lower level whenever a subgoal is cre- 
ated in response to an impasse. Each state is a partially 
solved subtraction problem, consisting of the statement 
of the subtraction problem, a * designating the current 
column, and possibly column results and/or scratch 
marks for borrowing. Operator applications are rep- 
resented by arrows going from left to right. The only 
impasses that occur in this trace are a result of the 
failure of operator preconditions — a form of operator 
no-change impasse. These impasses are designated by 
circles disrupting the operator-application arrows, and 
are labeled in the order they arise (A and B). For exam- 
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Figure 5: Trace of problem solving after learning for 22 - 3. 

pie, impasse A arises because write-difference cannot 
apply unless the lower digit in the current column (3) 
is less than the top digit (2). 

For impasse A, operator subgoaling occurs when the 
subtraction problem space is selected in the subgoal. 
The preconditions of the write-difference operator are 
met when a state has been generated whose top digit 
has been changed from 2 to 12 (by borrowing). Once 
this occurs, the subgoal terminates and the operator 
applies, in this case writing the difference between 12 
and 3. In this implementation of subtraction, oper- 
ator subgoaling dynamically creates a goal hierarchy 
that is similar to the one programmed into the original 
implementation. 

Performance Prior to Learning 
Prior to learning, Soar's problem solving on this task 
is considerably more complicated. This added com- 
plexity arises because of an initial lack of knowledge 
about the results of simple arithmetic computations 
and a lack of knowledge about which operators should 
be selected for which states. Figure 6 shows a partial 
trace of Soar's pre-learning problem solving. Although 
many of the subgoals are missing, this small snapshot 
of the problem solving is characteristic of the impasses 
and subgoals that arise at all levels. 

As before, the problem solving starts at the upper 
left with the initial state. As soon as the initial state 
is selected, a tie impasse (A) arises because all of the 
operators are acceptable and there are no additional 
preferences that distinguish between them. Default 
productions cause the selection space to be selected for 
this impasse. Within this space, operators are created 
to evaluate the tied operators. This example assumes 
that evaluate-object(write-difference) is selected, pos- 

sibly based on advice from a teacher. Then, because 
there is no knowledge available about how to eval- 
uate the subtraction operators, a no-change impasse 
(B) occurs for the evaluation operator. More default 
productions lead to a lookahead search by suggest- 
ing the original problem space (subtraction) and state 
and then selecting the operator that is being evalu- 
ated. The operator then applies, if it can, creating 
a new state. In this example, an operator subgoal 
impasse (C) arises when the attempt is made to ap- 
ply the write-difference operator — its preconditions 
are not satisfied. Problem solving continues in this 
subgoal, requiring many additional impasses, until the 
write-difference operator can finally be applied. The 
lookahead search then continues until an evaluation is 
generated for the write-difference operator. Here, this 
happens shortly after impasse C is resolved. The sys- 
tem was given the knowledge that a state containing 
an answer for the current column is a (partial) suc- 
cess — such states are on the path to the goal. This 
state evaluation is then converted by default produc- 
tions into an evaluation of "success" for the operator, 
and from there into a best preference for the operator. 
The creation of this preference breaks the operator tie, 
terminating the subgoals, and leading to the selection 
of the preferred operator (write-difference). The over- 
all behavior of the system during this lookahead search 
is that of depth-first search — where backtracking oc- 
curs by subgoal termination — intertwined with oper- 
ator subgoaling. Once this search is completed, further 
impasses (N) arise to actually apply the selected oper- 
ator, but eventually, a solution is found. 

One way in which multi-column subtraction differs 
from the classic AI search tasks is that the goal test 
is underspecified.  As shown in Figure 4, the goal test 

477 



write-difference move-left 

Subtract problem space 

Selection problem space 

Subtract problem space 

Figure 6: Trace of problem solving before learning for 22-3. 

used here is that a result has been generated for each 
column of the problem. This determines whether some 
answer has been given for the problem, but is inad- 
equate to determine whether the correct answer has 
been generated. The reason for this is that when solv- 
ing a subtraction problem, the answer is in general not 
already available. It is theoretically (and practically) 
possible to use an addition procedure to test whether 
the subtraction procedure has generated the correct re- 
sult. However, that corresponds to a deliberate strat- 
egy of "checking your work", rather than to the nor- 
mal procedural goal test of determining whether the 
sequence of steps has been completed. 

One consequence of having an underspecified goal 
test is that the combination of the problem space and 
goal test are not sufficient to ensure correct perfor- 
mance. Additional knowledge — the control knowl- 
edge which underlies the subtraction procedure — 
must also be provided in some form. VanLehn pro- 
vided Sierra with worked out examples which included 
the order in which the primitive external actions were 
to be performed [VanLehn, 1983]. The approach that 
we have taken is to provide advice to Soar [Golding et 
ai, 1987] about which task operators it should evalu- 
ate first in the selection problem space. This ensures 
that the first answer generated during the lookahead 
search is the correct one. 

Learning in Subtraction 

When chunking is used during subtraction problem 
solving, productions are created which reproduce the 
results of the subgoals in similar future situations. 
For the subgoals created because of tie impasses, the 

chunks create best preferences for the operators that 
led to the solution. These chunks essentially cache the 
results of the lookahead searches. A set of such chunks 
corresponds to a plan (or procedure) — they determine 
at every step what should be done — thus chunking 
converts Soar's behavior from search into plan (or pro- 
cedure) following. When Soar is rerun on the same 
problem, the tie impasses do not arise and the solution 
is found directly, as in Figure 5. 

One important issue concerning the chunked produc- 
tions is their generality. Does Soar only learn chunks 
that can apply to the exact same problem, or are 
the chunks general enough so that advice is no longer 
needed after a few subtraction problems have been 
completed? The answer is that the learned control 
chunks are quite general — so general that only one 
or two are required per operator. Once these chunks 
are acquired, Soar is able to solve perfectly all multi- 
column subtraction problems that have a positive an- 
swer. One sample control chunk for the borrow-into 
operator is shown in Figure 7. Similar chunks are 
learned for each of the other major operators. 

If the super-operator is write-difference, 
and the bottom digit is greater than 

the top digit, 
then make a best preference for borrow-into. 

Figure 7: A control chunk for borrow-into. 

One reason for this generality is that operator sub- 
goaling leads to a fine-grained goal hierarchy.   There 
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are a large number of relatively simple goals having 
to do with satisfying the preconditions of an operator. 
Because the problem solving for these goals is relatively 
minimal, the resulting chunks are quite general. A sec- 
ond reason for the generality of the learning is that the 
control chunks do not test for the specific digits used in 
the problems — if such tests were included, the chunks 
would transfer to many fewer problems.5 

Though the control chunks that are learned are quite 
general, many specialized implementation chunks are 
also learned for the simple arithmetic operators. For 
example, the set of chunks that are eventually learned 
for the subtract-two-digits operator comprise a par- 
tial subtraction table for one and two-digit numbers. 
Conceivably, these chunks could have been learned be- 
fore multi-column subtraction is ever attempted — one 
can imagine that most of these simple digit manipula- 
tions are learned during earlier lessons on addition and 
single-column subtraction. Alternatively, these chunks 
can continue to be acquired as more multi-column 
subtraction problems are solved. The control chunks 
would all be acquired after a few trials, but learning 
of arithmetic knowledge would continue through later 
problems. 

Analysis of Soar 
There are a variety of analyses that could be performed 
for Soar. In this section we take our cue from the 
issues provided by the organizers of the 1987 Workshop 
on the Foundations of Artificial Intelligence [Hewitt k 
Kirsh, 1987]. We examine the set of tasks that are 
natural for Soar, the sources of its power, and its scope 
and limits. 

Natural Tasks 
What does it mean for a task to be natural for an 
architecture? To answer this question we first must 
understand what a task is, and then what it means for 
such a task to be natural. By "task" we will mean any 
identifiable function, whether externally specified, or 
completely internal to the system. Computer config- 
uration and maneuvering through an obstacle course 
are both tasks, and so are inheritance and skill acqui- 
sition. One way to define the idea of naturalness for a 

5 Chunking would include tests for the digits if their spe- 
cific values were examined during the lookahead searches. 
However, the actual manipulation of the numbers is 
performed by the simple arithmetic operators: add-10, 
subtract-1 and subtract-two-digits. Before an operator 
such as write-difference is applied, an operator subgoal is 
created in which subtract-two-digits is selected and applied. 
The chunk for this subgoal reproduces the result whenever 
the same two digits are to be subtracted, eliminating the 
need for subtract-two-digits in such situations in the fu- 
ture. In the following lookahead searches, only pointers 
to the digits rather than the actual digits are ever tested, 
thereby leading to control chunks that are independent of 
the actual digits. 

combination of a task and architecture is to say that 
a task is natural for an architecture if the task can be 
performed within the architecture without adding an 
extra level of interpretation within the software. This 
definition is appealing because it allows a distinction 
to be made between the tasks that the architecture 
can perform directly and those that can be done, but 
for which the architecture does not provide direct sup- 
port. However, applying this definition is not without 
its problems. One problem is that, for any particular 
task, it is possible to replace the combination of an 
interpreter and its interpreted structures with a proce- 
dure that has the same effect. Some forms of learning 
— chunking, for example — do exactly this, by com- 
piling interpreted structures into the structure of the 
interpreter. This has the effect of converting an un- 
natural task implementation into a natural one. Such 
a capability causes problems for the definition of nat- 
uralness — naturalness cannot be a fixed property of 
the combination of a task and an architecture — but 
it is actually a point in favor of architectures that can 
do such learning. 

A second problem is that in a system that is itself 
built up in levels, as is Soar, different tasks will be 
performed at different levels. In Soar, tasks can be 
performed directly by the architecture, by memory re- 
trieval, by a decision, or by goal-based problem solving. 
A task is implemented at a particular level if that level 
and all lower levels are involved, but the higher levels 
are not. For example, consider the task of inheritance. 
Inheritance is not directly implemented by the Soar ar- 
chitecture, but it can be implemented at the memory 
level by the firing of productions. This implementa- 
tion involves the memory level plus the architecture 
(which implements the memory level), but not the de- 
cision or goal levels. Alternatively, inheritance could 
be implemented at the decision level, or even higher up 
at goal level. As the level of implementation increases, 
performance becomes more interpretive, but the model 
of computation explicitly includes all of these levels as 
natural for the system. 

One way out of this problem is to have pretheoretic 
notions about the level at which a particular task ought 
to be performable. The system is then natural for the 
task if it can be performed at that level, and unnatural 
if it must be implemented at a higher level. If, for ex- 
ample, the way inheritance works should be a function 
of the knowledge in the system, then the natural level 
for this capability is at the memory level (or higher). 

In the remainder of this section we describe the ma- 
jor types of tasks that appear to us to be natural in 
Soar. Lacking any fundamental ways of partitioning 
the set of all tasks into principled categories, we will use 
a categorization based on four of the major functional 
capabilities of Soar: search-based tasks, knowledge- 
based tasks, learning tasks, and robotic tasks. The 
naturalness judgments for these task types are always 
based on assumptions about the natural level of imple- 
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mentation for a variety of subtasks within each type of 
task. We will try to be as clear as possible about the 
levels at which the subtasks are being performed, so 
that others may also be able to make these judgments 
for themselves. 
Search-based tasks Soar performs search in two 
qualitatively different ways: within context and across 
context. Within-context search occurs when Soar 
"knows" what to do at every step, and thus selects 
a sequence of operators and states without going into 
a subgoal. If it needs to backtrack in within-context 
search, and the states in the problem space are inter- 
nal (rather than states of the outside world), it can do 
so by reselecting a previously visited state. Within- 
context search corresponds to doing the task, with- 
out lookahead, and recovering if anything goes wrong. 
Across-context search occurs when the system doesn't 
know what to do, and impasses arise. Successive states 
in the search show up in successively lower contexts. 
Backtracking occurs by terminating subgoals. Across- 
context search corresponds to lookahead search, hypo- 
thetical scenario generation, or simulation. 

Various versions of Soar have been demonstrated to 
be able to perform over 30 different search methods 
[Laird, 1983; Laird & Newell, 1983; Laird et al, 1987]. 
Soar can also exhibit hybrid methods — such as a com- 
bination of hill-climbing and depth-first search or of 
operator subgoaling and depth-first search — and use 
different search methods for different problem spaces 
within the same problem. 

Search methods are represented in Soar as method 
increments — productions that contain a small chunk 
of knowledge about some aspect of a task and its ac- 
tion consequences. For example, a method increment 
might include knowledge about how to compute an 
evaluation function for a task, along with the knowl- 
edge that states with better evaluations should be pre- 
ferred. Such an increment leads to a form of hill climb- 
ing. Other increments lead to other search methods. 
Combinations of increments lead to mixed methods. 

The basic search abilities of making choices and gen- 
erating subgoals are provided by the architecture. In- 
dividual method increments are at the memory level, 
but control occurs at the decision level, where the re- 
sults of all of the method increments can be integrated 
into a single choice. Some search knowledge, such as 
the selection problem space, exists at the goal level. 
Knowledge-based tasks Knowledge-based tasks 
are represented in Soar as a collection of interact- 
ing problem spaces (as are all symbolic goal-oriented 
tasks). Each problem space is responsible for a part of 
the task. Problem spaces interact according to the dif- 
ferent goal-subgoal relationships that can exist in Soar. 
Within each problem space, the knowledge is further 
decomposed into a set of problem space components, 
such as goal testing, state initialization, and operator 
proposal [Yost & Newell, 1989].   These components, 

along with additional communication constructs, can 
then be encoded directly as productions, or can be de- 
scribed in a high-level problem space language called 
TAQL [Yost k Newell, 1989], which is then compiled 
down into productions. Within this overall problem 
space organization, other forms of organization — such 
as object hierarchies with inheritance — are imple- 
mentable at the memory level by multiple memory ac- 
cesses. Task performance is represented at the goal 
level as search in problem spaces. 

Several knowledge-based tasks have been imple- 
mented in Soar, including the Rl-Soar computer 
configuration system [Rosenbloom et al, 1985], the 
Cypress-Soar and Designer-Soar algorithm design sys- 
tems [Steier, 1987; Steier & Newell, 1988], the 
Neomycin-Soar medical diagnosis system [Washington 
& Rosenbloom, 1988], and the Merl-Soar job-shop 
scheduling system [Hsu et al., 1988]. 

These five knowledge-based systems cover a variety 
of forms of both construction and classification tasks. 
Construction tasks involve assembling an object from 
pieces. Rl-Soar — in which the task is to construct 
a computer configuration — is a good example of a 
construction task. Classification tasks involve select- 
ing from among a set of objects. Neomycin-Soar — in 
which the task is to diagnose an illness — is a good 
example of a classification task.6 In their simplest 
forms, both construction and classification occur at the 
decision level. In fact, they both occur to some ex- 
tent within every decision in Soar — alternatives must 
be assembled in working-memory and then selected. 
These capabilities can require trivial amounts of pro- 
cessing, as when an object is constructed by instanti- 
ating and retrieving it from memory. They can also in- 
volve arbitrary amounts of problem solving and knowl- 
edge, as when the process of operator-implementation 
(or, equivalently, state-construction) is performed via 
problem solving in a subgoal. 

Learning tasks The architecture directly supports 
a form of experiential learning in which chunking com- 
piles goal-level problem solving into memory-level pro- 
ductions. Execution of the productions should have 
the same effect as the problem solving would have had, 
just more quickly. The varieties of subgoals for which 
chunks are learned lead to varieties in types of produc- 
tions learned: problem space creation and selection; 
state creation and selection; and operator creation, se- 
lection, and execution. An alternative classification for 
this same set of behaviors is that it covers procedural, 
episodic and declarative knowledge [Rosenbloom et al., 
1990]. The variations in goal outcomes lead to both 
learning from success and learning from failure.  The 

In a related development, as part of an effort to map 
the Generic Task approach to expert system construction 
onto Soar, the Generic Task for classification by establish- 
refine has been implemented in Soar as a general problem 
space [Johnson et al., 1989]. 
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ability to learn about all subgoal results leads to learn- 
ing about important intermediate results, in addition 
to learning about goal success and failure. The implicit 
generalization of chunks leads to transfer of learned 
knowledge to other subtasks within the same prob- 
lem (within-trial transfer), other instances of the same 
problem (across-trial transfer), and other problems 
(across-task transfer). Variations in the types of prob- 
lems performed in Soar lead to chunking in knowledge- 
based tasks, search-based, and robotic tasks. Vari- 
ations in sources of knowledge lead to learning from 
both internal and external knowledge sources. A sum- 
mary of many of the types of learning that have so far 
been demonstrated in Soar can be found in [Steier et 
al, 1987]. 

The apparent naturalness of these various forms of 
learning depends primarily on the appropriateness of 
the required problem solving. Towards the natural end 
of the spectrum is the acquisition of operator selec- 
tion productions, in which the problem solving consists 
simply of a search with the set of operators for which 
selection knowledge is to be learned. Towards the un- 
natural end of the spectrum is the acquisition of new 
declarative knowledge from the outside environment. 
Many systems employ a simple store command for such 
learning, effectively placing the capability at the mem- 
ory level. In Soar, the capability is situated two lev- 
els further up, at the goal level. This occurs because 
the knowledge must be stored by chunking, which can 
only happen if the knowledge is used in subgoal-based 
problem solving. The naturalness of this learning in 
Soar thus depends on whether this extra level of in- 
terpretation is appropriate or not. It turns out that 
the problem solving that enables declarative learning 
in Soar takes the form of an understanding process that 
relates the new knowledge to what is already known. 
The chunking of this understanding process yields the 
chunks that encode the new knowledge. If it is assumed 
that new knowledge should always be understood to 
be learned, then Soar's approach starts to look more 
natural, and verbatim storage starts to look more in- 
appropriate. 

Robotic tasks Robotic tasks are performed in 
Soar via its perceptual-motor interface. Sensors au- 
tonomously generate working memory structures rep- 
resenting what is being sensed, and motor systems au- 
tonomously take commands from working memory and 
execute them. The work on robotics in Soar is still very 
much in its infancy; however, in Robo-Soar [Laird et 
al, 1989], Soar has been successfully hooked up to the 
combination of a camera and a Puma arm, and then 
applied to several simple blocks-world tasks.7   Low- 

7The work on Robo-Soar has been done in the newest 
major release of Soar (version 5) [Laird et al., 1990], which 
differs in a number of interesting ways from the earlier ver- 
sions upon which the rest of the results in this article are 
based. 

level software converts the camera signal into informa- 
tion about the positions, orientations and identifying 
characteristics of the blocks. This perceptual infor- 
mation is then input to working memory, and further 
interpreted by encoding productions. Decoding pro- 
ductions convert the high-level robot commands gen- 
erated by the cognitive system to the low-level com- 
mands that are directly understood by the controller 
for the robot arm. These low-level commands are then 
executed through Soar's motor interface. 

Given a set of operators which generate motor com- 
mands, and knowledge about how to simulate the op- 
erators and about the expected positions of blocks fol- 
lowing the actions, Robo-Soar is able to successfully 
solve simple blocks world problems and to learn from 
its own behavior and from externally provided advice. 
It also can make use of a general scheme for recovering 
from incorrect knowledge [Laird, 1988] to recover when 
the unexpected occurs — such as when the system fails 
in its attempt to pick up a triangular prism — and to 
learn to avoid the failure in the future. Robo-Soar thus 
mixes planning (lookahead search with chunking), plan 
execution and monitoring, reactivity, and error recov- 
ery (with replanning). This performance depends on 
all of the major components of the architecture, plus 
general background knowledge — such as how to do 
lookahead search and how to recover from errors — 
and specific problem spaces for the task. 

Where the Power Resides 
Soar's power and flexibility arise from at least four 
identifiable sources. The first source of power is the 
universality of the architecture. While it may seem 
that this should go without saying, it is in fact a crucial 
factor, and thus important to mention explicitly. Uni- 
versality provides the primitive capability to perform 
any computable task, but does not by itself explain 
why Soar is more appropriate than any other universal 
architecture for knowledge-based, search-based, learn- 
ing, and robotic tasks. 

The second source of power is the uniformity of the 
architecture. Having only one type of long-term mem- 
ory structure allows a single, relatively simple, learning 
mechanism to behave as a general learning mechanism. 
Having only one type of task representation (problem 
spaces) allows Soar to move continuously from one ex- 
treme of brute-force search to the other extreme of 
knowledge-intensive (or procedural) behavior without 
having to make any representational decisions. Hav- 
ing only one type of decision procedure allows a single, 
relatively simple, subgoal mechanism to generate all of 
the types of subgoals needed by the system. 

The traditional downside of uniformity is weakness 
and inefficiency. If instead the system were built up 
as a set of specialized modules or agents, as proposed 
in [Fodor, 1983; Minsky, 1986], then each of the mod- 
ules could be optimized for its own narrow task. Our 
approach to this issue in Soar has been to go strongly 
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with uniformity — for all of the benefits listed above — 
but to achieve efficiency (power) through the addition 
of knowledge. This knowledge can either be added by 
hand (programming) or by chunking. 

The third source of power is the specific mecha- 
nisms incorporated into the architecture. The pro- 
duction memory provides pattern-directed access to 
large amounts of knowledge; provides the ability to 
use strong problem solving methods; and provides a 
memory structure with a small-grained modularity. 
The working memory allows global access to process- 
ing state. The decision procedure provides an open 
control loop that can react immediately to new situ- 
ations and knowledge; contributes to the modularity 
of the memory by allowing memory access to proceed 
in an uncontrolled fashion (conflict resolution was a 
major source of nonmodularity in earlier production 
systems); provides a flexible control language (prefer- 
ences); and provides a notion of impasse that is used 
as the basis for the generation of subgoals. Subgoals 
focus the system's resources on situations where the 
accessible knowledge is inadequate; and allow flexi- 
ble meta-level processing. Problem spaces separate 
control from action, allowing them (control and ac- 
tion) to be reasoned about independently; provide a 
constrained context within which the search for a de- 
sired state can occur; provide the ability to use weak 
problem solving methods; and provide for straightfor- 
ward responses to uncertainty and error (search and 
backtracking). Chunking acquires long-term knowl- 
edge from experience; compiles interpreted procedures 
into non-interpreted ones; and provides generalization 
and transfer. The perceptual-motor system provides 
the ability to observe and affect the external world in 
parallel with the cognitive activity. 

The fourth source of power is the interaction effects 
that result from the integration of all of the capabili- 
ties within a single system. The most compelling re- 
sults generated so far come about from these interac- 
tions. One example comes from the mixture of weak 
methods, strong methods, and learning that is found 
in systems like Rl-Soar. Strong methods are based 
on having knowledge about what to do at each step. 
Because strong methods tend to be efficient and to pro- 
duce high-quality solutions, they should be used when- 
ever possible. Weak methods are based on searching to 
make up for a lack of knowledge about what should be 
done. Such methods contribute robustness and scope 
by providing the system with a fall-back approach for 
situations in which the available strong methods do not 
work. Learning results in the addition of knowledge, 
turning weak methods into strong ones. For example, 
in Rl-Soar it was demonstrated how computer config- 
uration could be cast as a search problem, how strong 
methods (knowledge) could be used to reduce search, 
how weak methods (subgoals and search) could be used 
to make up for a lack of knowledge, and how learning 
could add knowledge as the result of search. 

Another interesting interaction effect comes from 
work on abstraction planning, in which a difficult prob- 
lem is solved by first learning a plan for an abstract ver- 
sion of the problem, and then using the abstract plan 
to aid in finding a plan for the full problem [Newell 
& Simon, 1972; Sacerdoti, 1974; Unruh et al, 1987; 
Unruh & Rosenbloom, 1989]. Chunking helps the ab- 
straction planning process by recording the abstract 
plan as a set of operator-selection productions, and by 
acquiring other productions that reduce the amount of 
search required in generating a plan. Abstraction helps 
the learning process by allowing chunks to be learned 
more quickly — abstract searches tend to be shorter 
than normal ones. Abstraction also helps learning by 
enabling chunks to be more general than they would 
otherwise be — the chunks ignore the details that were 
abstracted away — thus allowing more transfer and 
potentially decreasing the cost of matching the chunks 
(because there are now fewer conditions). 

Scope and Limits 

The original work on Soar demonstrated its capabilities 
as a general problem solver that could use any of the 
weak methods when appropriate, across a wide range 
of tasks. Later, we came to understand how to use Soar 
as the basis for knowledge-based systems, and how to 
incorporate appropriate learning and perceptual-motor 
capabilities into the architecture. These developments 
increased Soar's scope considerably beyond its origins 
as a weak-method problem solver. Our ultimate goal 
has always been to develop the system to the point 
where its scope includes everything required of a gen- 
eral intelligence. In this section we examine how far 
Soar has come from its relatively limited initial demon- 
strations towards its relatively unlimited goal. This 
discussion is divided up according to the major com- 
ponents of the Soar architecture, as presented in the 
architecture section: memory, decisions, goals, learn- 
ing, and perception and motor control. 

Level 1: Memory The scope of Soar's memory level 
can be evaluated in terms of the amount of knowledge 
that can be stored, the types of knowledge that can be 
represented, and the organization of the knowledge. 

Amount of knowledge. Using current technology, 
Soar's production memory can support the storage 
of thousands of independent chunks of knowledge. 
The size is primarily limited by the cost of process- 
ing larger numbers of productions. Faster machines, 
improved match algorithms and parallel implemen- 
tations [Gupta k Tambe, 1988; Tambe et al, 1989; 
Tambe et al, 1988] may raise this effective limit by 
several orders of magnitude over the next few years. 

Types of knowledge. The representation of procedu- 
ral and propositional declarative knowledge is well de- 
veloped in Soar. However, we don't have well worked- 
out approaches to many other knowledge representa- 
tion problems, such as the representation of quanti- 
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fied, uncertain, temporal, and episodic knowledge. The 
critical question is whether architectural support is re- 
quired to adequately represent these types of knowl- 
edge, or whether such knowledge can be adequately 
treated as additional objects and/or attributes. Pre- 
liminary work on quantified [Polk k Newell, 1988] and 
episodic [Rosenbloom et al., 1990] knowledge is looking 
promising. 

Memory organization. An issue which often gets 
raised with respect to the organization of Soar's mem- 
ory, and with respect to the organization of production 
memories in general, is the apparent lack of a higher- 
order memory organization. There are no scripts 
[Schänk k Ableson, 1977], frames [Minsky, 1975], or 
Schemas [Bartlett, 1932] to tie fragments of related 
memory together. Nor are there are any obvious hi- 
erarchical structures which limit what sets of knowl- 
edge will be retrieved at any point in time. However, 
Soar's memory does have an organization, which is de- 
rived from the structure of productions, objects, and 
working memory (especially the context hierarchy). 

What corresponds to a schema in Soar is an object, 
or a structured collection of objects. Such a struc- 
ture can be stored entirely in the actions of a single 
production, or it can be stored in a piecemeal fash- 
ion across multiple productions. If multiple produc- 
tions are used, the schema as a unit only comes into 
existence when the pieces are all retrieved contempo- 
raneously into working memory. The advantage of this 
approach is that it allows novel Schemas to be created 
from fragments of separately learned ones. The dis- 
advantage is that it may not be possible to determine 
whether a set of fragments all originated from a single 
schema. 

What corresponds to a hierarchy of retrieval con- 
texts in Soar are the production conditions. Each 
combination of conditions implicitly defines a retrieval 
context, with a hierarchical structure induced by the 
subset relationship among the combinations. The con- 
tents of working memory determines which retrieval 
contexts are currently in force. For example, prob- 
lem spaces are used extensively as retrieval contexts. 
Whenever there is a problem solving context that has 
a particular problem space selected within it, produc- 
tions that test for other problem space names are not 
eligible to fire in that context. This approach has 
worked quite well for procedural knowledge, where it is 
clear when the knowledge is needed. We have just be- 
gun to work on appropriate organizational schemes for 
episodic and declarative knowledge, where it is much 
less clear when the knowledge should be retrieved. 
Our initial approach has been based on the incre- 
mental construction, via chunking, of multi-production 
discrimination networks [Rosenbloom et al., 1988a; 
Rosenbloom et al, 1990]. Though this work is too 
premature for a thorough evaluation in the context of 
Soar, the effectiveness of discrimination networks in 
systems like Epam [Feigenbaum k Simon, 1984] and 

Cyrus [Kolodner, 1983] bodes well. 
Level 2:   Decisions   The scope of Soar's decision 
level can be evaluated in terms of its speed, the knowl- 
edge brought to bear, and the language of control. 

Speed. Soar currently runs at approximately 10 
decisions/second on current workstations such as a 
Sun4/280. This is adequate for most of the types of 
tasks we currently implement, but is too slow for tasks 
requiring large amounts of search or very large knowl- 
edge bases (the number of decisions per second would 
get even smaller that it is now). The principal bottle- 
neck is the speed of memory access, which is a func- 
tion of two factors: the cost of processing individually 
expensive productions (the expensive chunks problem) 
[Tambe k Newell, 1988], and the cost of processing a 
large number of productions (the average growth effect 
problem) [Tambe, 1988]. We now have a solution to 
the problem of expensive chunks which can guarantee 
that all productions will be cheap — the match cost of 
a production is at worst linear in the number of condi- 
tions [Tambe k Rosenbloom, 1989] — and are working 
on other potential solutions. Parallelism looks to be an 
effective solution to the average growth effect problem 
[Tambe, 1988]. 

Bringing knowledge to bear. Iterated, parallel, in- 
dexed access to the contents of long-term memory has 
proven to be an effective means of bringing knowledge 
to bear on the decision process. The limited power 
provided by this process is offset by the ability to use 
subgoals when the accessible knowledge is inadequate. 
The issue of devising good access paths for episodic 
and declarative knowledge is also relevant here. 

Control language. Preferences have proven to be a 
flexible means of specifying a partial order among con- 
tending objects. However, we cannot yet state with 
certainty that the set of preference types embodied in 
Soar is complete with respect to all the types of in- 
formation which ultimately may need to be communi- 
cated to the decision procedure. 
Level 3: Goals The scope of Soar's goal level can 
be evaluated in terms of the types of goals that can 
be generated and the types of problem solving that 
can be performed in goals. Soar's subgoaling mecha- 
nism has been demonstrated to be able to create sub- 
goals for all of the types of difficulties that can arise in 
problem solving in problem spaces [Laird, 1983]. This 
leaves three areas open. The first area is how top- 
level goals are generated; that is, how the top-level task 
is picked. Currently this is done by the programmer, 
but a general intelligence must clearly have grounds — 
that is, motivations — for selecting tasks on its own. 
The second area is how goal interactions are handled. 
Goal interactions show up in Soar as operator interac- 
tions, and are normally dealt with by adding explicit 
knowledge to avoid them, or by backtracking (with 
learning) when they happen. It is not yet clear the 
extent to which Soar could easily make use of more 
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sophisticated approaches, such as non-linear planning 
[Chapman, 1987]. The third area is the sufficiency of 
impasse-driven subgoaling as a means for determining 
when meta-level processing is needed. Two of the ac- 
tivities that might fall under this area are goal tests 
and monitoring. Both of these activities can be per- 
formed at the memory or decision level, but when they 
are complicated activities it may be necessary to per- 
form them by problem solving at the goal level. Either 
activity can be called for explicitly by selecting a "mon- 
itor" or "goal-test" operator, which can then lead to 
the generation of a subgoal. However, goals for these 
tasks do not arise automatically, without deliberation. 
Should they? It is not completely clear. 

The scope of the problem solving that can be per- 
formed in goals can itself be evaluated in terms of 
whether problem spaces cover all of the types of per- 
formance required, the limits on the ability of subgoal- 
based problem solving to access and modify aspects of 
the system, and whether parallelism is possible. These 
points are addressed in the next three paragraphs. 

Problem space scope. Problem spaces are a very gen- 
eral performance model. They have been hypothesized 
to underlie all human, symbolic, goal-oriented behavior 
[Newell, 1980]. The breadth of tasks that have so far 
been represented in problem spaces over the whole the 
field of AI attests to this generality. One way of push- 
ing this evaluation further is to ask how well problem 
spaces account for the types of problem solving per- 
formed by two of the principal competing paradigms: 
planning [Chapman, 1987] and case-based reasoning 
[Kolodner, 1988].8 Both of these paradigms involve 
the creation (or retrieval) and use of a data structure 
that represents a sequence of actions. In planning, the 
data structure represents the sequence of actions that 
the system expects to use for the current problem. In 
case-based reasoning, the data structure represents the 
sequence of actions used on some previous, presumably 
related, problem. In both, the data structure is used 
to decide what sequence of actions to perform in the 
current problem. Soar straightforwardly performs pro- 
cedural analogues of these two processes. When it per- 
forms a lookahead search to determine what operator 
to apply to a particular state, it acquires (by chunking) 
a set of search control productions which collectively 
tell it which operator should be applied to each sub- 
sequent state. This set of chunks forms a procedural 
plan for the current problem. When a search control 
chunk transfers between tasks, a form of procedural 
case-based reasoning is occurring. 

Simple forms of declarative planning and case-based 
reasoning have also been demonstrated in Soar in the 

8 The work on Robo-Soar also reveals Soar's potential to 
exhibit reactive planning [Georgeff &: Lansky, 1987]. The 
current version of Soar still has problems with raw speed 
and with the unbounded nature of the production match 
(the expensive chunks problem), but it is expected that 
these problems will be solved in the near future. 

context of an expert system that designs floor systems 
[Reich, 1988]. When this system discovers, via looka- 
head search, a sequence of operators that achieves a 
goal, it creates a declarative structure representing the 
sequence and returns it as a subgoal result (plan cre- 
ation). This plan can then be used interpretively to 
guide performance on the immediate problem (plan 
following). The plan can also be retrieved during later 
problems and used to guide the selection of operators 
(case-based reasoning). This research does not demon- 
strate the variety of operations one could conceivably 
use to modify a partial or complete plan, but it does 
demonstrate the basics. 

Meta-level access. Subgoal-based problem solving 
has access to all of the information in working memory 
— including the goal stack, problem spaces, states, op- 
erators, preferences, and other facts that have been re- 
trieved or generated — plus any of the other knowledge 
in long-term memory that it can access. It does not 
have direct access to the productions, or to any of the 
data structures internal to the architecture. Nonethe- 
less, it should be able to indirectly examine the con- 
tents of any productions that were acquired by chunk- 
ing, which in the long run should be just about all of 
them. The idea is to reconstruct the contents of the 
production by going down into a subgoal and retrac- 
ing the problem solving that was done when the chunk 
was learned. In this way it should be possible to de- 
termine what knowledge the production cached. This 
idea has not yet been explicitly demonstrated in Soar, 
but research on the recovery from incorrect knowledge 
has used a closely related approach [Laird, 1988]. 

The effects of problem solving are limited to the 
addition of information to working memory. Dele- 
tion of working memory elements is accomplished by 
a garbage collector provided by the architecture. Pro- 
ductions are added by chunking, rather than by prob- 
lem solving, and are never deleted by the system. The 
limitation on production creation — that it only oc- 
curs via chunking — is dealt with by varying the na- 
ture of the problem solving over which chunking occurs 
[Rosenbloom et al., 1990]. The limitation on produc- 
tion deletion is dealt with by learning new productions 
which overcome the effects of old ones [Laird, 1988]. 

Parallelism. Two principal sources of parallelism in 
Soar are at the memory level: production match and 
execution. On each cycle of elaboration, all produc- 
tions are matched in parallel to the working memory, 
and then all of the successful instantiations are exe- 
cuted in parallel. This lets tasks that can be performed 
at the memory level proceed in parallel, but not so for 
decision-level and goal-level tasks. 

Another principal source of parallelism is provided 
by the motor systems. All motor systems behave in 
parallel with respect to each other, and with respect 
to the cognitive system. This enables one form of 
task-level parallelism in which non-interfering external 
tasks can be performed in parallel. To enable further 
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research on task-level parallelism we have added the 
experimental ability to simultaneously select multiple 
problem space operators within a single problem solv- 
ing context. Each of these operators can then proceed 
to execute in parallel, yielding parallel subgoals, and 
ultimately an entire tree of problem solving contexts in 
which all of the branches are being processed in par- 
allel. We do not yet have enough experience with this 
capability to evaluate its scope and limits. 

Despite all of these forms of parallelism embodied in 
Soar, most implementations of the architecture have 
been on serial machines, with the parallelism being 
simulated. However, there is an active research effort 
to implement Soar on parallel computers. A paral- 
lelized version of the production match has been suc- 
cessfully implemented on an Encore Multimax, which 
has a small number (2-20) of large-grained processors 
[Tambe et ah, 1988], and unsuccessfully implemented 
on a Connection Machine [Hillis, 1985], which has a 
large number (16K-64K) of small-grained processors 
[Flynn, 1988]. The Connection Machine implementa- 
tion failed primarily because a complete paralleliza- 
tion of the current match algorithm can lead to ex- 
ponential space requirements. Research on restricted 
match algorithms may fix this problem in the future. 
Work is also in progress towards implementing Soar on 
message-passing computers [Tambe et ah, 1989]. 

Learning In [Steier et ah, 1987] we broke down the 
problem of evaluating the scope of Soar's learning ca- 
pabilities into four parts: when can the architecture 
learn; from what can the architecture learn; what can 
the architecture learn; and when can the architecture 
apply learned knowledge. These points are discussed 
earlier, and need not be elaborated further here. 

One important additional issue is whether Soar ac- 
quires knowledge that is at the appropriate level of 
generalization or specialization. Chunking provides a 
level of generality that is determined by a combination 
of the representation used and the problem solving per- 
formed. Under varying circumstances, this can lead to 
both overgeneralization [Laird et ah, 1986b] and over- 
specialization. The acquisition of overgeneral knowl- 
edge implies that the system must be able to recover 
from any errors caused by its use. One solution to this 
problem that has been implemented in Soar involves 
detecting that a performance error has occurred, de- 
termining what should have been done instead, and 
acquiring a new chunk which leads to correct perfor- 
mance in the future [Laird, 1988]. This is accomplished 
without examining or modifying the overgeneral pro- 
duction; instead it goes back down into the subgoals 
for which the overgeneral productions were learned. 

One way to deal with overspecialization is to patch 
the resulting knowledge gaps with additional knowl- 
edge. This is what Soar does constantly — if a pro- 
duction is overspecialized, it doesn't fire in circum- 
stances when it should, causing an impasse to oc- 
cur, and providing the opportunity to learn an addi- 

tional chunk that covers the missing case (plus pos- 
sibly other cases). Another way to deal with over- 
specialized knowledge is to work towards acquiring 
more general productions. A standard approach is 
to induce general rules from a sequence of positive 
and negative examples [Mitchell, 1982; Quinlan, 1986]. 
This form of generalization must occur in Soar by 
search in problem spaces, and though there has been 
some initial work on doing this [Rosenbloom, 1988; 
Saul, 1984], we have not yet provided Soar with a set of 
problem spaces that will allow it to generate appropri- 
ate generalizations from a variety of sets of examples. 
So, Soar cannot yet be described as a system of choice 
for doing induction from multiple examples. On the 
other hand, Soar does generalize quite naturally and 
effectively when abstraction occurs [Unruh k. Rosen- 
bloom, 1989]. The learned rules reflect whatever ab- 
straction was made during problem solving. 

Learning behaviors that have not yet been at- 
tempted in Soar include the construction of a model 
of the environment from experimentation in it [Ra- 
jamoney et ah, 1985], scientific discovery and theory 
formation [Langley et ah, 1987], and conceptual clus- 
tering [Fisher & Langley, 1985]. 

Perception and motor control The scope of 
Soar's perception and motor control can be evaluated 
in terms of both its low-level I/O mechanisms and its 
high-level language capabilities. Both of these capa- 
bilities are quite new, so the evaluation must be even 
more tentative than for the preceding components. 

At the low-level, Soar can be hooked up to multiple 
perceptual modalities (and multiple fields within each 
modality) and can control multiple effectors. The crit- 
ical low-level aspects of perception and motor control 
are currently done in a standard procedural language 
outside of the cognitive system. The resulting system 
appears to be an effective testbed for research on high- 
level aspects of perception and motor-control. It also 
appears to be an effective testbed for research on the 
interactions of perception and motor control with other 
cognitive capabilities, such as memory, problem solv- 
ing, and learning. However, it does finesse many of the 
hard issues in perception and motor control, such as 
selective attention, shape determination, object iden- 
tification, and temporal coordination. Work is actively 
in progress on selective attention [Wiesmeyer, 1988a]. 

At the high end of I/O capabilities is the process- 
ing of natural language. An early attempt to imple- 
ment a semantic grammar parser in Soar was only a 
limited success [Powell, 1984]. It worked, but did not 
appear to be the right long-term solution to language 
understanding in Soar. More recent work on NL-Soar 
has focused on the incremental construction of a model 
of the situation by applying comprehension operators 
to each incoming word [Lewis et ah, 1989]. Compre- 
hension operators iteratively augment and refine the 
situation model, setting up expectations for the part 
of the utterance still to be seen, and satisfying ear- 
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lier expectations. As a side effect of constructing the 
situation model, an utterance model is constructed to 
represent the linguistic structure of the sentence. This 
approach to language understanding has been success- 
fully applied to acquiring task specific problem spaces 
for three immediate reasoning tasks: relational reason- 
ing [Johnson-Laird, 1988], categorical syllogisms, and 
sentence verification [Clark k Chase, 1972]. It has also 
been used to process the input for these tasks as they 
are performed. Though NL-Soar is still far from pro- 
viding a general linguistic capability, the approach has 
proven promising. 

Conclusion 
In this article we have taken a step towards providing 
an analysis of the Soar architecture as a basis for gen- 
eral intelligence. In order to increase understanding 
of the structure of the architecture we have provided 
a theoretical framework within which the architecture 
can be described, a discussion of methodological as- 
sumptions underlying the project and the system, and 
an illustrative example of its performance on a multi- 
column subtraction task. In order to facilitate compar- 
isons between the capabilities of the current version of 
Soar and the capabilities required to achieve its ulti- 
mate goal as an architecture for general intelligence, 
we have described the natural tasks for the architec- 
ture, the sources of its power, and its scope and limits. 
If this article has succeeded, it should be clear that 
progress has been made, but that more work is still re- 
quired. This applies equally to the tasks of developing 
Soar and analyzing it. 
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Abstract 

We describe how we modified the Univer- 
sal Plans execution engine to provide index- 
ical/functional reference capabilities, thus al- 
lowing Universal Plans to interact with sev- 
eral identical, physical objects at once. This 
advance makes it easier for automatically con- 
structed, symbolic plans, to reactively control 
physical robots. Our implementation of index- 
ical/functional reference complements that of 
Agre and Chapman, in that our implementa- 
tion: 

• is designed for use in executing symbolic 
plans; 

• does not require the planner to reason in- 
dexically; 

• is capable of interacting with any number 
of objects at once; 

• supports recursive  plans for dismantling 
block towers of arbitrary size; 

• finds objects to satisfy indefinite descrip- 
tions; and 

• dynamically constructs the indefinite de- 
scriptions to satisfy. 

We also explain why the use of any imple- 
mentation of indexical/functional reference will 
complicate the detection of surprise events 
(serendipities). 

1     Objectives 

The work reported herein was supported in part by the 
Defense Advanced Research Projects Agency (DARPA) 
and the U.S. Army Missile Command under contract 
DAAH01-90-C-0080, in part by IR&D funding from Ad- 
vanced Decision Systems, and in part by the authors' 
own resources. 

Deictic representation was introduced to the planning 
community in the PENGI paper [AGRE and CHAPMAN, 
1987] and was devised to address the problem of how an 
embedded agent could manipulate physical objects. This 
problem is not addressed by logic-based representations 
(such as those used by automated planning programs) 
that do not indicate how a symbol inside an agent can be 
made to refer to any particular object in the real world. 
The association between a symbol and the real object it 

represents - if there is one - usually exists only in the 
head of some human being. If an artificial agent is to 
interact with real objects it must be able to dynamically 
create, destroy, and manipulate references to those ob- 
jects: associations between structures inside the agent 
and objects outside the agent must be maintained by 
the agent itself. Agre and Chapman showed how to do 
that by devising an agent capable of establishing indexi- 
cal/functional references to external objects, and as part 
of their solution, advocated interactionist, deictic repre- 
sentation over mentalist, logic-based representation. 

Our involvement in both planning and situated ac- 
tivity gave us cause to examine the indexical/functional 
reference capabilities accruing from the use of deictic rep- 
resentation, and to integrate those capabilities with the 
use of a more conventional plan representation. Since 
Universal Plans were known to be amenable to symbolic 
representation, automatic synthesis, and reactive execu- 
tion, we undertook to incorporate the capabilities of in- 
dexical/functional reference into our Universal Plans ex- 
ecution engine, without modifying the plan representa- 
tion itself. Further, by taking careful note of the changes 
we had to make in the plan execution software along the 
way, we would not only come to a clearer understanding 
of the capabilities of indexical/functional reference, but 
would be in a position to describe it as constructed from 
a set of primitive capabilities. If, on the other hand, our 
attempt to achieve indexical/functional reference failed 
because of our self-imposed constraints, we would have 
isolated the precise point of conflict between it and as- 
sumptions built into symbolic planning technology. 

Note that we were not trying to reconstruct Agre and 
Chapman's implementation of indexical/functional refer- 
ence. Indeed, by requiring that our own implementation 
must be compatible with the use of symbolic plan rep- 
resentation and construction, we ran quite contrary to 
the motive of machine parsimony that drove the orig- 
inal implementation [AGRE, 1988]. We also wished to 
avoid such an implementation as would require the plan- 
ner to reason indexically, and thus ran contrary to the 
direction of [SUBRAMANIAN and WOODFILL, 1989]. 
Our goal was to provide indexical/functional execution 
capabilities for plans produced by ordinary planners. 

We summarize our results here: indexical/functional 
reference can indeed be achieved by proper construc- 
tion of the execution engine for objective symbolic plan 
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representations. As a result, symbolic plans can now 
cause embedded agents to interact with physical objects, 
even when those objects are objectively indistinguish- 
able. More interestingly, the symbolic implementation 
confers some advantages, such as making the number of 
relevant objects dynamically expandable, and allowing 
dynamic determination of the type of object to be refer- 
enced. 

2    Experimental Setup 
For this experiment we have constructed a modified 
Blocks World, in which blocks have names, labels, col- 
ors, and shapes. Each block's name is unique, and serves 
to identify the block. Block labels are letters, suppos- 
edly written on the block (e.g. "a"), and there may be 
any number of blocks sporting the same letter. Hence 
a plan can name a specific block, as usual, or can de- 
scribe a desired block as one bearing a given letter. Sim- 
ilarly, a plan can describe a desired block as one having 
a given color, and there may be many blocks with the 
same color. Again, blocks can be spherical, pyramidal, 
or box-shaped. 

If a plan referred to a desired color or shape, the plan 
would be describing, not naming, its objects. Similarly, 
if a plan referred to the labels printed on the blocks, 
the plan would be describing, not identifying, blocks. 
Only the blocks' names serve as designators in the logico- 
objective sense (as the atom tweety designates the only 
bird of that name). 

The Universal Plan for building block towers consists 
of all the usual domain constraints of the Blocks World 
(e.g. a block can't be supported by two others simulta- 
neously), plus a description of the effects of the avail- 
able primitive actions, plus some additional informa- 
tion discovered by the planner. The planner considers 
the domain constraints, the effect descriptions, and the 
goals, and adds some new rules that function as advice to 
the plan interpreter concerning the order in which goals 
should be achieved. How confinement rules are discov- 
ered is detailed in [SCHOPPERS, 1989]. 

Universal Plan interpretation involves the backward 
chaining of domain constraints, effect descriptions, and 
confinement rules, subject to the truth or falsity (in the 
environment) of the plan's goals and the rules' precon- 
ditions - clearly, a goal that is already true in the en- 
vironment does not have to be achieved. In the process 
of this backward chaining, the interpreter constructs a 
stack that holds the goals and supergoals of the current 
action. In other words, the interpreter traverses part of 
a goal tree (Figure 1). Although the interpreter makes 
a bee-line from the root node of the goal tree down a 
single path, it is much more enlightening to see the goal 
tree as a whole. An equivalent decision tree is shown in 
Figure 2. Neither the goal tree nor the decision tree ever 
exist in their entirety; they are merely pedagogical tools. 
The Universal Plans interpreter uses its knowledge of the 
domain to behave as if it were executing a decision tree. 

Notice that the goal tree and the equivalent decision 
tree are tree Schemas, containing unbound variables (in 
the Prolog convention logical variables begin with an 
upper case letter).    This is important in allowing us 

|on(A,B)l 

LOWER 

|box(B)| Immm |holding(A)|   |over(B)| 

|clear(A)| 

e;lear(A)| | grip(wide)] |over(A)| 

holding(X)?| 
OPEN      LRTERRL 

I 
ÖntX;T^|     |at(top)| 

eleartaf | [g~rip(wide)| [over(Y)| RAISE 

holding(Z)? 
OPEN LRTERRL 

, T , T 
\mtzm\ |at(toP)| 

RAISE 

Figure 1: Part of the Universal Plan for STACK(a,b). 

on(A,B)  ? 
T)  NO-OP 
F)  box(B)   ? 

T)  clear(B)  ? 
T) holding(A)  ? 

T)  over(B)  ? 
T)  LOWER 
F)  at(top)   ? 

T)  LATERAL 
F)  RAISE 

F)   [subplan to GRASP A] 
F)   [subplan to CLEAROFF B] 

F)  FAIL 

Figure 2:  Decision Tree Equivalent of the STACK(A,B) 
Plan. 
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to invoke the plan (tree) with whatever parameters we 
want. Instead of invoking the plan to achieve on(a,b) - 
thus supposedly identifying particular blocks by means 
of unique atomic designators a and b - we may want 
to invoke the plan to achieve on("a","b"), with the in- 
tention that the plan should stack any one of the blocks 
labelled "a" onto any one of the blocks labelled "b". More 
explicitly, we might invoke the plan to achieve on(pl,p2) 
where pi and p2 were descriptors, with pi describing (for 
example) "a thing that is a cubical block and is red and 
is labelled 'a'". That Universal Plans are plan Schemas 
turned out to be very useful for our experiment. 

3    Fundamentals of Indexical/Functional 
Reference 

Now suppose we pose the goal on(pl,p2), where pi and 
p2 are both (indefinite) descriptions of "any red cubi- 
cal block labelled "a"'. This goal might appear prob- 
lematic, but need not be: if the world has several red 
cubical blocks labelled "a", the goal may be interpreted 
as meaning that we want one such block stacked atop 
another. If, furthermore, all red cubical blocks labelled 
"a" are identical, the goal can still mean the same thing. 
Why, then, have all planners to date resorted to cre- 
ating such artificial distinctions as unique names? The 
problem is caused in part by the god's-eye view, the 
ability to identify every object, assumed by the prevail- 
ing logical formalisms, and in part by their "mentalism" 
[AGRE, 1988] - their inability to establish causal rela- 
tionships with objects outside the representation itself. 
By posing the goal with descriptions rather than with 
names of blocks, we have already avoided the god's-eye 
view, and have thus opened a door to the possibility that 
a conventional plan representation might be capable of 
manipulating several identical blocks at once. Consider 
that in a constraint posting system, two variables may 
be identically constrained, yet may be bound differently. 
Similarly, two descriptions of blocks may be identical, 
and yet the two descriptions might apply to different 
blocks. 

Clearly there is more to the issue than the binding 
of variables; the other half of the problem is the ability 
to establish causal relationships with objects outside the 
representation. Classically assembled plans merely name 
or describe objects, leaving the relationship between the 
object's representation and the object itself to the imag- 
ination of some human. Agre and Chapman built PENGI 
to interact with objects, and although it did so only in 
simulation, it seems plausible that PENGI could interact 
with real objects. If that capability is assumed, then 
PENGI could also interact with several identical real ob- 
jects, and could do so without either making artificial 
distinctions or getting the objects confused. 

We have already noted that two identical descriptions 
can (in principle) refer to different plan objects. Since 
Agre and Chapman push past plan objects to real ob- 
jects, the problem for us becomes, how identical descrip- 
tions in a plan might be made to refer to different physi- 
cal objects when the plan is executed, even if the objects 
themselves are perceptually identical.   We solved that 

problem as follows. 
Throughout the experiment we dealt with two soft- 

ware systems that had to communicate with each other. 
One system was a simulated robot arm in a simulated 
Blocks World. The arm could perform RAISE, LOWER, 

GRASP, OPEN and LATERAL actions, and the simula- 
tor would see to it that blocks moved with the arm as 
appropriate. The other system was a simulated agent, 
equipped with a database in which the agent could store 
any beliefs about the state of the simulated world, and 
controlled by a Universal Plan. The Universal Plan was 
the one of Figure 2. The two systems are shown in Figure 
3; arrows represent flow of information. 

a) 

b) 

sim.agent i 
perception ' 
H>*. action 
..  . selection" 

C) 

sim.world 

■ sim.action —► sim.data ■ perception« 

sim.agent 

■ action 
■ selection" 

d) 

Figure 3: Steps Toward Indexical/Functional Reference. 

In order to get the systems working together we began 
by cheating: we allowed the agent to examine the simu- 
lator's world model directly. The resulting flow of infor- 
mation is shown in Figure 3a, is exceedingly common in 
systems that make use of simulations, and is entirely pre- 
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posterous. To determine whether the condition on(a,b) 
is true or false, the agent must know what a and b refer 
to in the (simulated) world. Unfortunately, a is only a 
symbol, and this becomes obvious as soon as one tries 
to write code to evaluate on(a,b). That code must tra- 
verse the simulator's data structures looking for a model 
of a block that has the label a. But the real world has 
no list of all known blocks! An alternative approach is 
to somehow map the symbol a into the machine-memory 
address of a data structure in the simulator. But again, 
no physical object in the real world is accessible via a 
machine-memory address! 

To achieve a more plausible information flow from the 
(simulated) world to the agent, we constructed a per- 
ceptual interface and insisted that the agent could know 
nothing of the state of the (simulated) world except by 
using that perceptual interface (Figure 3b). We wrote 
code to implement some sensors, such as a camera, con- 
tact sensors on the agent's hand, and position sensors in 
the agent's arm. Naturally, those sensors had to have 
access to the simulator's data structures, so one might 
argue that the sensors did nothing to answer the crit- 
icisms of the previous paragraph. Nevertheless, there 
was a crucial difference. On the assumption that no-one 
will quarrel with any agent's ability to read contact and 
position sensors, let us consider our agent's use of its 
camera. We defined the camera as an effector that had 
to be controlled by the agent. The code that evaluated 
the agent's plan's conditions was thereby completely un- 
able to make any use of the symbol a - what does a mean 
to a camera platform? Instead, the agent was forced to 
point its camera in some specified direction such that 
the camera's field of view included the location of the 
block being referred to as a. With the camera so posi- 
tioned, the agent was then allowed to examine the image 
to determine whether the block being viewed looked as 
expected. The test of on(a,b) thus became a compar- 
ison of the spatial coordinates of two blocks. With all 
three types of sensors just mentioned - contact, position 
and camera - we were able to implement all of the tests 
needed for the Universal Plan. 

There immediately arose a problem of how to map the 
plan symbol a to the location of some block. At the start 
of the agent's activities it knew nothing at all about the 
state of the (simulated) world. To solve this problem we 
implemented a camera movement procedure that sys- 
tematically scanned the table until the camera viewed 
a block having the desired label. This whole scanning 
procedure was controlled by means of camera position- 
ing coordinates. 

Now when we executed the Universal Plan, we saw the 
camera scanning the table every time the plan needed to 
know anything about any block - numerous times per 
block per action. Worse, when we executed the Univer- 
sal Plan using the non-unique block labels, the agent 
regularly got confused about which block labelled "a" it 
was working with. 

This sad state of affairs was what we had been expect- 
ing. Clearly, when a plan representation refers to one of 
many identical blocks by means of a non-specific descrip- 
tion, something must be added to that description to de- 

scriminate a particular one of the candidate blocks. The 
traditional solution had been to create unique names, 
but once one takes seriously the idea that the thing being 
named is out in the physical world and is not displaying 
its unique name in any way, that solution is seen to be 
bankrupt. 

We repaired the agent's behavior by allowing percep- 
tion to store beliefs about the positions of blocks, and 
to make use of existing beliefs to re-find blocks (Figure 
3c). This use of beliefs solved two problems at once, a 
performance problem and a competence problem: 

• It short-circuited the scan for blocks having a de- 
sired label, because the presence of beliefs about lo- 
cations of previously found labels allowed the cam- 
era to find those labels again (if they were still 
there). 

• It facilitated the tracking of specific blocks through 
time, even when several available blocks had the 
same desired label, because the location of the par- 
ticular block being manipulated was enough to dis- 
tinguish that block from other identical blocks. 

Consequently, when perception was allowed to utilize be- 
liefs, the agent could stack blocks, despite the presence 
of duplicates. 

Although the perception component remembered 
where it last saw the blocks of interest, it made no as- 
sumption that blocks would actually be found where 
they were last seen. If a belief turned out to be sig- 
nificantly wrong, the agent would resort to scanning to 
find another block having the desired label, would deter- 
mine the next action based on the location of that newly 
found block, and would continue with plan execution 
from there. Conversely, even if a belief about a block's 
location turned out to be approximately right, the be- 
lieved location would still be updated. Beliefs used for 
perception purposes might more appropriately be called 
"expectations", a labelling that underscores both their 
dependence on the past, and their defeasibility. 

Our agent could now interact with one specific mem- 
ber of a set of identical blocks, but could not achieve 
goals such as on("a","a") which require the agent to in- 
teract with two identical blocks. The problem was that 
although the agent's beliefs could properly distinguish 
(by their positions) two blocks both labelled "a", the 
plan itself made no such distinction, leaving the percep- 
tion component confused about which block was meant 
when the plan referred to the label "a". 

Our solution was to turn the plan's parameters - the 
descriptions of the relevant objects - into record struc- 
tures that contained a slot for the location of the de- 
scribed block, and to have the perception component up- 
date the location slots. In this way the block descriptions 
being used by the plan were unambiguously associated 
with the perception component's knowledge about the 
actual blocks. We had thus completed the agent's abil- 
ity to unambiguously refer to (and manipulate) physical 
blocks, even when two or more of the blocks being ma- 
nipulated were perceptually identical. 

Since the descriptor records were a natural place to 
put all descriptive information, we endowed them with 
slots for block label, color and shape, and made them 
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fully general. This meant that the agent's perception 
component could track blocks not by using descriptions 
to access beliefs, but by accessing and updating the de- 
scriptors themselves (Figure 3d). This eliminated the 
need for beliefs as literals in a database. 

Although our use of descriptor records (or perhaps, 
distinct pointers to initially identical descriptions) might 
be regarded as "creating an artificial distinction", it was 
not nearly the same thing as forcing domain theories to 
give every block a different name. In our case the "artifi- 
cial distinction" existed only between the blocks the plan 
was manipulating at the time, not between all blocks 
that could ever be in view. Our distinction might be re- 
garded as a dynamically made one, whereas the logico- 
objective name distinction is a statically made one. 

It remained only to assure ourselves that the set of 
capabilities provided by Agre's marker control opera- 
tors [AGRE, 1988, p.220ff] could be emulated within our 
framework. These capabilities fell into five groups (ac- 
cording to Agre): marker comparison, marker inspec- 
tion, marker assignment, indexing, and object compar- 
ison. Marker comparison and inspection operators pro- 
vided such abilities as thresholding the distance between 
two tracked objects, testing whether two objects were 
approaching each other, and testing whether two mark- 
ers referred to the same object. These tests could clearly 
be emulated by examining the location slots of our de- 
scriptors. The indexing and assignment operators caused 
markers to pick out objects of a specified type, or to pick 
out objects having a specified position relative to an- 
other object already being tracked. Again, we could em- 
ulate these either by manipulating the camera directly, 
or by manipulating the location slots of our descriptors. 
The object comparison operators checked whether ob- 
jects were adjacent, whether objects were separated by 
empty space, and whether they were in given directions 
from each other. Consequently we are confident that we 
have captured the complete range of indexical/functional 
reference capabilities. 

4    Further Developments 

4.1     Treating Descriptions as Goals 

Despite its being tidy and convenient, our generalization 
of descriptors to include slots for label, shape and color 
was soon felt to be a mistake. Remember that the pre- 
conditions of stacking one block on another include the 
requirement that the lower block must be a box, and 
that that precondition appears in the plan as a goal. 
Yet, when we asked the plan to stack one box-block on 
another, that very same condition would be part of the 
plan parameter, i.e. of the descriptor record. In both 
cases the condition would have to be checked percep- 
tually. We considered it undesirable to be imposing the 
same condition in two different ways. And so we came to 
regard the conditions established by satisfying an object 
description as being "of one cloth" with the conditions 
established by goal achievement, and came to regard de- 
scriptions as goals. Then, when we wanted the plan to 
put any red sphere on any blue box, we would pose the 
goal 

color(X,red) A shape(X,sphere) A 
color(Y,blue) A shape(Y,box) A 

on(X,Y) 

and regarded it as part of goal achievement to find suit- 
able objects for X and Y to refer to. 

This change in viewpoint is not as strange as it may at 
first seem. If we were to augment the agent's capabilities 
by introducing a painting action, the above goal might 
induce the agent to paint things, an appropriate behav- 
ior that could not arise if object color was left purely as 
a slot in a description record. At the same time, one way 
of satisfying a color goal is to search out an object that 
already has the desired color; indeed, that is the only 
way to achieve a color goal when there is no painting ac- 
tion. Thus we came to regard painting and scanning as 
alternative ways of achieving color goals (like the build- 
or-buy choice in the constraint-based planner MOLGEN 
[STEFIK, 1981]), and came to regard scanning and ver- 
ification as first-class actions that changed the agent's 
mental state: 

SCANNING(X)  ==    true +> known located(X) 

COLORCHECK(X.C) == 
located(X)  +> known-whether color(X,C) 

(The plan executor achieves known-whether P when- 
ever it wants to know the truth value of any predicate 
P. See [SCHOPPERS, Sep 1990] for details.) 

As a result of our removing label, color and shape in- 
formation from the plan's description-record parameters, 
those records came to contain nothing but spatial loca- 
tion information. In the simulated Blocks World, the 
location of a block was a Cartesian coordinate triple (we 
had a three-dimensional world). In our application of in- 
dexical/functional reference to the NASA EVA Retriever 
robot, the location of an external object is specified by 
azimuth and elevation measured relative to the robot's 
body axes [SCHOPPERS, Sep 1990] we may yet decide 
to add distance information). 

4.2     Conjunctive Descriptions and Perceptual 
Searching 

When object descriptions are 
conjunctive, e.g. color(X,red) A shape(X,sphere), 
it is likely that an object found to satisfy one constraint 
will not satisfy the other. Thus the search for a red ob- 
ject will have succeeded and stopped, before the object's 
shape is examined. In our implementation, such failures 
lead to behavior that is at once backtracking and a re- 
sumption of visual scanning. The location of the last 
object to fail the conjoined goals becomes the starting 
point of the resumed visual scan. 

If there is ultimately no object that satisfies a descrip- 
tion, the plan executor resorts to normal backtracking, 
trying to achieve the goal by means of other actions. 
Our plan executor always performs a perceptual search 
first. In general there is a decision to be made for each 
constraint in a description: how long to try finding a 
suitable object readymade, or how much effort to spend 
on coercing an unsuitable object until it suits. 
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4.3 Creating and Constraining Variables 
Dynamically 

Imagine a situation where the goal is to put a red box 
onto a blue box, but there is a green pyramid on the 
red box. The pyramid must be removed and put down 
elsewhere. Notice that according to the block stacking 
plan of Figure 1, the block to be moved must be clear, 
which may require removal of the block on top of it. The 
unwanted block is an object variable (Y) in the plan and 
does not appear in the goal, so is dynamically created 
by the plan executor. The newly created variable is then 
made to indexically/functionally refer to the green pyra- 
mid when the plan executor tries to achieve known- 
whether on(Y,A) with the action 

L00K0N(A,Y)  == 
located(A) +> known-whether on(Y,A)   . 

Iff there is an object on A, the LOOKON action will 
cause Y to refer to the space above A and will return 
true. (Note, incidentally, that LOOKON need not scan 
for Y but can look directly at the space above A, whose 
location must be known.) 

Now imagine a situation where the goal is once again 
to put one block on another, but the robot hand is al- 
ready holding a green pyramid. The pyramid must be 
put down on something. That "something" is another 
object variable in the plan, and also does not appear in 
the goal. It is however constrained by the LOWER- 
ING action, which insists that only box-shaped blocks 
can function as supports for other blocks. Since the new 
object variable does not initially specify the location of a 
particular box, the plan executor performs a visual scan 
for any box-shaped object, and when one is found, de- 
posits the green pyramid thereon. Thus the plan execu- 
tor has dynamically created an object variable (and/or 
marker), has dynamically constrained the desired object 
to be any box, and has used the constrained variable to 
establish an indexical/functional reference in the usual 
way. 

4.4 A Recursive Plan for Block Tower 
Dismantling 

The mechanism described in the preceding subsection 
also allows a Universal Plan of fixed size to dismantle 
block towers containing an arbitrary number of blocks. 
Suppose the plan executor were given a goal to stack 
a red box onto a blue box, and it happened that the 
only red box was on the bottom of a tall tower of 
blocks. The plan executor would dynamically create 
an object variable for the block on top of the red box, 
then would try to remove it, and would realize that it 
too needed to be cleared first, thus calling the block- 
clearing plan recursively, and ultimately creating new 
object variables on-the-fly for each of the blocks in the 
tower. This behavior is similar to the recursive plan de- 
rived by [MANNA and WALDINGER, 1987], augmented 
with indexical/functional references to physical rather 
than represented objects. 

The use of variables and recursion means that the size 
of the block tower affects not the size of the plan itself, 
but only the planning time, the plan execution time, and 

the size of the plan execution stack. As in BLOCKHEAD 
[CHAPMAN, 1989], our use of variables conclusively an- 
swers the plan-size objections raised by [GINSBERG, 
1989]. The essential ingredient is an ability to dynam- 
ically create and bind variables to objects; the binding 
need not involve indexical/functional reference. (A Uni- 
versal Plan of fixed size can also construct block towers 
of arbitrary size, but we cannot explain that here due to 
space limitations.) 

4.5     Consequences for Serendipity Detection 

We were surprised by indexical/functional reference in 
only one respect, namely that it seemed to completely 
thwart the ability of Universal Plans to detect serendip- 
itous events. If we instructed the plan to stack any 
red box on any blue box, and we then put our own 
red box onto the blue box picked out by the plan, the 
plan would remove our red box so as to put its own 
red box on the blue box! While not exactly wrong, this 
behavior is inefficient and would be warranted only if 
we pointed out a particular red box and told the plan 
to put that red box on a blue box. We conclude that 
indexical/functional reference represents an extreme of 
firmness of purpose, and intend to explore mechanisms 
for automatically restoring the ability to detect serendip- 
itous circumstances. 

5    Conclusions 

All the system designs of Figure 3 require the agent's 
plan predicates to take parameters that somehow indi- 
cate the objects to be examined. The arrangement of 
Figure 3b allowed the agent to manipulate objects ex- 
ternal to it, but only if the objects were non-identical. 
The step from Figure 3b to Figure 3c gave the agent a 
tracking capability, which allowed the agent to manip- 
ulate a particular one of several identical objects. The 
step from Figure 3c to Figure 3d allowed the agent to ma- 
nipulate several identical objects simultaneously. These 
steps show that indexical/functional reference is a con- 
fluence of: 1) the use of indefinite descriptions of target 
objects, e.g. "any red sphere"; 2) the ability to percep- 
tually pick out and spatially locate candidate objects, 
e.g. "that thing"; 3) tracking (when perception is vi- 
sual), e.g. "that thing" (when it is one of several, or 
happens to be moving); 4) an unambiguous association 
between plan objects and perceived object locations; and 
5) the ability to perceptually examine tracked objects, 
e.g. "is <tracked-object< red and a sphere". Indexi- 
cal/functional reference falls naturally out of this com- 
bination, e.g. "that red sphere". 

It may be of some interest that our block stacking 
plan acquired the ability to manipulate multiple identi- 
cal blocks without being modified in any way that would 
have required indexical reasoning on the planner's part. 
For example, the constraints on objects were indefinite 
descriptions, or in logical terms, existentially quantified 
formulae. This means that for the planner, object vari- 
ables could have logico-objective semantics, while for the 
plan executor they could have indexical/functional se- 
mantics. Is this possible difference of semantics between 
planner and plan executor a deficiency or an advantage? 
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Finally, our implementation of indexical/functional 
reference within a symbolic framework extended the for- 
mer by providing the ability to dynamically create, con- 
strain and assign references. 

References 

[Agre and Chapman, 1987] P. AGRE and D. CHAP- 
MAN. Pengi: an implementation of a theory of ac- 
tivity. In Proc AAAI, pages 268-272, 1987. 

[Agre, 1988] P. AGRE. The Dynamic Structure of Ev- 
eryday Life. Tech rept, AI Lab, MIT, 1988. 

[Chapman, 1989] D. CHAPMAN. Penguins can make 
cake. AI Magazine, 10:4:45-50, 1989. 

[Ginsberg, 1989] M. GINSBERG. Universal planning: 
an (almost) universally bad idea. AI Magazine, 
10:4:40-44, 1989. 

[Manna and Waldinger, 1987] 
Z. MANNA and R. WALDINGER. How to clear a 
block: a theory of plans. Journal of Automated Rea- 
soning, 3:4:343-377, 1987. 

[Schoppers, 1989] M. SCHOPPERS. Representation 
and Automatic Synthesis of Reaction Plans. Report, 
Dept of Computer Science, University of Illinois at 
Urbana-Champaign, 1989. 

[Schoppers, Sep 1990] M. SCHOPPERS. Automatic 
synthesis of perception driven discrete event control 
laws. In Proc 5th IEEE Internat'I Symp on Intelligent 
Control, page XX, Sep 1990. 

[Stefik, 1981] M. STEFIK. Molgen part 1: planning 
with constraints. Artificial Intelligence, 16:141ff, 1981. 

[Subramanian and Woodfill, 1989] D. SUBRAMA- 
NIAN and J. WOODFILL. Making situation calculus 
indexical. In Proc 1st Internat! Conf on Principles 
of Knowledge Rep'n and Reasoning, pages 467-474. 
Morgan Kaufman, Los Altos, 1989. 

496 



OPIS: An Integrated Framework for 
Generating and Revising Factory Schedules1 

Stephen F. Smith, Peng Si Ow2, 
Nicola Muscettola, Jean-Yves Potvin3 and Dirk C. Matthys 

Center for Integrated Manufacturing Decision Systems 
The Robotics Institute 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

Abstract 

Practical solutions to the production scheduling problem 
must provide two broad capabilities: (1) an ability to 
efficiently generate schedules that reflect the actual 
constraints and objectives of the manufacturing 
environment, and (2) an ability to incrementally revise 
these schedules over time in response to unexpected 
executional circumstances. In this paper, we advocate a 
common view of predictive and reactive scheduling as an 
incremental problem solving process that is 
opportunistically focused by characteristics of the current 
solution constraints. We describe the architecture of OPIS 
(Opportunistic Intelligent Scheduler), which defines a 
general framework for configuring scheduling systems 
according to this view. We then examine the scheduling 
knowledge (e.g. analysis and scheduling methods, 
schedule generation/revision strategies) that is exploited 
within this architecture by the current OPIS scheduler. 
Experimental studies with the OPIS scheduler have 
demonstrated the potential of this constraint-directed 
scheduling methodology in both predictive and reactive 
scheduling contexts.    4 
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1. Introduction 
The broad goal of production scheduling is to produce a 

factory behavior where parts are produced in a timely and 
cost-effective     manner. In     most    manufacturing 
environments, achievement of this goal is confounded by 
two factors: the complexity of operational level decision- 
making and the unpredictability of factory operations. 
Problem complexity derives from the need to determine 
assignments of shared resources (machines, operators, 
transport devices) to the manufacturing activities of many 
competing production processes over time which are both 
feasible from the standpoint of temporal process 
restrictions and resource capacity limitations, and 
satisfactory in the sense that they result in good overall 
factory performance. This latter requirement typically 
involves compromise among a diverse and conflicting set 
of production objectives (e.g. meeting deadlines, 
minimizing work-in-process, etc.). Problem complexity 
argues strongly for the advance development of production 
schedules. This provides a basis for anticipating constraint 
interactions (in particular, resource contention) and 
minimizing their harmful effects on factory performance. 
At the same time, the factory floor is typically a 
dynamically changing environment Machines break 
down, raw materials fail to arrive on time, partially 
manufactured parts fail to meet quality control standards 
and require rework, operators call in sick, etc. Thus, even 
an ability to produce advance schedules that accurately 
reflect the constraints and objectives of the production 
environment is likely to be of limited practical utility 
without a companion ability to reactively manage these 
schedules in response to changing circumstances. The 
reactive scheduling problem raises additional requirements. 
In addition to maintaining the quality of the schedule from 
the standpoint of production objectives, it is also important 
to maintain a degree of stability in planned operations 
(since of a schedule sets a large number of interdependent 
processes in motion) and to produce results within 
acceptable response time constraints (to keep the 
manufacturing system operating). 
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Historically, the production scheduling problem has been 
treated stricüy from either a global optimization 
perspective or a local control perspective. One body of 
work (e.g. [Graves 81]) has focused on the development of 
optimal solutions to various classes of scheduling 
problems. Unfortunately, such results have been obtainable 
only under very restrictive problem assumptions, which 
bear little relationship to actual manufacturing 
environments. Other research has focused on the 
development of local dispatch priority 
heuristics [Panwalker&Iskander 77]. These approaches do 
provide a robust basis for operational decision-making in 
the face of an unpredictable environment. However, the 
ability of such local decision-making to effectively 
optimize overall performance depends on the sensitivity of 
the decision rule to the dynamics of the manufacturing 
system, and again the simplifying assumptions made in 
most of this work are not reflective of most actual 
manufacturing environments. Scheduling techniques used 
in practice typically provide only rough guidance for 
operational decision-making, and there is no support for 
reactively revising this guidance as unexpected events 
occur. Often, predictive plans are based on artificial 
constraints (e.g. standard lead times) that accommodate 
factory floor inefficiencies, in essence advocating 
predictable factory results as a substitute for good factory 
results. 

More recent work in knowledge-based scheduling [Fox 
83,Fox&Smith 84, Smith&Ow 85, Smith et. al. 86] has 
attempted to provide more effective solutions to the 
production scheduling problem, emphasizing the use of 
heuristic scheduling techniques that are directed by 
knowledge of the active constraints and objectives in the 
target production environment This work has led to an 
integrative view of predictive and reactive scheduling as an 
opportunistic problem solving process [Ow&Smith 88, Ow 
et. al. 88], which forms the basis of the OPIS 
(Opportunistic Intelligent Scheduler) factory scheduling 
system. The term opportunistic reasoning has been used to 
characterize a problem solving process whereby activity is 
consistently directed toward those actions that appear most 
promising in terms of furthering the current problem 
solving state. In the case of OPIS, it refers to an 
incremental scheduling methodology where characteristics 
of current solution constraints (e.g. likely areas of resource 
contention, schedule conflicts resulting from unanticipated 
external events) are used to dynamically focus attention on 
the most critical decisions that remain to be made/revised. 

OPIS implements this approach to scheduling via a 
"blackboard style" system organization [Erman et. al. 80], 
wherein a set of distinct methods, referred to as knowledge 
sources (KSs), are selectively employed to generate, revise 
or analyze specific components of the overall schedule. 
Scheduling methods vary in the types of subproblems they 

can solve (i.e. the problem decomposition assumptions they 
are based on), and in the types of constraints and objectives 
that are emphasized. A control cycle that combines 
constraint propagation and consistency maintenance 
techniques with heuristics for subproblem formulation is 
used to coordinate overall scheduling activity. 
Experimental results with the OPIS scheduler in the context 
of realistic production scheduling problems have 
demonstrated the potential of this approach in both 
predictive and reactive scheduling contexts. 

In this paper, we describe the structure and operation of 
the OPIS scheduler. First, we consider the basic principles 
that motivate our approach. Next we describe the principal 
components of the OPIS scheduling architecture and the 
framework it provides for opportunistic constraint-directed 
scheduling. We then examine the scheduling knowledge 
(i.e. analysis and scheduling methods, schedule generation 
and revision strategies) that is exploited within this 
architecture by the current OPIS scheduler, and summarize 
experimental results that have been obtained. We conclude 
with a discussion of the directions of our current research. 

2. Opportunistic, Constraint-Directed 
Scheduling 
The generation of an assignment of resources, start times 

and end times to operations that satisfies temporal process 
and resource capacity constraints and effectively balances a 
set of conflicting objectives is a combinatorial search 
problem. To manage the complexity of this search, it is 
necessary to make heuristic assumptions about how the 
problem is to be decomposed and where search effort is to 
be concentrated. Such assumptions, however, do affect the 
quality of the result. In dispatch-based scheduling 
approaches, for example, the problem is decomposed 
principally in an event-based fashion (i.e., scheduling 
decisions are made in chronological order), and secondarily 
into a set of local resource scheduling problems. Thus, 
search is confined to the operations that are eligible to 
acquire a free resource at a given point in time. On the 
other hand, the ability to optimize overall performance 
objectives is limited by the lack of a view of the future 
consequences of the scheduling decisions that are made. A 
decision made at a given point in time may unnecessarily 
restrict alternatives for critical future decisions which 
eventually leads to otherwise avoidable problems (e.g. 
unnecessary downstream congestion). 

In simplest terms, OPIS advocates an approach to 
incremental scheduling wherein the order and manner in 
which decisions are made (or revised) is not fixed a priori 
but are instead determined dynamically according to the 
structure of the constraints implied by the current solution 
state. The approach is motivated by the desire to 
circumvent    the    inherent   limitations   of   any   fixed 
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decomposition strategy with respect to optimization of 
various scheduling objectives while retaining an efficient 
search process. Two basic types of problem decomposition 
strategies (or local scheduling perspectives) are considered 
within OPIS as a basis for heuristically structuring the 
scheduling process: resource-based and order-based. Each 
offers distinct advantages and disadvantages from the 
standpoint of addressing various scheduling objectives. A 
resource-based approach yields subproblems that localize 
attention to the schedule of a specific resource, and 
promotes optimal resolution of conflicts involving the set 
of operations that are competing for that resource (e.g., 
scheduling decisions that minimize setups and overall order 
tardiness). At the same time, interactions among operations 
belonging to the same order due to precedence constraints 
cut across several subproblems, and cannot be effectively 
addressed. An order-based approach provides an 
orthogonal viewpoint Here, each subproblem relates to the 
schedule of a particular order, and optimal resolution of 
conflicts involving the operations that must be performed 
to produce a given order (e.g. scheduling decisions that 
minimize work-in-process time) is promoted. But 
interactions among operations competing for the same 
resource are now fall outside of any one subproblem. 

Opportunistic use of multiple local scheduling 
perspectives raises a number of difficult issues with respect 
to overall control of the scheduling process: What is the 
most appropriate way to approach the problem at any 
point? What is the most important subproblem to solve? In 
what manner is a given problem most effectively solved? 
How does one resolve inconsistencies that arise, due either 
to interactions between different solved subproblems or to 
unexpected results that occur on the factory floor? As 
suggested above, OPIS relies on repeated analysis of the 
characteristics of current solution constraints to guide this 
decision-making. For example, if analysis of initial 
problem constraints indicates resources that are highly 
contended for, then schedule generation will proceed by 
first constructing candidate schedules for these bottleneck 
resources. These decisions can be seen as most critical to 
the quality of the overall solution, and also represent the 
subproblems with the fewest scheduling alternatives (since 
there is no reason to consider insertion of idle time in 
bottleneck resource schedules). These candidate bottleneck 
schedules then anchor the search by constraining 
alternatives for the decisions that remain to be made. 

Similarly, analysis of the constraints that comprise 
inconsistent solution states provides information relating to 
the criticality of revising various scheduling decisions and 
the opportunities (flexibilities) that exist for efficient 
reaction. In this case, analysis is centered around the actual 
conflicts that exist in the current schedule, and subproblem 
formulation heuristics are directed at local resolution of 
these conflicts. Depending on the nature of the formulated 

subproblem, it is quite possible that subproblem solution 
will lead to the introduction of additional conflicts that 
must be subsequently responded to. For example, 
indication of an unexpected machine failure might 
necessitate considerable rescheduling of other substitutable 
machines, which, in turn, is likely to have disruptive effects 
on the downstream activities of rescheduled orders. Given 
the tightly coupled nature of scheduling decisions, it is 
extremely difficult (if not impossible) to predict the effects 
(i.e. the ripple effect) of a given local reaction. In the 
absence of an understanding of the behavior of the 
manufacturing environment, there is little alternative to 
such an opportunistic approach. 

3. The OPIS Scheduling Architecture 
The OPIS scheduling system can be seen at two levels. 

At one level, it defines a specific (albeit complex) heuristic 
procedure for generating and revising factory schedules 
opportunistically. At another level, it defines a general 
framework, or scheduling architecture, for organizing and 
applying scheduling heuristics in an opportunistic, 
constraint-directed fashion. The OPIS scheduling 
architecture thus provides a structure for developing other 
opportunistic scheduling procedures [Potvin&Smith 89]. 
In this section, we describe OPIS from an architectural 
standpoint. In later sections, we turn attention to the 
currently implemented OPIS scheduler. 

As indicated at the outset, The OPIS scheduling 
architecture incorporates principles of standard blackboard 
style architectures and similarly assumes an organization 
comprised of a number of knowledge sources (KSs) that 
extend, revise and analyze a globally accessible solution (in 
this case the factory schedule). Within OPIS, two types of 
KSs are distinguished: Analysis KSs, which examine 
specific components of the global schedule and build 
abstract characterizations of the current solution state, and 
Scheduling KSs, which constitute alternative methods for 
manipulating the global schedule. Scheduling KSs 
implement the different local scheduling perspectives that 
might be adopted. 

In support of opportunistic schedule generation and 
revision, the OPIS scheduling architecture combines two 
principal components: a schedule maintenance subsystem, 
for incrementally maintaining a representation of current 
solution constraints, and an event-driven control cycle, for 
coordinating the use of scheduling and analysis KSs. The 
former provides both a basis for analyzing aspects of the 
current scheduling state and a means for communicating 
scheduling constraints among different formulated 
subproblems. The latter provides a structure for specifying 
and a mechanism for applying the control knowledge 
necessary to effectively employ various KSs. 
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3.1. Schedule Maintenance 
At the core of the system is an incrementally maintained 

representation of the current schedule. This representation 
is defined and maintained relative a hierarchical model of 
the constraints of the production environment. In this 
model, production plans for various part types are 
represented as hierarchies of operations, with aggregate 
operations designating either more detailed sub-processes 
or sets of exclusive alternatives. Operation precedence and 
duration constraints are embedded in these hierarchies, as 
well as specifications of required resources. Individual 
resources are grouped into successively larger work areas 
to provide resource descriptions at each level of abstraction 
in the production plans, and constraints on resource 
allocation (e.g. capacity, hours of operation) are specified 
at each level. A utility-based preference representation is 
used to encode various scheduling objectives and 
operational preferences (e.g. machine preferences). 

This factory model provides a structure for representing 
and maintaining current solution constraints at multiple 
levels of abstraction. This representation includes a 
specification of the current time bounds on the execution of 
each manufacturing operation that has been or may be 
scheduled (since some operations designate alternatives 
which will become undefined as choices are made), and a 
specification of the current available capacity of each 
resource over time. As additional scheduling decisions are 
made or the constraints implied by particular factory status 
updates are introduced, the schedule maintenance system 
combines these new constraints with the constraints 
specified in the underlying factory model (e.g. order 
release/due dates, operation durations, operation 
precedence relations, resource requirements, resource 
capacity limitations) to update the time bounds and 
available capacity representations respectively of related 
operations and resources at all defined levels of abstraction. 
Thus, an unscheduled operation's time bounds at any point 
reflect the set of allocation decisions compatible with both 
the specified constraints on factory operations and any 
scheduling decisions that have been made. 

Constraint propagation in response to schedule changes 
can lead to the detection of two types of conflicts: 

• time conflicts: situations where either the time 
bounds or scheduled execution times of two 
operations belonging to the same order violate a 
defined precedence constraint. 

• capacity conflicts: situations where the resource 
requirements of a set of currently scheduled 
operations exceed the available capacity of a specific 
resource over some interval of time. 

The recognition of such conflicts signals the need for 
schedule revision and provides a basis for focusing this 
activity. 

Details of this approach to schedule maintenance can be 

found   in [LePape&Smith   87].   Representation   of  the 
underlying factory model is described in [Smith 89]. 

3.2. Coordinating the Scheduling Process 
The use of various analysis and scheduling KSs in the 

solution of specific scheduling problems is coordinated by 
a designated KS called the top-level manager. This KS 
implements the system's basic control cycle, which, in turn, 
defines a framework for specification and organization of 
the system's (heuristic) control knowledge. 

Generally speaking, coordination of the scheduling effort 
by the top level manager proceeds as an event-driven 
process. Changes in the state of the schedule, introduced 
either by internal problem-solving activity (e.g. generating 
a schedule for a given order) or by external factory status 
updates (e.g. notification of a machine breakdown), are 
detected by the schedule maintenance system and posted as 
control events to the top-level manager at the beginning of 
each problem solving cycle. Three basic types of control 
events can be posted: (1) an incomplete hypothesis event, 
which indicates that unscheduled operations remain, (2) an 
elementary conflict event, which indicates the presence of 
an inconsistency in the schedule (i.e. a time or capacity 
constraint violation), and an opportunity event, which 
indicates the possibility for schedule improvement due to 
an unexpected "loosening" of time or capacity constraints5. 
On any given cycle, the set of posted events leads to the 
execution of a particular scheduling action, and problem 
solving continues until the set of posted control events 
becomes empty. In such a case, a complete and consistent 
schedule has been obtained. 

Figure 3-1 depicts the top-level control cycle in more 
detail, and identifies its 4 main steps. Each is briefly 
summarized below. 

3.2.1. Event Selection 
The first step of the top-level control cycle is event 

selection, which is concerned with identifying, from the set 
of currently posted events, the most appropriate problem to 
focus on. This is accomplished in two steps: 

1. Event aggregation. It is often the case that 
individual events are related in some manner and 
would be better addressed simultaneously. During 
event aggregation, knowledge of such relationships 
(provided to the system as a set of aggregation 
heuristics) is applied to the set of posted events. In 
cases where specific relationships are detected, 
aggregate events are created and added to the list of 
posted events. The aggregation heuristics employed 
in the current OPIS scheduler consider only one 

opportunity events are not exploited within the current OPIS scheduler 

500 



Figure 3-1: The top-level control cycle 

type of relationship: commonality in the resources 
involved in posted elementary conflicts (e.g. 
capacity conflicts involving same resource). 
However, other aggregation heuristics are certainly 
possible and potentially useful (e.g. commonality 
of the orders involved in the conflicts, conflicts 
involving high priority orders or tardy orders). 

2. Event prioritization. After this preprocessing of 
posted control events, prioritization heuristics are 
applied to select the specific event to be responded 
to in the current cycle. Within the current scheduler, 
event priority is a function first of event type 
(aggregate conflicts are more important than 
elementary conflicts, which in turn are more 
important than incomplete-hypothesis events), and 
second of the urgency of the event (with the highest 
priority event being the one that is closest in time to 
the current time). All events other than the highest 
priority event are left pending until the next cycle. 

3.2.2. Event Analysis 
Having identified a focal point for problem solving (as 

represented by the highest priority control event), an 
analysis KS is selected to examine the portion of the 
current schedule "surrounding" this focal point in more 
detail. The goal of this event analysis step is to summarize 
essential aspects of current time and capacity constraints 
(i.e. their relative looseness or tightness), providing a basis 
for determining how to best respond to the event (see 
action selection below). This characterization is referred to 
as an analysis report. Within the current implementation, 
the selection of analysis KS depends on the type of event 
under   consideration.   In   the   case   of  an   incomplete- 

hypothesis event, where the problem solving focus is one 
of extending the current schedule, a "capacity analysis" is 
performed. In the case of a conflict event, where the focus 
is schedule revision, a "conflict analysis" is performed (an 
overview of these KSs is provided later). 

3.23. Action Selection 
The goal of action selection is to formulate the most 

appropriate scheduling task to execute in response to the 
control event under consideration. This requires 
determination of a particular component of the overall 
schedule to extend or revise, selection of a particular 
scheduling KS to carry out the task, and, depending on the 
KS selected, parameterization of the solution procedure. 
Action selection is accomplished through application of a 
set of subproblem formulation heuristics to the analysis 
report produced during event analysis. These heuristics 
combine knowledge of the implications of various 
characteristics of current time and capacity constraints with 
knowledge of the strengths and weaknesses of different 
scheduling KSs, and constitute the core of the system's 
theory of constraint-directed scheduling. The subproblem 
formulation heuristics currently employed in the OPIS 
scheduler are also described later in this paper. 

3.2.4. Action Execution 
The final step of the top-level control cycle is execution 

of the formulated scheduling task. This yields changes to 
the current schedule, and the consequences of these 
changes are inferred by the schedule maintenance system. 
Any detected constraint conflicts and/or unscheduled 
operations are posted as control events to the top-level 
manager and the control cycle repeats. 

4. The OPIS Scheduler 
The OPIS scheduling architecture provides a general 

framework for opportunistic, constraint-directed 
scheduling. We now turn attention to the specific 
scheduling and analysis methods that are exploited in the 
current OPIS scheduler, and the subproblem formulation 
heuristics that govern their use. 

4.1. Generating and Revising Scheduling Decisions 
As indicated previously, scheduling KSs constitute the 

actual methods available to the system for extending and 
revising the current schedule. Scheduling KSs vary in the 
types of scheduling subproblems they can solve (i.e. the 
local scheduling perspective that is assumed) and in the 
types of scheduling constraints and objectives that they 
emphasize. Accordingly, each has particular strengths and 
weaknesses with regard to generating and maintaining the 
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overall schedule. Table 4-1 summarizes the behavioral 
characteristics of each method along different dimensions. 
The entries for a given scheduling action are assigned 
qualitative values in the range from 0 to 1, with 0 being the 
lowest possible rating and 1 the highest. The first two rows 
indicate the relative strengths of each method from the 
standpoint of optimizing various scheduling objectives. The 
remaining three rows characterize the disruptive behavior 
of each method when used in schedule revision contexts. 
Each of these scheduling KSs is summarized below. 

Order Scheduler (OSC) 

The Order Scheduler provides a method for generating 
or revising scheduling decisions relative to some 
contiguous portion of a specific order's production plan. It 
implements the constraint-directed heuristic search 
technique originally developed in the ISIS scheduling 
system [Fox&Smith 84]. This method is characterized by 
the use of a beam search to explore alternative sets of 
resource assignments and execution intervals, evaluating 
various alternatives with respect to how well the decisions 
satisfy relevant preference constraints (e.g. meeting due 
dates, work-in-process time objectives, machine 
preferences, etc.). Heuristic knowledge relating to the 
relative importance of different preferences and the relative 
utility of the various alternatives over which each 
preference is defined provides the basis for this evaluation. 
In invoking OSC, resource availability constraints can be 
made more or less "visible". It can either be constrained to 
consider only execution intervals for which resource 
capacity currently exists, which we designate as the 
complete visibility (CV) OSC, or allowed to consider 
capacity allocated to lower priority orders as available, 
which we designate as the prioritized visibility (PV) OSC. 
Since the latter case admits the possibility of introducing 
additional capacity conflicts into the schedule (leading to 
"bumping" of lower priority orders), a decision to invoke 
the PV-OSC trades off potential additional disruption for 
some ability to perform resource-based optimization (hence 
the value 0.5 for this characteristic in Table 4-1). OSC can 
also be parameterized to conduct its search either forward 
or backward through an order's production plan from a 
given start or end time anchor. In situations where resource 
capacity is fairly plentiful, the search tends to lead to 
minimization of work-in-process time in the direction of 
the search anchor. 

Resource Scheduler (RSC) 

The Resource Scheduler provides a method for 
generating or revising the schedule of a designated resource 
or collection of substitutable resources (i.e. an aggregate 
resource). The method is predicated on the assumption that 
contention for the resource in question is high and, thus, 
emphasizes efficient resource utilization (e.g. there is no 
need to consider slack time between operations).     It 

generates scheduling decisions using an iterative dispatch- 
based approach, adding one or more operations to the 
schedule of the resource under consideration at each 
dispatch cycle. A collection of dispatch heuristics are 
selectively employed to provide sensitivity to different 
preference constraints, the principal being Ow's Idle Time 
rule [Ow 85]. Full details of this approach can be found in 
[Ow&Smith 88]. When invoked in reactive contexts, an 

attempt is made to retract only as many scheduling 
decisions as necessary to resolve the problem at hand. This 
is accomplished by assuming that a new schedule will be 
generated forward in time from the point of the current 
problem, but remembering the old schedule. After each 
dispatch scheduling cycle, a check is performed to see if 
the new schedule can be consistently merged with the 
fragment of the old schedule consisting of the operations 
that have yet to be placed in the new schedule. 

Right Shifter (RSH) 

The RSH implements a considerably less sophisticated 
reactive method which simply "pushes" the scheduled 
execution times of designated operations forward in time 
by some designated amount. Such initial shifts can 
introduce both time conflicts and capacity conflicts. 
However, these conflicts are internally resolved by 
propagating the shifts through resource and order schedules 
to the extent necessary. Thus, the RSH will not introduce 
any new conflicts into the overall schedule. 

Demand Swapper (DSW) 

Demand Swapping is a specialized reactive method 
applicable in situations where an operation has become 
unexpectedly and significantly delayed (e.g. as a result of 
required rework if a part fails to meet quality standards). It 
exchanges the remaining portion of the affected order's 
schedule with the correspondent portion of the schedule of 
another order of the same type so as to minimize their 
combined tardiness. Note that the DSW is not necessarily a 
conflict resolution strategy. It is more appropriately viewed 
as a scheduling action that improves the character of the 
conflict. 

4.2. Analysis of Current Solution Constraints 
Analysis of current scheduling constraints provides the 

basis for differentiating between potential scheduling 
actions at each point in the scheduling process. As 
previously indicated, different analysis KSs are employed 
within OPIS in generative and reactive scheduling contexts. 
Each produces an analysis report summarizing constraint 
characteristics relevant to action selection in the context it 
supports. 

Capacity Analysis 
The Capacity Analyzer (CAN) is invoked when the 
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RSC CV- 
OSC 

PV- 
osc 

RSH DSW 

resource-based 
optimization 

1 0 0.5 0 0.5 

order-based 
optimization 

0 1 1 0 1 

time conflict 
avoidance 

0 1 1 1 0.5 

cap. conflict 
avoidance 

1 1 0 1 1 

sequence 
stability 

0 0 0 1 0 

Table 4-1: Characteristics of Scheduling KSs 

scheduler's current focus is incomplete-hypothesis event 
(i.e. when unscheduled manufacturing operations have 
been detected). The control decision at hand in this case is 
how to best extend the current schedule. To support this 
decision-making, the Capacity Analyzer computes 
estimates of the expected level of contention for resources 
required by operations that remain to be scheduled. 
Operating at an abstract level in the hierarchical model, 
capacity analysis proceeds by first constructing a rough, 
infinite capacity schedule that satisfies the time constraints 
of all unscheduled operations (employing a general line 
balancing heuristic where choices in resource assignments 
exist), and then superimposing resource availability 
constraints to compute resource "demand/supply" ratios 
over time. These estimates are used to identify likely 
bottleneck areas in the evolving schedule. An alternative, 
probabilistic approach to providing this global view of 
resource contention is described in [Muscettola&Smith 87]. 

Conflict Analysis 

The Conflict Analyzer (CONAN), alternatively, is 
invoked when the system's current focus is a conflict event 
(indicating that one or more inconsistencies have been 
introduced into the schedule). In this case, the control 
decision to be made concerns how to best revise the current 
schedule to restore feasibility. In contrast to the capacity 
analysis, conflict analysis is concerned with characterizing 
a localized set of current solution constraints. The Conflict 
Analyzer computes measures that characterize the 
magnitude of conflict itself (duration, number of orders 
involved) as well as measures of the current flexibility (or 
lack of) in the capacity and time constraints of the resource 
and orders involved in the conflict (level of contention for 
the resource involved, projected lateness of the orders 
involved, upstream and downstream slack in these orders' 
schedules, and variance in the projected lateness of all 
orders). The value of each these measures has specific 
implications with respect to the continuing validity of 

previous scheduling decisions, the amount of disruption to 
be expected by various scheduling actions, and/or the 
relative emphasis that should be placed on various 
scheduling objectives in resolving the conflict This 
knowledge is encoded in the subproblem formulation 
heuristics used to direct schedule revision (see below). 
Details of the measures computed during conflict analysis 
may be found in [Ow et. al. 88]. 

43. Subproblem formulation heuristics 
In this section, we describe the subproblem formulation 

heuristics used to opportunistically focus the scheduling 
process. We consider, in turn, the heuristics employed for 
generating and revising scheduling decisions. 

In generative scheduling contexts, subproblem 
formulation decisions are driven first and foremost by the 
expectations regarding resource contention that are 
provided by capacity analysis. If bottleneck resources are 
identified, then RSC is applied to schedule the bottleneck 
that is estimated to be the severe one. These decisions are 
seen as most critical to the overall solution. The RSC is 
repeatedly applied to any further bottlenecks that are 
identified on subsequent control cycles. When the results of 
capacity analysis indicate that no bottleneck resources 
remain, a shift in perspective to order-based scheduling is 
made. 

Both the scope of order-based subproblems and the 
manner in which they are prioritized and solved depend on 
the state of the current partial solution. Consider the case 
of a single scheduled bottleneck resource. The heuristic 
used here aims at constructing order schedules outward 
from these fixed points in an manner that facilitates 
minimization of work-in-process time (the principal 
strength of OSC). To this end, order scheduling 
subproblems relating to the upstream portions of the 
orders' production plans are prioritized in reserve order of 
the their scheduled start times at the bottleneck resource, 
and CV-OSC is applied in a backward scheduling fashion 
through the upstream portion of a given order's production 
plan. Conversely, order scheduling problems relating to 
the downstream portions of orders' production plans are 
prioritized in order of their scheduled end times on the 
bottleneck resource, and CV-OSC is applied in a forward 
fashion. Order scheduling subproblems relating to the 
portions of production plans falling between two 
bottlenecks are prioritized and solved in the same manner 
as downstream subproblems, however in this case 
minimizing work-in-process time is not really a concern 
(i.e. there are two temporal anchors). Complete order 
scheduling subproblems (i.e. in situations where there are 
no bottlenecks) are prioritized according to closeness to 
due date. 

With respect to overall coordination of order scheduling 
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before, between, and after scheduled bottlenecks, the 
strategy here is to move forward through time, solving all 
subproblems upstream of all bottlenecks first, and so. The 
motivation here is to recognize and respond to any conflicts 
that might arise in the developing schedule as early as 
possible. Given the fact that bottleneck scheduling 
proceeds with only a local view of the overall problem, 
incompatibilities may develop as order scheduling proceeds 
(note that such problems will not occur downstream of all 
bottlenecks since due dates can be relaxed). In such cases, 
the heuristics described below for schedule revision 
become relevant and the bottleneck schedule is revised. 
The underlying propagation of time bounds, coupled with 
the fact that important capacity related problems are 
addressed, acts against the occurrence of such problems, 
and typically the conflicts that are introduced are relatively 
minor in nature. 

In schedule revision contexts, characteristics of the 
current conflict state provide the basis determining 
appropriate scheduling actions. Figure 4-1 contains a 
decision tree reflecting the set of heuristics that are 
currently utilized. Interpreting this tree, we see that if the 
size of the conflict is small, then RSH is advocated. This 
heuristic appeals to sensitivity analysis [Bean&Birge 85], 
assuming that the sequencing decisions in the current 
schedule are still valid in such situations, and the 
knowledge that this scheduling KS resolves conflicts 
efficiently in a way that preserves existing sequencing 
decisions. On the other hand, if either the conflict size, the 
conflict duration or both is large, then the implication is 
that some amount of resequencing is likely to be necessary. 
If it is additionally the case that capacity constraints are 
very tight on the resource involved in the conflict 
(designated as "low fragmentation" in the figure), a 
resource-based perspective is needed to ensure that the 
action taken optimizes utilization of this resource. 
Conversely, a highly fragmented resource schedule implies 
an opportunity for order-based optimization. 

If a resource-based perspective is to be taken, then a 
number of different scheduling actions are possible. If the 
average projected lateness of the conflicting orders is 
positive, and the variance in the projected lateness of all 
orders is high, then there may be an opportunity to either 
resolve or reduce the conflict using DSW. This action is 
applied whenever possible, and then removed from 
consideration for the next control cycle. If, alternatively, 
the above conditions are not met, then the likelihood that 
DSW will yield productive results is low since either there 
is no need for pair-wise minimization of tardiness 
(conflicting orders are early) or there is little opportunity 
(all orders are equally early or late). In this case, either 
RSC or PV-OSC (with its scope limited to just the 
conflicting operations) are possible actions. If either the 
number of conflicting  operations  is  high  or there is 

upstream slack that can be exploited for resequencing 
purposes, then RSC is the most efficient and effective 
reactive action that can be taken. This follows from its 
strength in optimizing the utilization of a particular 
resource. However, if only one or two conflicting 
operations are present and there is little upstream slack, 
then PV-OSC may be sufficient. In this case the 
resequencing problem is constrained to one of simply 
repositioning the conflicting operation(s) within the focal 
point resource's schedule. 

If we presume instead that an order-based perspective is 
appropriate (i.e., fragmentation is high), the projected 
average lateness of conflicting orders provides a basis for 
differentiating among possible actions. If there is 
considerable slack in meeting the due dates of orders 
involved in the conflict, the CV-OSC is preferable as it 
minimizes disruption to the existing schedule without threat 
of the order being tardy. If, however, order tardiness is a 
concern, then a more aggressive approach to order 
scheduling is needed. When there is a high variance in the 
projected lateness of jobs, an opportunity may exist to swap 
demands with DSW. If not, PV-OSC provides a consistent, 
more aggressive approach to order scheduling. 

DSW PV-OSC       DSW    OSW 

PV OSC RSC       RSC 

DSW 
RSC 

PV-OSC 

□ Tiolrcat'onoUchedul 

Figure 4-1: Revising Schedules 

One aspect of the reactive scheduling heuristics which is 
not reflected in figure 4-1 is the scope of the formulated 
subproblem.   In the case of resource-based reactions, the 
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scope is naturally the resource involved in the conflict. 
However, in the case of order-based reactions, the scope 
depends on the extent of resource contention further 
downstream. Specifically, if downstream slack is high 
(indicating the presence of downstream bottleneck 
resources), then the scope of an order-based scheduling 
action is limited to the portion of the order's production 
plan that precedes the first downstream bottleneck 
operation. This provides the opportunity to take full 
advantage of the strengths of resource-based scheduling 
actions for downstream bottlenecks. 

5. Experimental Results 
An experimental study previously reported [Ow&Smith 

88] has demonstrated the utility of the "bottlenecks first" 
generative scheduling strategy described in the previous 
section in the case of a single fixed bottleneck problem. 
This study conducted an comparative analysis of an earlier 
version of OPIS (employing OSC and RSC) with both the 
predecessor ISIS scheduling system (a order-based 
scheduler), and a dispatch-based simulation approach. The 
context of this study was a scaled down model of an actual 
job shop consisting of 30 machines organized into various 
work areas (with 7 machines in the bottleneck area). Six 
product types were included in the model, each with linear 
production plans ranging from 4 to 6 operations. The 
schedules generated by each system were evaluated with 
respect to tardiness costs, work-in-process time, and 
number of machine setups. 

The analysis involved solution, by each system, of 22 
test problems, 20 requiring 120 orders to be scheduled and 
2 requiring on 75. Test problems were defined by 
manipulating 4 parameters: the pattern of order releases, 
the number of orders released simultaneously, the product 
mix, and the setting of due dates. The problem set was 
grouped into 18 categories, representing different shop 
conditions and load factors ranging from 70% to 120% of 
the capacity of the bottleneck area. 

With respect to all three performance metrics, OPIS 
outperformed the other two systems across all experiments. 
As expected, ISIS performed well with respect to 
minimizing WTP time (given its order-based perspective), 
but its performance with respect to tardiness costs suffered 
because of its inability to effectively manage resource 
contention. ISIS schedules contained close to twice the 
number of setups as did the OPIS schedules. Relative to 
the dispatch-based approach, OPIS schedules exhibited > 
25% improvement in tardiness costs in 70% of the 
experiments (>10% improvement over all experiments) and 
> 50% improvement in average WIP time over all 
experiments. A complete account of this study may be 
found in [Ow&Smith 88]. 

More recently, a preliminary experimental analysis was 

performed to assess the performance of the reactive 
decision-making model described above (hereafter referred 
to simply as the tree model). This study was carried out in 
the context of a specific computer board assembly and test 
line. At the level of detail modeled, the line consisted of 11 
"sectors", each possessing the capacity to simultaneously 
process a number of boards. Board process routings varied 
in length from 12 to 30 operations and included both 
planned and unplanned looping through various sectors. In 
the following, we summarize the experimental design and 
the overall results obtained. 

The performance of the tree model was contrasted with 
that of the set of simpler reactive strategies that are defined 
by assuming that a particular OPIS KS is unconditionally 
applied as the first reaction to any conflict that arises. In 
cases where the designated first action did not define a 
complete reactive strategy (e.g. the resource scheduler may 
introduce additional conflicts into the schedule which must 
be subsequently resolved), the tree model was used as a 
basis for selection of subsequent actions. A "random" 
decision model was also defined to provide a final point of 
comparison. Within this model, the choice of specific 
actions was biased by the relative frequencies with which 
actions were used following the tree strategy in solving the 
test problems. The point of the random model was to verify 
that the knowledge encoded in the decision tree was in fact 
significant. Each alternative reactive strategy was applied 
to a series of 26 test problems. Each reflected the 
occurrence of machine breakdowns and/or quality control 
failures (implying order rework) in the midst of executing a 
pre-generated schedule. Conflict points in the current 
schedule were chosen so as to include circumstances that 
covered a large number of branches in the tree model. 

The results of these experiments were analyzed with 
respect to the following six performance criteria, 
combining schedule quality and scheduling disruption 
objectives. With respect to schedule quality, change in total 
tardiness time (Tardy/min) , change in the number of tardy 
orders (#OrdTardy), and change in total work-in-process 
time (ChgWTP) were measured. With respect to schedule 
disruption, number of resources with changed schedules 
(#ResChg), number of orders with changed schedules 
(#OrdChg), and average time change per rescheduled 
operation (Chg/res) were measured. To provide a basis for 
comparison, the set of performance values obtained for 
each strategy i in test problem £,were normalized according 
to the following formula: 

vßjjc)   = 
v(ij,k)-V(j) 

where V(/) is the grand mean value for that criterion 
obtained for all strategies over all experiments, and a(f) is 
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the grand standard deviation. A score for each strategy in 
each experiment was then computed as follows: 

S(ijc)   = £        wQ)vfijJc) 
je Perf.Criteria 

where w(j) is the weight associated with performance 
criterion j. 

Strategies were evaluated with the following distribution 
of weights: [tardy/min = 0.6, chgWIP = 0.05, #OrdTardy = 
0.1, #OrdChg = 0.1, #ResChg = 0.05, Chg/res = 0.1] which 
reflect the assumptions on which the tree model is based. 
The following results were obtained. First, the action 
prescribed by the tree model produced the best S(ijc) in 
60% of the test problems. Furthermore, the action 
prescribed by the tree produced a S(ijc) that was either best 
or second best in 88% of experiments. The overall 
behavior of each strategy is characterized in Table 5-1. 

TREE RSC PV- 
OSC 

cv- 
osc 

RSH RDM 

Ave. -0.327 -0.205 -0.123 -0.021 0.170 0.178 

Std. 
Dev. 

0.447 0.397 0.753 0.799 0.799 1.089 

Table 5-1: Overall behavior of 
alternative reactive strategies 

While it is not possible to draw any general conclusions 
from these preliminary experimental results, there are a 
couple of observations that can be made: 

• With respect to average overall performance, the tree 
model did perform better than all competing 
approaches. The "resource scheduler first" strategy 
(RSC) was the second best performer. This is in fact 
the most similar model to the tree model, since it 
nearly always incorporates decisions from the tree 
model to complete the schedule revision. 

• The right shifter first strategy (which is a complete 
strategy) was found to perform as poorly as the 
random model. This is interesting given the fact that 
right shifting is essentially equivalent to not reacting 
and just delaying production. This result suggests the 
value of more sophisticated reactive decision- 
making. 

• Finally, we found the relative overall performance of 
the tree model to be insensitive to 5% changes in the 
weights of individual criteria. 

6. Conclusions 
In this paper, we have presented an approach to 

coordinating production activities that advocates a common 
view of predictive and reactive scheduling as an 
opportunistic constraint-directed process. Accordingly, the 
OPIS scheduling architecture is intended to provide a 
framework that integrates periodic expansion/refinement of 
predictive schedules with incremental revision in response 
to conflicts that are introduced as a result of factory 
operation. 

Our current research builds on this work and is 
concerned with the following issues: 

• Understanding the multiplicative effects of 
incremental revisions to the schedule over time - Our 
current model for conflict analysis and reaction 
selection is based on the assumption that a new 
solution in the "neighborhood" of the old solution is 
desirable (or somewhat equivalently that the starting 
schedule is a good one). We currently have little 
understanding as to whether (and at what rate) the 
quality of the schedule can be expected to degrade 
over time. Our goal here is development of a 
methodology for recognizing when more global 
rescheduling is warranted. 

• Reacting to opportunities - A second point regarding 
schedule revision is the incompleteness of our 
current reactive model. If factory floor decision- 
making is to be driven by predictive guidance (a 
schedule) then schedule revision must be driven by 
opportunities (e.g. unanticipated resource capacity) 
as well as conflicts. We are currently extending the 
reactive model in this regard. 

• What level of predictive guidance is appropriate - 
This issue concerns the nature of the constraints 
imposed by the schedule (e.g. level of detail, 
temporal precision, etc.), and the extent to which 
execution-time decision-making is assumed. 
Knowledge of the sources and degrees of 
unpredictability (and regularity for that matter) in 
any particular manufacturing environment should 
dictate the level of detail of different aspects of the 
maintained schedule, both in terms of imposing 
constraints on factory floor decision making and in 
terms of establishing system expectations against 
which the need for reactive scheduling action can be 
gauged. This implies some amount of execution-time 
decision making in most manufacturing 
environments. We are investigating methods for 
representing and exploiting knowledge of the sources 
of unpredictability within the scheduler, and the 
development of control policies that interpret the 
schedule at execution time with knowledge of the 
scheduler's uncertainty assumptions. More generally, 
we are interested in understanding how the 
characteristics and constraints of a given 
manufacturing environment (e.g. extent of process 
unpredictability, demand patterns) should influence 
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decisions as to level of predictive guidance. 
1 Decentralization - Finally, we recognize that 
effective coordination of production schedules 
requires planning and reaction at different levels. 
Decisions made at higher levels (e.g. decisions 
regarding manpower requirements and shifts of 
operation in different areas of the factory) provide 
constraints on the more detailed decisions that must 
be made at lower levels (e.g. decisions regarding the 
short term schedule for a particular area in the 
factory). Similarly, the results of factory operation 
necessitate reactive actions that may involve 
decision-making at several different levels. Given 
both the complexity of this overall process and the 
concurrency of manufacturing activities, we view 
decentralization of coordination responsibility as a 
central component of any practical framework for 
production management. 
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